含羧基酞菁锌及其白蛋白共价结合物的制备与光谱性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光动力治疗(Photodynamic Therapy,简称PDT)是一种新型的肿瘤治疗方法,抗癌光敏剂是光动力治疗的关键因素。临床上使用的光敏剂主要是以Photofrin为代表的血卟啉衍生物,但它们存在有效成分复杂、皮肤光毒副作用大等严重缺陷,因此寻找新型光敏剂的研究工作备受重视。由于具有在光疗窗口吸收强度高、光敏化能力强、暗毒性低和易于化学修饰等特点,酞菁衍生物作为第二代光敏剂的研究已引起广泛的重视。考虑到酞菁锌衍生物的光敏化能力高,白蛋白是水溶性的运载蛋白,而且对某些癌细胞具有靶向性,本学位论文围绕含羧基酞菁锌及其白蛋白共价结合物的制备和光谱性质开展研究,期望为深入探讨抗癌光敏剂的作用机理、提高光敏剂的光敏活性和靶向性提供有益的启示。
     本学位论文的主要工作和结果概括如下:
     首先合成了一系列含羧基的取代酞菁锌,进而通过成酰胺键的方式连接含羧基的取代酞菁锌与白蛋白(牛血清白蛋白BSA和人血清白蛋白HSA),制备了十七种高水溶性的、未见报道的酞菁-白蛋白共价结合物,并经过凝胶色谱等方法进行分离纯化,通过红外光谱、荧光光谱、电子吸收光谱和考马斯亮蓝法等手段进行表征。结果表明,酞菁环上取代基的类型、取代位置和羧基的数目对酞菁-白蛋白共价结合物的摩尔组成比没有明显影响。当投料摩尔比为10:1(酞菁:白蛋白)时,获得了摩尔组成比约为6~7:1的共价结合物。
     比较了含羧基酞菁锌及其白蛋白共价结合物在模拟生理溶液中的光谱性质和存在状态。结果表明,当取代酞菁被共价固定于白蛋白大分子上后,展现出比游离酞菁更为明显的单体特征吸收。羧基在酞菁环上的取代位置,对酞菁与白蛋白结合前后的光谱转变幅度有影响,α位取代比β位取代更有利于光谱向单体方向转变。α位单羧基取代物酞菁1、2、3和α位四羧基取代物酞菁4、5的白蛋白共价结合物在PBS溶液中呈现以单体为主的光谱特征,Q带最大吸收波长位于681~706nm之间。酞菁环上的羧基数量对酞菁及其白蛋白共价结合物光谱性质也有影响,β位八羧基取代酞菁锌8的白蛋白共价结合物在PBS溶液中也显示以单体为主的光谱特征,其Q带最大吸收波长位于677nm附近,而十六羧基取代酞菁锌9与白蛋白形成共价结合物后,则以单体形式存在,其Q带最大吸收波长位于681nm附近,以酞菁计算的摩尔吸光系数约为2.0105mol-1·L·cm-1。
     研究了模拟生理溶液的pH值变化对含羧基酞菁锌及其白蛋白共价结合物的光谱性质和存在状态的影响。结果表明,水溶液pH值的变化对游离的含羧基酞菁的光谱性质和存在状态有很大影响。总体而言,当溶液为酸性(pH2.0)时,酞菁呈高度聚集的特征吸收(600~800nm之间的吸收峰严重宽化),随着pH值的提高,发生明显的解聚作用(Q带吸收强度增强,峰形逐渐尖锐),这种状况在α位的羧基取代酞菁锌3、4、5和十六羧基取代酞菁锌9上表现得特别明显。但是,当含羧基基团的取代酞菁锌被共价固定到白蛋白网格上之后,体系pH值的变化对所有的酞菁-白蛋白共价结合物中的酞菁Q带特征吸收光谱和存在状态都基本没有影响。这对于设计pH值适应范围宽、具有蛋白质靶向介导的光敏剂具有启发意义。
     探讨了单取代酞菁2与白蛋白的非共价相互作用,并比较了结合方式(即共价结合与非共价结合)对酞菁的光谱性质和存在状态的影响。结果表明,酞菁2与白蛋白之间存在较强的非共价相互作用,结合常数大约为1.0105mol-1·L。结合位点竞争实验表明,非共价相互作用的结合位点位于人血清白蛋白的亚域ⅠB。酞菁2与白蛋白结合后,无论是共价结合还是非共价结合,均展现出比游离的酞菁更为明显的单体特征吸收,这是一个有利于光动力治疗的性质。共价结合导致酞菁2的单体特征吸收峰红移约5nm,而非共价结合则没有导致红移。相对而言,光动力治疗的作用光谱红移是一个有利的变化,因为波长更长的光能够更好地穿透人体组织。
Photodynamic Therapy (PDT) is a new modality for cancer therapy treatment.Anticancer photosensitizer is the key element of photodynamic therapy. The firstgeneraton photosensitizers for clinical use are mainly Hematoporphyrin derivativeswhich represent Photofrin, whereras their gigantic disadvantage are that effectiveingredients are complex, dark cytoxicity is high, etc. Thus it is important to seek newphotosensitizer. The research of phthalocyanines as the second generationphotosensitizer receives extensive interests for their high absorption in photodynamictherapy spectrum, strong photosensitivity, low dark toxicity, and easy to chemicallymodify, etc. It is a hot point in this field this days in researching structure-activityrelationship, action mechanism and effective method to increase photoactivity andtarget tissue selectivity of phthalocyanine type photosensitizer.
