锌离子掺杂及电解液浓度变化对电化学沉积钙磷盐涂层的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文实验利用电化学沉积方法在钛金属表面制备不同磷酸钙盐涂层,并系统研究了Zn离子掺杂,电解液浓度等对沉积产物的微观形貌、物相成分、结晶度等方面的影响。全文主要内容分为三个部分:
     1)以Ca(NO3)2和NH4H2PO4为电解主盐,在电解液中加入Zn(NO3)2,成功制备得到了锌掺杂羟基磷灰石(HAP)涂层。通过控制加入的Zn元素的含量,研究分析了Zn对于羟基磷灰石涂层结晶度、微观形貌、物相成分及涂层与钛基体之间结合力的影响。实验得出:随着电解液中Zn含量的增加,沉积得到的HAP晶体的结晶度逐渐降低,晶体平均尺寸逐渐减小。当Zn含量达到25mol%(Zn/(Zn+Ca))时,沉积不再得到Zn-HAP晶体。同时随着Zn含量的增加,涂层规则六边形微观形貌特征逐渐消失,涂层与钛基体之间的结合力逐渐增大。
     2)通过改变电解液主盐Ca(NO3)2和NH4H2PO4的浓度,研究了电解液浓度对于电化学沉积磷酸钙盐涂层产物的影响。结果发现:随着电解液浓度的逐渐升高,涂层产物的物相由HAP逐渐向磷酸八钙(OCP)转变,同时微观形貌上观察到了从纳米级规则六边形棒状HAP晶体逐渐转变成微米级带状OCP晶体的过程。此外,本文还从热力学角度上分析了浓度变化导致的这种转变的内在原因。
     3)通过控制不同电解液浓度沉积过程的沉积时间,从微观形貌上去初步揭示了电化学沉积法制备HAP及OCP的形成机理。文中提出:低电解液浓度(c(Ca2+)=1.2×10-3mol/L)下沉积初期得到的是薄片状的OCP晶体,随着沉积的进行,其通过固—固转变的方式转变成HAP晶体;电解液浓度在一定范围内时(c(Ca2+)=2.4×10-3mol/L~3.6×10-3mol/L),沉积得到的是结晶度较低的HAP晶体,其是通过沉积初期的纳米小颗粒在薄片状OCP前躯体表面定向粘附形成,属于非经典形核方式;当电解液浓度较高(c(Ca2+)>4.8×10-3mol/L)时,形成的OCP晶体则是通过经典形核理论的层—层反应生成。
Hydroxyapatite (HAP) and other calcium phosphates (Ca-Ps) were synthesized by electrochemical depositon (ECD) technique.The formation process and mechanism of these Ca-Ps were studied and discussed systematically and detailly in this paper. The main contents of this paper lie in the following three parts:
     1) Zn-substituted HAP coatings on titanium substrates were obtained by electrochemical deposition in the electrolytes (1.2mM [Ca(NO3)2+Zn(NO3)2] and 0.72mM NH4H2PO4).The influence of Zn on the micro-morphology,phase composition and crystallinity of as-obtained HAP crystals were studied. The results show that the presence of Zn in the electrolyte would deteriorate the crystallinity of HAP significantly and HAP crystals are not obtained when Zn fraction reach 25mol% (Zn/(Zn+Ca)). Moreover, as the Zn fraction increased, the regular hexagonal rod-like character of HAP crystals disappear gradually, and the bonding strength between coating and titanium substrate is improved gradually.
     2) The influence of electrolytic concentration on the phase composition and morphology of products were discussed. The SEM and XRD results show that regular hexagonal rod-like HAP crystals with high crystallinity are obtained when electrolytic concentrations are relatively low. As electrolytic concentrations increase, the crystallinity of HAP decreased, and the product gradually transform to octacalcium phosphate (OCP). The morphology changes from nano-scaled hexagonal rod-like HAP crystals to micro-scaled belt-like OCP crystals are also observed. In addition, the reason of this concentration-induced phenomenon is analyzed thermodynamically.
