自复位防屈曲支撑结构抗震性能及设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代城市应具备在大灾难后足够的恢复能力,使得人的生活不因灾难而受到大的影响。自复位体系正是在这样的背景下产生的。现有的自复位体系大多采用形状记忆合金或者复合有机材料充当复位筋,两者造价均较高。另外,部分自复位体系/支撑采用摩擦耗能机制,摩擦面的老化及稳定性是一个棘手的问题。防屈曲支撑以其饱满稳定的滞回性能获得很多研究者及工程师的青睐,但是,其弹塑性耗能机制使得结构震后产生不可忽略的残余变形。
     针对以上问题,本文进行了以下工作。
     (1)综合考虑防屈曲支撑及自复位体系的优点,提出了一种新型防屈曲支撑——自复位防屈曲支撑(SCBRB)。在此基础上,给出复位材料的选择方案和设计方法。如果综合复位及耗能能力,则预应力与耗能内芯屈服强度相等时为最佳方案。通过对纯防屈曲支撑、纯复位支撑及自复位防屈曲支撑拟静力试验对比表明:复位防屈曲支撑基本消除了纯防屈曲支撑的残余变形,具有良好的复位效果和相当的耗能能力。
     (2)给出单自由度防屈曲支撑体系的几个重要参数,并给出了单自由度防屈曲支撑结构的恢复力模型与这些参数之间的关系。通过对自复位钢框架结构的时程分析,对比了自复位防屈曲支撑、防屈曲支撑及普通钢框架的抗震性能;通过参数分析,给出结构设计时几个重要参数的建议取值。通过对不同梁端连接方式的结构抗震性能的研究发现,梁对柱子转动约束能力越弱,则柱子弹性变形能力越强,结构也就越柔。当地震强度很大时,则梁端铰接体系更有利于消除残余变形。
     (3)对等效线性化方法在自复位防屈曲支撑结构的应用进行了研究。通过20条地震记录下两种等效线性化方法求得位移,并与非线性时程分析结果进行对比,结果表明等效线性化方法对于自复位结构的精度比理想弹塑性结构更高;等概率幅值平均等效线性化方法由于考虑了所有位移对等效阻尼和等效刚度的贡献,因此更为精确。
     (4)基于非线性位移比,提出一种直接计算自复位结构位移的方法。首先,通过对453600个单自由度体系进行非线性时程分析,得到各类场地统计意义上的等强度位移比谱。然后对位移比谱进行参数分析,得到各个参数对位移比的影响规律。最后,对位移比进行多元非线性回归,得到了位移比的公式。
     (5)针对目前大部分结构抗震设计方法均需要迭代以及现有的基于位移直接设计方法的不足这一现状,提出一种基于位移的自复位防屈曲支撑结构直接设计方法。首先,通过大量的统计回归,得到了结构强度折减系数关于位移比的公式。然后,根据目标位移和公式便可计算出结构与支撑的所有主要参数。经其设计的结构是偏于安全的,有效地消除了残余变形。
Modern cities are supposed to recover swiftly from catastrophes, so thathuman life would not be greatly affected during and after such disasters. Thisneeds the infrastructures to behave far superior to what they do now. To this end,self-centering structures have been proposed. The recentering materials in mostexiting self-centering systems are Shape Memory Alloy (SMA) or somecomposite materials which are either expensive or hard to anchor, or both.Besides, energy dissipation of some self-centering systems is achieved thoughfriction and this may introduce two problems:(1) loosening of the prestressedbolts, which would lead to insufficient friction;(2) deterioration of the slidingface, which may change the prescribed friction force.
     A Buckling-restrained Brace(BRB) exhibits a stable energy dissipationcapcity, due to this feature, BRBs can significantly reduce the maximumdisplacement in buildings, which results in its popularity in StructureEngineering recently. However, the plastic behavior of a BRB often indicatescertain amount of permanent displacement in the structure after medium tosevere earthquakes.
     In order to circumvent these problems, this thesis focus on below issues:
     (1) A novel type of self-centering buckling-restrained brace which have bothadvantages of BRB and self-centering system has been proposed. By exploringthe mechanism of SCBRB, it is found that to ensure fully self-centering capacity,the self-centering bars should be endowed with sufficient elongation capacity aswell as considerably large elastic modulus which could afford stiffness in realstructures. It is opitimum that the strength of energy dissipation core be equal tothe prestressing force in the self-centering bars considering the balance btweenenergy-dissipating and self-centering capacitiy.
     (2) The primary parameters of a SCBRB system has been found and the therelationship between restoring force of a SCBRB system and the parameters hasbeen given. Using Response History Analysis (RHA), the comparison of SCBRBframes, BRB frames and Moment-resisting frames has been drawn and parameterstudy of the signifigant parameters of SCBRB multi-story buildings has been carried out. Based on that, primary design advice on parameters selection isproposed. To minimize the damages that would occur in frame buildings, theflexible frame buildings are preferable, which are featured by good elasticdeformation capacity, and this goal can be achieved by reducing the beams’rotation restricts to the columns. Pinned beam-to-column connections wouldpostpone the yielding of beams and columns, thus diminishing permanent drift ofthe building, and the benefit from that is more obvious in a huge earthquake.According to different deformation styles caused by various beam-to-columnconnections, effective story drift ratio has been proposed, which is a moreobjective way to evaluate the deformation in columns, when the beams do notstrongly restrain the rotation of the columns.
     (3) The application of Equivalent Linearization Methods(ELM) in SCBRBsystem has been studied. Based on the comparisons of displacements obtainedfrom two ELMs and Response History Analysis under20seismic records,thefollowing conclusion has been drawn: the ASD Method introduces smallerdisperseness, compared to the R-H Method; the ELM is much more accurate forSC systems than elastoplastic systems for displacement evaluation, due to theless obvious nonlinearity and plasticity in SC systems.
     (4) In order to obtain the statistical nonlinear displacement ratio (CR)spectra,453600SCBRB Single Degree of Freedom RHAs have been carried out.Then the CRformula has been regressed based on the enormous data. Throughthe CRformula, the nonlinear displacement of SCBRB systems can be caculateddirectly without iterations.
     (5) According to the CRformula, strength reduction factor(R) formula hasbeen obtained. A direct displacement-based design methodology for SCBRBsteel structures, according to R formula, has been proposed. The methodology isstraightforward, so iteration is unneccesary. The example shows that the designresult is conservative and can effectively deminish residual drift.
引文
1Matos C G, Dodds R H and Modeling J. the Effects of Residual Stresses on Defectsin Welds of Steel Frame Connections[J]. Engineering Structures,2000,22(9):1103–1120.
    2Tremblay R, Filiatrault A, Timler P., et al. Performance of Steel Structures duringthe1994Northridge Earthquake[J]. Canadian Journal of Civil Engineering,1995,22(2):338~360.
    3Applied Technology Council. Seismic Evaluation and Retrofit of ConcreteBuildings[S]. Volumes1and2. Report No. ATC-40, Redwood City,1996.
    4Structural Engineers Association of California. Conceptual Framework forPerformance-Based Seismic Design[R]. Recommended Lateral Force Requirementsand Commentary,6th Edition. Sacramento,1996:391~416.
    5Federal Emergency Management Agency. NEHRP Guidelines for SeismicRehabilitation of Buildings[S]. Report No. FEMA-273, Washington DC,1997.
    6Priestley M J N and Tao J R. Seismic Response of Precast Prestressed ConcreteFrames with Partially Debonded Tendons[J]. PCI Journal,1993,38:58~69.
    7Priestly M J and MacRae G A. Seismic Tests of Precast Beam toColumn Joint Subassemblages with Unbonded Tendons[J]. PCI Journal,1996,.41:64~80.
    8Sause R, Ricles J M, Garlock M, et al. Self-Centering Seismic-Resistant SteelFrame Systems: Overview of Past and Current Research[R]. Lehigh University,2006.
    9Herning G, Garlock M M, Ricles J M, et al. An Overview of Self-centering SteelMoment Frames[C]. Structures Congress2009, Austin, Texas, United States,2009,2:1412~1419.
    10Garlock, M M Ricles J M, Sause R, et al. Post-Tensioned Seismic ResistantConnections for Steel Frames[C]. Structural Stability Research Council ConferenceWorkshop, Atlanta, Georgia,1998.
    11Ricles J M, Sause R, Garlock M, et al. Posttensioned Seismic ResistantConnections for Steel Frames[J]. J. of Structural Engineering,2001,127(2):113~121.
    12Ricles J M, Sause R, Peng S W, et al. Experimental Evaluation of EarthquakeResistant Posttensioned Steel Connections[J]. J. of Structural Engineering,2002,128(7):850~859.