     3) We attempted to reveal the formation mechanism of Ca-Ps by electrochemical deposition in this paper, which is seldom reported by others. By controlling the depositing time, we observed the micro-morphologies changes of products at different stages.It is proposed that thin plate-like OCP were formed at the early stage when electrolytic concentration is low(c(Ca2+)=1.2×10-3mol/L), and it served as precursor that would transform to HAP through solid-solid transformation. At some ranges of electrolytic concentration (c(Ca2+)=2.4×10-3mol/L~3.6×10-3mol/L), the nucleation manner of HAP is correspond to so-called "non-classical nucleation theory" which is widely reported and discoved during crystallization processes in recent years. In this case, the final HAP crystals are formed by the aggregation and oriented attachment of primary nano-particles.When the electrolytic concentration is relatively high(c(Ca2+)>1.2×10-3mol/L),the obtained OCP products are formed through classical nucleation theory.
引文
[1]崔福斋,冯庆铃.生物材料学.北京:清华大学出版社,2004:1-2.
    [2]阮建明,邹俭鹏,黄伯云.生物材料学.北京:科学出版社.2004:1-10.
    [3]国家新材料行业生产力促进中心.中国新材料发展报告.北京:化学工业出版社,2004:96.
    [4]S.I. Stupp, P.V. Baun. Molecular manipulation of microstructures:biomaterials, ceramics, and semiconductors. Science,1977,277:1242-1247.
    [5]贡长生,张克立.新型功能材料.北京:北京化学工业出版社,2001.
    [6]D.F.威廉姆斯.医用与口腔材料.北京:科学出版社,1999.
    [7]浦素云.金属植入材料及其腐蚀.北京:北京航空航天大学出版社,1989.
    [8]郝亮,戴闽,帅浪,程涛,范红先.宗世璋.人工关节磨损产物金属离子钻、铬对人单核细胞分泌肿瘤坏死因子的影响.中国组织工程研究与临床康复.2007,11(1):67-69.
    [9]贡长生,张克立.新型功能材料.北京:北京化学工业出版社,2004.
    [10]黄永光.外科植入用钛合金材料及其标准化.金属学报,2002.38:530-532.
    [11]张新平,于思荣,夏连杰.钛及钛合金在牙科领域中的研究现状.稀有金属材料与工程,2002;314:246-271.
    [12]R.W.卡恩,P.哈森,克雷默.材料科学与技术丛书,朱鹤孙等译.北京:科学出版社,1990:10.
    [13]L.L. Lench. Apatite-forming ability of alkali-treated Ti metal in bodyenvironment. Journal of American Ceramic Society,1991,74:1487-1492.
    [14]L.L. Hench, R. J. Splinter, W. C. Allen, T. K. Greenlee. Science and medical Application of Hydroxyapatite. Journal of Biomedical Materials Research,1997,7(5):689-702.
    [15]T.S. B. Narasaraju, D. E. Phebe. Some Physico-chemical Aspects of Hydroxyl Apatite. Journal of Materials Science,1996,31(1):1-21.
    [16]沈卫,顾燕芳,刘昌胜,孙祥明,胡黎明.羟基磷灰石的表面特性.硅酸盐通报.1996,15(1):45-52.
    [17]A.Bigi, B.Bracci, F. Cuisinier, R. Elkaim, M. Fini, I.Mayer, I. N. Mihailescu, G. Socol, L. Sturba, P. Torricelli. Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials,2005,26(15):2381-2389.
    [18]E.C.S. Rigo, A. O. Boschi, M. Yoshimoto, J. S. Allegrini, J. B. Konig, M. J. Carbonari. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Materials Science and Engineering:C,2004,24(5):647-651.
    [19]陈德敏.生物陶瓷材料.口腔材料器械杂志.2005,14(3):157-158.
    [20]H. Aoki. Science and medical Application of Hydroxyapatite, Takayama Press System Center Co. Inc.,Tokyo,1991.
    [21]P.W. Brown, C. onstantzB. Hydroxyapatite and related Compounds, CRC Press, Cleveland, OH and Boca Raton, FL 1994:263.
    [22]M. Jarcho. Calcium phosphate ceramics as hard tissue prosthetics. Clinic Orthop.1981,157: 259-278.
    [23]L.Enchl. Bioceramics:From concept to clinic. Journal of American Ceramic Society,1991, 74(7):1487-1510.
    [24]崔福斋,郭牧遥.生物陶瓷材料的应用及其发展前景.药物分析杂志.2010,30(7):1343-1347.
    [25]祝炳和,朱盈权.生物陶瓷的展望与漫想.电子元件与材料.2009,28(1):64-67.
    [26]T.D. Megee, T. L. Wood. Journal of Biomedical Materials Research,1974,5:137.
    [27]N.E.Waters, in symposia of the Society for Experimental Biology, Number ⅩⅩⅩⅣ, The Mechanical properties of Biological Materials, Cambridge University Press 1980; P.90.
    [28]D.P. Perl, A. R. Brody. Alaheimer's disease:X-ray spectrometric evidengce of an aluminums Accumulation in ncurfibrillaryt angle bearing n eurons. Science,1980,208-209.
    [29]肖秀峰.水热电化学沉积羟基磷灰石涂层的工艺、结构和性能研究[硕士学位论文].河北秦皇岛:燕山大学,2005.
    [30]叶伟.钛表面电化学沉积纳米羟基磷灰石涂层研究[硕士学位论文].浙江杭州:浙江大学,2007.
    [31]资文华,陈庆华,缪松兰等径基磷灰石生物陶瓷的研究状况及发展趋势.中国陶瓷工业.2003,10(1):39-43.
    [32]刘羽,钟康年,胡文云等.溶胶—凝胶法合成条件与羟基磷灰石特征的关系.材料科学与工程.1997,15(1):63-65.
    [33]徐光亮,聂轶霞,赖振宇等.水热合成羟基磷灰石纳米粉体的研究.无机材料学报.2002,17(3):600-604.
    [34]俞耀庭.生物医用材料.天津:天津大学出版社,2000.
    [35]李世普.生物医用材料导论.武汉:武汉工业大学出版社.2000.
    [36]J. Dumbleton, M.T. Manley. Hydroxyaptite-coated prostheses in total hip and knee arthroplasty. Journal of Bone and Joint Surgery, American Volume,2004, 86:2526-2540.
    [37]肖联平.人工髋关节翻修术中骨缺损的修复与重建.国外医学生物医学工程分册.2003.26:93-96.
    [38]J. Clemens, J. Wolke, C. Klein, K.D. Groot. Fatigue behavior of calcium phosphate coatings with different stability under dry and wet conditions. Journal of Biomedical Material Research, 1999,48:741-748.
    [39]万怡灶,罗红林,周贤良等.用热化学反应法制备金属陶瓷涂层工艺的研究.材料工程,1997,10:25-28.
    [40]阎洪.金属陶瓷涂层的研究与发展与防护.1995,3:146-149.
    [41]H.W. Kim, H.E. Kim, V. Salih, J.C. Knowles. Sol-gel modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. Journal of Biomedical Material Research,2005,74A:294-305.
    [42]W.J. Weng, J.L. Baptista, The preparation and characterization of hydroxyapatite coatings on Ti6A14V alloy by a sol-gel method. Journal of American Ceramic Society,1999,82:27-32.
    [43]K. Cheng, G. Shen, W.J. Weng, G.R. Han, J.M. F. Ferreira, J. Yang. Synthesis of hydroxyapatite/fluoroapatite solid solution by a sol-gel method. Materials Letters,2001. 51:37-41.
    [44]H.M. Kim, F. Miyaji, T. Kokubo. Apatite-forming ability of alkali-treated Ti metal in bodyenvironment. Journal of Materials Science:Materials in Medicine,1997,8:341-347.
    [45]H.M. Kim, F. Miyaji, T. Kokubo. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Journal of Biomedical Material Research,1996; 32:409-417.
    [46]S. Nishiguchi, T. Nakamura, M. Kobayashi, H. M. Kim. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials,1999,20:491-500.
    [47]S. Nishiguchi, S. Fujibayashi, H. M. Kim, T. Kokubo, T. Nakamura. Biology of alkali-and heat-treated titanium implants. Journal of Biomedical Material Research,2003:67A:26-35.
    [48]H.B. Wen, Q. Liu, J.R. Wijn. Preparation of bioactive micro porous ti tanium surface by new two-step chemical treatment. Journal of Materials Science:Materials in Medicine,1998:9: 121-128.
    [49]A.T. Andrews. Electrophoresis:theory technique and biochemical and clinical applications. New York:Clarendon press, Oxford published in the US by oxford university press, 1981:187-202.
    [50]张建民,杨长春,石秋芝.电泳沉积功能陶瓷涂层技术.中国陶瓷.2000,36(6):36-40.
    [51]黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展.硅酸盐学报.2003,31(6):591-597.
    [52]M. Manso, C. Jimenez, C. Morant, P. Herrero, J. Martnez-Duart. Electrodepositionof hydroxyapatite coatings in basic conditions. Biomaterials,2000,21 (17):1755-1761.