    13Garlock M M, Ricles J M and Sause R. Experimental Studies of Full-Scale Post-Tensioned Steel Connections[J]. J. of Structural Engineering,2005,131(3):438~448.
    14Christopoulos C, Filiatrault A, Uang C M, et al. Posttensioned Energy DissipatingConnections for Moment-Resisting Steel Frames[J]. J. of Structural Engineering,2002,128(9):1111~1120.
    15Christopoulos C, Filiatrault A and Folz B. Seismic Response of Self-CenteringHysteresis SD and F Systems[J]. Earthquake Engineering and Structural Dynamics2002,(31):1131~1150
    16Rojas P, Ricles J and Sause R. Seismic Performance of Posttensioned Steel MomentResisting Frames with Friction Devices[J]. J. of Structural Engineering,2005,131(4):1~12
    17Collins J H and Filiatrault A.. Application of Post-tensioned Energy Dissipating(PTED) Connections in Steel Moment-Resisting Frames[R]. Report No. SSRP-2003/05, Department of Structural Engineering, University of California, SanDiego,2003.
    18Kim H J, Christopoulos C. Seismic Design Procedure and Seismic Response ofPost-Tensioned Self-centering Steel Frames[J]. Earth Eng Struct Dynamics,2008,
    38(3):355~376.
    19Chou C C, Tsai K C and Yang W C. Self-centering Steel Connections with SteelBars and a Discontinuous Composite Slab[J]. Earth Eng Struct Dynamics,2009,38(4):403~422.
    20Garlock M M. Full-scale Testing, Seismic Analysis, and Design of Post-tensionedSeismic Resistant Connections for Steel Frames[D]. Ph.D. Dissertation, Civil andEnvironmental Engineering Dept., Lehigh Univ., Bethlehem,2002.
    21King A J. Design of Collector Elements for Steel Self-centering Moment ResistingFrames[D]. The Degree of Master, Purdue University, West Lafayette,2007.
    22Chou C C and Chen J H. Seismic Design and Shake Table Test of a Steel Post-Tensionedself-Centeringmomentframe with a Slab Accommodating FrameExpansion[J]. Earthquake Engineering and Structural Dynamics,2011,10(1002):1086~1090.
    23Zhu S and Zhang Y. Seismic Behavior of Self-centering Braced Frame Buildingswith Reusable Hysteretic Damping Brace[J]. Earthquake Engineering andStructural Dynamics,2007,36:1329~1346.
    24Tremblay R., Lacerte M and Christopoulos C. Seismic Response of Multi-StoreyBuildings with Selfcentering Energy Dissipative Steel Braces[J]. Struct Eng,2008,134(1):108~120.
    25Christopoulos C, Tremblay R, Kim H J, et al. Self-centering Energy DissipativeBracing System for the Seismic Resistance of Structures: Development andValidation[J]. J. Struct. Eng.,2008,134(1)96~107.
    26宋子文.自复位耗能支撑结构的地震响应分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    27潘振华,潘鹏,叶列平等.自复位钢框架节点有限元模拟及参数分析[J].建筑结构学报,2011,3(3):35~42.
    28Karavasilis T L, Martin T B and Williams S. Development of Nonlinear AnalyticalModel and Seismic Analyses of a Steel Frame with Self-Centering Devices andViscoelastic Dampers[J]. Computers and Structures,2011,89(11/12):1232~1240.
    29钱辉,李宏男,任文杰,等.形状记忆合金复合摩擦阻尼器设计及试验研究[J].建筑结构学报.2011,32(9):58~64.
    30吴斌,刘璐,赵俊贤.自复位防屈曲支撑构件[P].国家发明专利,2010,专利号:ZL201010187303.0.
    31Miller D J, Fahnestock L A and Eatherton M R. Self-Centering Buckling-RestrainedBraces for Advanced Seismic Performance[C]. The2011Structures Congress,ASCE, Las Vegas, Nevada,2011,960~969.
    32Ryan J C. Analytical and Experimental Investigation of Improving SeismicPerformance of Steel Moment Frames Using Synthetic Fiber Ropes[D]. Ph.DDissertation, Virginia Tech, Blacksburg, VA,2006.
    33周颖,吕西林.摇摆结构及自复位结构研究综述[J].建筑结构学报.2011,32(9):1~10.
    34Roke D, Sause R. Design Concepts for Damage-Free Seismic-Resistant Self-Centering Steel Concentrically-Braced Frames[C]. Proc.14th World Conf.Earthquake Engineering, Seismological Press of China, Beijing,2008, Oct,12-17.