    [53]H.B. Hu, C.J. Lin, P.P. Y. Liu, Y. Leng. Electrochemical deposition of hydroxyapatite with vinyl acetate on titanium implants. Journal of Biomedical Material Research,2002,55A(1): 24-29.
    [54]P. Ping, K. Sunil, N. H. Voelcker, E. Szili, R. Smart, H. J. Griesser. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. Journal of Biomedical Material Research,2006,76A(2):347-355.
    [55]S.K. Yen, C.M. Lin. Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium. Materials Chemistry and Physics,2002,77:70-76.
    [56]N. Eliaz, M. Eliyahu. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. Journal of Biomedical Material Research.2007,80A,621-634.
    [57]刘如光.李家俊.赵乃勤.用电化学方法合成羟基磷灰石涂层的研究进展.材料保护,2004,37(7):36-40.
    [58]韩庆荣,陈晓明.电沉积生物活性陶瓷涂层技术.材料工程.2001,3:45-48.
    [59]M. Shirkhanzadeh. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. Journal of Materials Science:Materials in Medicine,1998,9(2):67-72.
    [60]M. Shirkhanzadeh. Bioactive Calcium Phosphate Coatings Prepared by Electrodeposition. Journal of Materials Science and Letters,1991;10:141-147.
    [61]S. Ban, S. Maruno. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. Biomaterials,1998,19:1245-1253.
    [62]S. Ban, J. Hasegawa. Morphological regulation and crystal growth of hydrothermal-electrochemically deposited apatite. Biomaterials,2002,23:2965-2972.
    [63]S. Ban, S. Maruno. Effect of temperature on electrochemical deposition of calcium phosphate Coating in a simulated body fluid. Biomaterials,1995,16:977-981.
    [64]S. Ban, S. Maruno, A. Harada, et al. Effect of temperature on morphology of calcium phosphates deposited by electrochemical method. Dental Materials Journal,1996,15:31-38.
    [65]时海燕,胡仁,林昌健.羟基磷灰石涂层的电化学可控制备及生物性能的初步表征.电化学.2005,11(4):440-5.
    [66]N.Dumelie, H. Benhayoune, C. Rousse-Betrand, S. Bouthors, A. Perchet, L. Wortham, J. Douglade, M. D. Laurent, G. Balossier. Characterization of electrodeposited calcium phosphate coatings by complementary scanning electron microscopy and scanning-transmission electron microscopy associated to X-ray microanalysis.Thin Solid Films,2005,492:131-139.
    [67]X. Lu, Z. Zhao, Y. Leng. Calcium phosphate crystal growth under controlled atmosphere in electrochemical deposition. Journal of Crystal Growth,2005,284:506-516.
    [68]胡仁,时海燕,林理文,庄燕燕,林昌健.电化学沉积羟基磷灰石过程晶体生长行为.物理化学学报.2005,21(2):197-201.
    [69]肖秀峰,唐晓恋,高燕娇,徐艺展,刘榕芳.工艺条件对电沉积磷酸钙盐组分和结构的影响.材料保护.2005,38(12):29-33.
    [70]胡皓冰,林昌健,陈菲,胡仁,郭明.电化学沉积制备羟基磷灰石涂层及机理研究.电化学.2002,8(3):288-94.
    [71]W. Ye, X.X. Wang. Ribbon-like and rod-like hydroxyapatite crystals deposited on titanium surface with electrochemical method. Materials Letters,2007,61:4062-4065.
    [72]M.H. Ma, W. Ye, X.X. Wang. Effect of supersaturation on the morphology of hydroxyapatite crystals deposited by electrochemical deposition on titanium. Materials Letters,2008, 62:3875-3877.
    [73]江勇.有机质对电化学沉积纳米羟基磷灰石的影响研究[硕士学位论文].浙江杭州:浙江大学,2007.
    [74]M.J. Jiao, X.X. Wang. Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate. Materials Letters,2009,63,2286-2289.
    [75]E.J. Lee, S.H. Lee, H.W. Kim, Y.M. Kong. Fluoridated apatite coatings on titanium obtained by electron-beam deposition. Biomaterials,2005,26,3843-3851.
    [76]M. Vallet-Regi, D. Arcos. Silicon substituted hydroxyapatite. A method to upgrade calcium phosphate based implants. Journal of Materials Chemistry,2005,15:1509-1516.