    35Kurama Y C, Pessiki S, Sause R, et al. Seismic Behavior and Design ofUnbonded Post-Tensioned Precast Concrete Walls[J]. PCI J.,1999,44(3),:72~89.
    36Kurama Y C, Sause R, Pessiki S, et el. Lateral Load Behavior and Seismic Designof Unbonded Post-Tensioned Precast Concrete Walls[J]. ACI Struct. J.,1999,96(4):622~632.
    37Kurama Y C, Sause R, Pessiki S et al. Seismic Response Evaluation of UnbondedPost-tensioned Precast Walls[J]. ACI Struct. J.,2002,99(5):641~651.
    38Perez F J, Pessiki S, Sause R, et al. Lateral Load Tests of Unbonded Post-TensionedPrecast Concrete Walls[J]. ACI Struct. J.,2003,211:161~182.
    39陈适才,闫维明,李振宝,等.底部开缝预应力剪力墙结构力学性能的有限元分析[J].防灾减灾工程学报.2010,30(6):636~631.
    40El-Sheikh M, Pessiki S, Sause R, et al. Moment-Rotation Behavior of UnbondedPost-tensioned Precast Concrete Beam-Column Connections[J]. ACI Struct. J.,2000,97(1):122~131
    41Damage Resistant Design of Concrete Structures[R]. University of CanterburyResearch Report. No.2011.02.2011.
    42Englekirk R E. Design-Construction of the Paramount-A39-Story PrecastPrestressed Concrete Apartment Building. PCI Journal,2002,47(4):56~71.
    43http://www.concretesociety.org.nz/files/award-project.asp?yr=2009&awardid=31
    44Pampanin S, Kam W, Haverland G, et al. Expectation Meets Reality: SeismicPerformance of Post-tensioned Precast Concrete Southern Cross EndoscopyBuilding During the22nd Feb2011Christchurch Earthquake[C]. NZ ConcreteIndustry Conference, Rotorua,2011, Aug.
    45Fardis M. Advancements in Performance-based Earthquake Engineering[M].Springer,2010, Part3:297~308.
    46郭彤,宋良龙,张国栋,等.腹板摩擦式自定心预应力混凝土框架梁柱节点的试验研究[J].土木工程学报.2012,45(6):73~79.
    47郭彤,宋良龙.腹板摩擦式自定心预应力混凝土框架梁柱节点的试验研究[J].土木工程学报.2012,45(7):25~32.
    48赵俊贤.全钢防屈曲支撑的抗震性能及稳定性设计方法[D].哈尔滨工业大学博士论文.2012:8~13
    49Sukenobu T and Katsuhiro K. Experimental Study on Aseismic Walls of SteelFramed Reinforced Concrete Structures[R]. Transactions of the ArchitecturalInstitute of Japan,1960,66:497~500.
    50Yoshino T and Kano Y. Experimental Study on Shear Wall with Braces: Part2.Summaries of Technical Papers of Annual Meeting[R]. Architectural Institute ofJapan,1971,11:403~404.
    51Wakabayashi M and Nakamura T. Experimental Study on the Elasto-PlasticBehavior of Braces Enclosed by Precast Concrete Panels under Horizontal CyclicLoading (Part1and Part2)[C]. Summaries of Technical Papers of Annual Meeting,Architectural Institute of Japan,1973,10:1041~1044
    52Kimura K, Yoshizaki K and Takeda T. Tests on Braces Encased by Mortar in-filled Steel Tubes[C]. Summaries of Technical Papers of Annual Meeting,Architectural Institute of Japan,1976:1041~1042
    53Takahashi S and Mochizuki N. Experimental Study on Buckling of UnbondedBraces under Axial Compressive Force: Part1and Part2[C]. Summaries ofTechnical Papers of Annual Meeting, Architectural Institute of Japan,1979,9:1623~1626
    54Fujimoto M, Wada A, Saeki E, et al. a Study on the Unbonded Brace Encased inBuckling-Restraining Concrete and Steel Tube[J]. Journal of Structural andConstruction Engineering, Architectural Institute of Japan,1988,34B:249~258
    55Clark P, Aiken I, Kasai K, et al. Design Procedures for Buildings IncorporatingHysteretic Damping Devices[C].69th Annual Convention, SEAOC, Sacramento,1999,1:355~360
    56AISC. Seismic Provisions for Structural Steel Buildings[S]. American Institute ofSteel Construction, Chicago,2005.
    57Prasad B K. Current Status of Buckling-Restrained Braced Frame Design[C].72ndAnnual Convention, SEAOC, Sacramento,2004,1:493~500.
    58ICBO. Uniform building code[S]. International Conference of Building Officials,Whittier,1997.
    59赵俊贤,吴斌,梅洋.组合钢管混凝土式防屈曲支撑构件:中国,ZL201010155105.6[P].2011-08-31.
    60吴斌,梅洋,张家广,等.组合钢管混凝土式防屈曲支撑及其工程应用[J].土木建筑与环境工程,2010,32(增刊2):385-390.
    61梅洋,吴斌,赵俊贤,等.组合钢管混凝土式防屈曲支撑[J].哈尔滨工业大学学报,2011,43(Suppl.2):179-185.
    62郭彦林,王小安,江磊鑫.装配式防屈曲支撑构件及框架设计理论[J].结构工程师,2010,26(6):164-176.
    63刘建彬.防屈曲支撑及防屈曲支撑钢框架设计理论研究[D].北京:清华大学工学硕士学位论文,2005
    64李妍,吴斌,王倩颖,等.防屈曲钢支撑阻尼器的试验研究[J].土木工程学报,2006,39(7):9-14.
    65马宁,吴斌,赵俊贤,等.十字形内芯全钢防屈曲支撑抗震性能构件及子系统足尺试验[J].土木工程学报,2010,43(4):1-7.
    66Ma N, Zhao JX, Wu B, et al. Full Scale Subassemblage Test of All-steel BucklingRestrained Brace[C]. Proceeding of The Tenth International Symposium onStructural Engineering for Young Experts,2008, Vol Ⅰ:949-954.
    67梅洋,吴斌,赵俊贤,等.组合钢管混凝土式防屈曲支撑[J].哈尔滨工业大学学报,2011,43(增刊2):179-185.
    68赵俊贤,吴斌,梅洋.组合钢管混凝土式防屈曲支撑构件.国家发明专利.2010
    69程光煜,叶列平,许秀珍,等.防屈曲耗能钢支撑的试验研究[J].建筑结构学报,2008,29(1):31~39.
    70李国强,胡宝琳,孙飞飞,等.国产TJⅠ型屈曲约束支撑的研制与试验[J].同济大学学报(自然科学版),2011,39(5):631-636.
    71李国强,孙飞飞,陈素文,等.大吨位国产TJⅡ型屈曲约束支撑的研制与试验研究[J].建筑钢结构进展,2009,11(4):22-26.
    72胡大柱,李国强,孙飞飞,等.屈曲约束支撑铰接框架足尺模型模拟地震振动台试验[J].土木工程学报,2010,43(增刊):520-525.
    73李国强,胡宝琳.屈曲约束支撑滞回曲线模型和刚度方程的建立[J].地震工程与工程振动,2007,27(2):26-31.
    74周云,钱洪涛,褚洪民,等.新型防屈曲耗能支撑设计原理与性能研究[J].土木工程学报,2009,42(4):64-71.
    75周云,邓雪松,钱洪涛,等.开孔式三重钢管防屈曲耗能支撑性能试验研究[J].土木工程学报,2010,43(9):77-87.
    76Sabelli R, Mahin S A and Chang C. Seismic Demands on Steel Braced-FrameBuildings with Buckling-Restrained Braces[J]. Engineering Structures2003,25:655~666.
    77Yoshida K, Mitani I and Ando N. Stiffness Requirement of Reinforced UnbondedBrace Cover[J]. Journal of Structural and Construction Engineering, ArchitecturalInstitute of Japan,1999,7:141-147.(in Japanese)
    78Takeuchi T, Matsui R and Nishimoto K. Effective Buckling Length for BucklingRestrained Braces Considering Rotational Stiffness at Restrainer Ends[J]. Journal ofStructural and Construction Engineering, Architectural Institute of Japan,2009,639(5):925-934.
    79Kiggins S and Uang C M. Reducing Residual Drift of Buckling-Restrained BracedFrames as a Dual System[J]. Eng Struct28,2006:1525~1532
    80Pettinga D, Christopoulos C, Parnpanin S, et al. Effectiveness of SimpleApproaches in Mitigating Residual Deformations in Buildings[J]. Earthq Eng Struct,2007,36(12):1763~1783
    81Fahnestock L A, Ricles J M and Sause R. Experimental Evaluation of a Large-ScaleBuckling-Restrained Braced Frame[J]. Struct Eng,2007,133(9):1205~1214
    82ASCE. Minimum Design Loads for Buildings and Other Structures[S]. ASCE/SEI7-05, Reston, VA.2005.