    [77]H. Natalia, M. Victoria, P. Juan, V. Maria. Dip coated silicon-substituted hydroxyapatite films. Acta Biomaterialia,2006,2,567-574.
    [78]X.L. Tang, X.F. Xiao, R.F. Liu. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Materials Letters,2005, 59:3841-3846.
    [79]I.R. Gibson, W. Bonfield. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical Material Research,2002,59: 697-708.
    [80]J.Wang, Y.L. Chao, Q.B. Wang, Z. M. Zhu, H. Y. Yu. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomaterialia,2009,5:1798-1807.
    [81]F. K. Ohnesorge, M. Wilhelm. In Metals and their Compounds in the environment. E. Merian, Ed., Verlag Chemie, Weinheim.1991:1309-1342.
    [82]A. Biji, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri. Inhiting effect of zinc on hydroxyapatite crystallization. Inorganic Biochemistry,1995.58:49-58.
    [83]M.Fumiaki, K. Yushiteru, S. Yoko. Preparation, characterization, and stability of calcium zinc hydrophosphate. Materials Research Bulletin,2005,40:209.
    [84]Y.Z. Tang, H.F. Chappell, M.T. Dove, R.J. Reeder, Y.J. Lee. Zinc incorporation into hydroxyapatite. Biomaterials,2009,30:2864-2872.
    [85]E. Fujii, M. Ohkubo, K. Tsuru, S. Yayakawa, A. Osaka, K. Kawabata, C. Bonhomme, F. Babonneau. Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomaterialia,2006,2:69-74.
    [86]S.D. Miao, K. Cheng, W.J. Wen, P.Y. Du, G. Shen, G.R. Han, W.Q. Yan, S. Zhang. Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability. Acta Biomaterialia,2008,4:441-446.
    [87]F.Z. Ren, R.L. Xin, X. Ge, Y. Leng. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomaterialia,2009,5:3141-3149.
    [88]M.C. Kuo, S.K. Yen. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Materials Science and Engineering:C,2002, 20(1-2):153-60.
    [89]R. Narayanan, T.Y. Kwon, K.H. Kim. Direct nanocrystalline hydroxyapatite formation on titanium from ultrasonated electrochemical bath at physiological pH. Materials Science and Engineering:C,2008,28(8):1265-70.
    [90]N. Eliaz, W. Kopelovitch, Burstein L. Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis. Journal of Biomedical Materials Research A,2009,89:270-280.
    [91]N.Eliaz, T.M. Sridhar. Electrocrystallization of hydroxyapatite and its dependence on solution conditions. Crystal Growth and Design,2008,8(11):3965-3977.
    [92]X. Lu, Y. Leng. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials,2005,26(10):1097-1108.
    [93]M.Niederberger, H. Colfen. Oriented attachment and mesocrystals:Non-claasical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics,2006,8:3271-3287.
    [94]H.Z. Zhang, J.F. Banfield. Aggregation, Coarsening and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations. Nano Letters,2004,4(4):713-718.
    [95]J.H. Zhang, H.P. Lin, C.Y. Mou. Biomimetic formation of porous single-crystalline CaCO3 via nanocrystal aggregation. Advanced Materials,2003,15:7-8.
    [96]N. Gehrke, H. Colfen, N. Pinna, M.Antonietti, N. Nassif. Superstructures of calcium carbonate crystals by oriented attachment. Crystal Growth and Design,2005,5(4):1317-1319.
    [97]R. Lamont, W. Ducker. Surface-induced transformations for surfactant aggregates. Journal of American Chemical Society,1998,120:7602-7607.
    [98]J.D. Chen, Y.J. Wang, K. Wei, S.H. Zhang, X.T. Shi. Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials,2007,28:2275-2280.
    [99]F. Ye, H.F. Guo, H.J. Zhang. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants. Nanoteconology,2008,19(24):245605.
    [100]J.H. Zhan, Y.H. Tseng, J.C. Chan, C.Y. Mou. Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation. Advanced Functional Materials, 2005,15:2005-2010.
    [101]H. Colfen, S. Mann. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition,2003,42: 2350-2365.
    [102]H.D. Jiang, X.Y. Liu. Principle of mimicking and engineering the self-organized structure of hard tissue. Journal of Biological Chemistry,2004,279(40):41286-41293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700