    83Freeman S A, Nicoletti J P and Tyrell J V. Evaluations of Existing Buildings forSeismic Risk-a Case Study of Puget Sound Naval Shipyard[C], Bremerton,Washington. Proceedings of U.S. National Conference on Earthquake Engineering,Berkeley, U.S.A.,1975,113~122.
    84Rosenblueth E and Herrera I. on a Kind of Hysteretic Damping[J]. Journal ofEngineering Mechanics Division. ASCE.1964,90:37–48.
    85Kowalsky M J. Displacement-based Design-a Methodology for Seismic DesignApplied to RC Bridge Columns[D]. In Master's Thesis, La Jolla, CH: University ofCalifornia at San Diego.1994.
    86Iwan W D and Guyader A C. An Improved Equivalent Linearization Procedure forthe Capacity Spectrum Method[C]. Proceedings of the International Conference onAdvanced and New Challenges in Earthquake Engineering Research. August15–
    17, Harbin, China.
    87Kwan W P and Billington S L. Influence of Hysteretic Behavior on EquivalentPeriod and Damping of Structural Systems[J]. Journal of Structural Engineering,2003,129(5):576–585. ASCE
    88欧进萍,吴斌,龙旭.耗能减振结构的抗震设计方法[J].地震工程与工程振动,1998,18(02):98~107.
    89李妍,吴斌,欧进萍.弹塑性结构等效线性化方法的对比研究[J].工程抗震与加固改造,2005,27(01):2~6.
    90刘云贺,张俊发,田洁,等.减震耗能系统等效线性化方法研究[J].西安理工大学学报,2000,16(01):74~79
    91程光煜,叶列平.基于等效线性化方法弹塑性SDOF系统能量谱的研究[J].建筑结构,2007,37(08):74~77
    92韦承基.弹塑性结构的位移比谱[J].建筑结构学报,1983(1):40~48.
    93Ruiz-Garcia J and Miranda E. Inelastic Displacement Ratios for Evaluation ofExisting Structures[J]. Earthq Eng. Struct. Dyn.,2003,(32):1237~1258
    94Nassar A and Krawinkler H. Seismic Demands for SDOF and MDOF systems[R],Report No.95, John A. Blume Earthquake Engrg. Crt., Stanford University.1991.
    95Fajfar P. A Nonlinear Analysis Method for Performance-Based Seismic Design[J].Earthquake Spectra,2000,16(3):573-592.
    96Chopra A K and Goel R K. Capacity-demand-diagram Methods Based on InelasticDesign Stectrum[J]. Earthquake Spectra,1999,15(4):637-656
    97Farrow K T. Capacity-demand Index Relationships for Performance-Based SeismicDesign[D]. Ph. D. Dissertation, Department of Civil Engineering and GeologicalSciences, University of Nortre Dame,2001.
    98Li P. Seismic Response Evaluation of Self-Centering Structural Systems[D]. Ph.D,STANFORD UNIVERSITY,2005:25~30.
    99翟长海,公茂盛,谢礼立,张敏政.工程结构等强度位移比谱影响因素分析[J].哈尔滨工业大学学报,2005,37(4):455~458
    100翟长海,谢礼立,张敏政.工程结构等强度位移比谱研究[J].哈尔滨工业大学学报,2005,37(1):45~48
    101沈蒲生,龚胡广.双线性单自由度体系(SDOF)弹塑性位移比的研究[J].工程抗震与加固改造,2006,2:1~5
    102赵永峰,童根树.等强度折减下延性结构的位移放大系数[J].哈尔滨工业大学学报.2009,8.8(41)
    103郭磊,李建中,范立础.直接基于位移的结构抗震设计理论研究进展.世界地震工程.2005,21(4).
    104Wu J, Liang R J, Wang C L, e.l. A Modified Capacity Spectrum Method with DirectCalculation of Seismic Intensity of Points on Capacity Curve. Journal ofEarthquake Engineering,2011,15(4):664~682.
    105Newmark N M and Hall W J. Seismic Design Criteria for Nuclear Reactor Facilities.
    106Lai S P and Biggs J M. Inelastic Response Spectra for Aseismic Building Design
    107Miranda E and Bertero V. Evaluation of Strength Reduction Factor for Earthquake-Resistant Design [J]. Earthquake Spectra,1994,10(2):357~379
    108Vidic T and Fajfar P. A Procedure for Determining Consistent Inelastic DesignSpectra[J]. Earthquake Engineering and Structrual Dynamics,1994,23(5):507-521.
    109卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84-88.
    110Ye L P and Otani S. Maximum seismic displacement of inelastic systems based onenergy concept[J]. Earthquake Engng. Struct. Dyn.,1999,28:1483~1499
    111张海明,易伟建.近场地震作用下单自由度结构强度折减系数谱[J].土木工程学报.2011,10,44(10)
    112SEAOC Seismology Committee. A Brief Guide to Seismic Design Factors.SturctureMagzine,2008:30~32.
    113Christopoulos C, Pampanin S and Priestley M J N. Performance-based SeismicResponse of Frame Structures including Residual Deformations. Part I: Single-degree of freedom systems[J]. Journal of Earthquake Engineering,2003,7(1):97~118.
    114Priestley M J N. Myths and Fallacies in Earthquake Engineering-Conflicts betweenDesign and Reality[R]. NZNSEE Travelling Lecture,1993.
    115Kowalsky M J, Priestley M J N and Macrae G A. Displacement-based Design ofRC Bridge Column in Seismic Regions[J]. Earthquake Engineering and StructuralDynamics,1995,24(12):1623~1643.
    116Priestley M J N. Performance-Based Seismic Design[C]. Proc.12th WorldConference on Earthquake Engineering,2000, Auckland:22.
    117Suarez V A and Kowalsky M J. Direct Displacement-based Design as anAlternative Method for Seismic Design of Bridges[J]. ACI Special Publication,2010,(271):63~78
    118Sullivan T, Priestley M J N and Calvi G M. Introduction to a Model Code forDisplacement-Based Seismic Design[J]. Geological and Earthquake Engineering,2010,13(2):137~148
    119Suarez V A and Kowalsky M J. A Stability-Based Target Displacement for DirectDisplacement-Based Design of Bridge Piers[J]. Journal of Earthquake Engineering,2011,15(5):754~774
    120Cardone D, Dolce M and Palermo G. Direct Displacement-based Design ofSeismically Isolated Bridges[J]. Bull Earthquake Eng,2009(7):391~410
    121Maley T J, Sullivan T J and Cortec G D. Development of a Displacement-basedDesign Method for Steel Dual Systems with Buckling-restrained Braces andMoment-Resisting Frames[J]. Journal of Earthquake Engineering,2010,14(1):106~140
    122Priestley M J N. Direct Displacement-Based Seismic Design of Structures[M].IUSS Press, Pavia,670pp,2007.
    123辛力.高性能混凝土剪力墙直接基于位移的抗震设计方法研究[D].西安:西安建筑科技大学,2009.
    124毛小勇,肖岩基.基于性能的钢管混凝土柱抗震设计方法概述[J].哈尔滨工业大学学报,2003,35(增刊):71-73.
    125弓俊青,朱晞.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法[J].中国公路学报,2001,14(4):42~46.
    126王丰,李宏男.多层偏心结构直接基于位移的抗震设计方法.工程力学,200926(8):82~87.
    127Zhao J X, Wu B and Ou J P. Flexural Demand on Pin-Connected Buckling-Restrained Braces and Design Recommendations[J]. Journal of StructuralEngineering, ASCE:2011,10:1~24
    128贾明明,张素梅.采用抑制屈曲支撑的钢框架结构性能分析[J].东南大学学报(自然科学版),2007,37(6):1041~1047
    129Erochkol J and Christopoulos C. Residual Drift Response of SMRFs and BRBFrames in Steel Buildings Designed According to ASCE7-05[J]. Journal ofStructural Engineering, ASCE,2011,137(5):589~599.
    130Liu L and Wu B. Self-centering Buckling-restrained Braces[C]. The firstInternational Conference on Advances in Civil Infrastructure Engineering.Changsha, China. Sep,15-16,2012.
    131JG161-2004,无粘结预应力钢绞线[S].中华人民共和国建设部,2004
    132Ju Y K, Kim M H, Kim J K, et al. Component Tests of Buckling-Restrained Braceswith Unconstrained Length[J]. Engineering Structures,2009,31(2):507~516
    133赵俊贤,吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动,2009,29(03):131~139
    134郭彦林,刘建彬,蔡益燕,等.结构的耗能减震与防屈曲支撑[J].建筑结构,2005,35(08):18~23
    135李国强,孙飞飞,陈素文,等.大吨位国产TJⅡ型屈曲约束支撑的研制与试验研究.建筑钢结构进展:2009,11(04):22~26.
    136汪家铭,中岛正爱,陆烨.屈曲约束支撑体系的应用与研究进展(Ⅰ)[J].建筑钢结构进展:2005,7(01):2~12.
    137梅洋.新型组合钢管混凝土式防屈曲支撑[D].哈尔滨工业大学硕士论文.2010
    138GB193-2003普通螺纹直径与螺距系列.国家标准,2003
    139蔚建华,预应力混凝土桥梁施工技术要点[M].人民交通出版社,2004
    140刘璐,吴斌,李伟,等.一种新型自复位防屈曲支撑的拟静力试验[J].东南大学学报:自然科学版,2012,42(3):536~541
    141GB5011-2010,建筑抗震设计规范[S].中国建筑工业出版社,2010.
    142Karavasilis T L, Blakeborough T and Williams M S. Development of NonlinearAnalytical Model and Seismic Analyses of a Steel Frame with Self-CenteringDevices and Viscoelastic Dampers[J]. Computers&Structures,2011,89:1232~1240
    143Christopoulos C, Pampanin S and Priestley M J N. Performance-based SeismicResponse of Frame Structures including Residuade Formations. Part I: Singledegree of freedom systems[J]. J. Earthquake Eng.,2003,7(1):97~118
    144Pampanin S, Christopoulos C and Priestley M J N. Performance-based SeismicResponse of Frame Structures including Residual Deformations. Part II: Multi-degree of freedom systems[J]. J. Earthquake Eng.,2003,7(1):119~147
    145McCormick J, Aburano H, Ikenaga M, et al. Permissible Residual DeformationLevels for Building Structures Considering Both Safety and Human Elements[C].Proc.14th World Conf. Earthquake Engineering, Seismological Press of China,Beijing,2008.
    146Kawashima K, MacRae G A, Hoshikuma J I, et al. Residual DisplacementResponse Spectrum and its Application[J]. J. Struct. Eng.,1998,124(5):523~530.
    147Ruiz-Garcia J and Miranda E. Evaluation of Residual Drift Demands in RegularMulti-Story Frames for Performance-based Seismic Assessment[J]. EarthquakeEng. Struct. Dyn.,2006,35:1609~1629
    148李国强,刘玉姝,赵欣.钢结构框架体系高等分析与系统可靠度设计.中国建筑工业出版社,2006.
    149张如三,王天明.材料力学[M].中国建筑工业出版社.1997.
    150台湾建物耐震规范2011修正版[S].2011,4:5~10.
    151李妍,弹塑性结构抗震设计的简化方法[D].哈尔滨:哈尔滨工业大学硕士论文,2003.
    152Iwan W D and Gates N C. Estimating Earthquake Response of Simple HystereticStructures[J]. Journal of Engineering Mechanics Division, ASCE,1979,105(EM3):391-405.
    153Inoue K and Kuwahara S. Optimum Strength Ratio of Hysteretic Damper[J].Earthquake Engineering and Structural Dynamics,1998,27(6):577~588.
    154Chopra A K. Dynamics of Structures[M].2005.
    155Guyaderl A C and Iwan W D. Determining Equivalent Linear Parameters for Use ina Capacity Spectrum Method of Analysis[J]. J. Struct. Eng.,2006,132(1):59~67
    156吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):67~77
    157Ruiz-Garcia J and Miranda E. Inelastic Displacement Ratios for Design ofStructures on Soft Soil Sites[J]. J. Struct. Eng.,2004,130(12):2051~2061
    158翟长海.最不利设计地震动及强度折减系数研究[D].哈尔滨:哈尔滨工业大学博士论文,2004.
    159Porter K A. An Overview of PEER’s Performance-Based Earthquake EngineeringMethodology[C]. Ninth International Conference on Applications of Statistics andProbability in Civil Engineering (ICASP9), San Francisco,2003:1~8
    160Fajfar P. Capacity Spectrum Method Based on Inelastic Demand Spectra[J].Earthquake Engng. Struct. Dyn.,1998,(28):979~993
    161http://www.ce.berkeley.edu/~mahin/CE227/MirandaAndBertero1994.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700