     The dissertation firstly synthesizes a series of carboxy-containing substitutedphthalocyanine zincs, then conjugated these phthalocyanines to albumin (BovineSerum Albumin and Human Serum Albumin) through amide formation way, preparedseventeen high water-soluble and unreported phthalocyanine-albumin covalentconjugates, purified by methods such as gel permeation chromatography, andcharacterized by infra-red spectrum, fluorescence spectrum, electronic absorptionspectrum and Comassic bright blue method, etc. It finds that there are nearly nodifferent effect of molar ratios of phthalocyanine-albumin covalent conjugates onsubstiturion type, substitution position and number of carboxy groups inphthalocyanine cycle. The covalent conjugates are obtained whose molar ratio isabout6~7:1, when10equivalent of phthalocyanine reacts with1equivalent ofalbumin.
     The dissertation compares carboxy-containing substituted phthalocyanine zincswith their phthalocyanine-albumin covalent conjugates in spectrum property andexistent state in Phosphate buffer solution. It indicates that the conjugates have moreobvious phthalocyanine monomer spectrum characteristic than their corresponding free phthalocyanine, when the substituted phthalocyanine covalently bind to albuminmacromolecule. There are effect of carboxy substitution position in phthalocyanine onspectrum change with conjugation of phthalocyanine and albumin. α positionsubstitution has more phthalocyanine monomer percentage than β positionsubstitution. The covalent albumin conjuagtes of α-substituted phthalocyanine1,2,3and tetra α-substituted phthalocyanine4,5exibit mainly phthalocyanine monomerspectrum characteristic, with Q-band maximum absorption in681~706nmapproximately. The covalent albumin conjuagte of eight carboxy substitutedphthalocyanine zinc8also exibits phthalocyanine monomer spectrum characteristicmainly, with Q-band maximum absorption in about677nm. The covalent albuminconjuagte of sixteen carboxy substituted phthalocyanine zinc9exibits phthalocyaninemonomer spectrum characteristic, with Q-band maximum absorption in about681nm,whose molar extinction coefficient are about2.0105mol-1·L·cm-1.
     The dissertation investigates the effect of solution pH on spectrum property andexistent state of carboxy-containing substituted phthalocyanine zincs and theirphthalocyanine-albumin covalent conjugates. It finds that the spectrum property andexistent state of free carboxy-containing substituted phthalocyanine change with pHof PBS solution. In general, when solution is acid (pH2.0), the free phthalocyaninedisplays highly aggregated characteristic absorption (the absorption band becomeswide to a great extent). The obvious disaggregation occurs when pH accending(Q-band absorbance becomes higher and sharpper). The situation embodies obviouslyin α substituted carboxy-phthalocyanine3,4,5and sixteen carboxy substitutedphthalocyanine9. But the phthalocyanine Q-band characteristic pectrum property andexistent state in all phthalocyanine-albumin covalent conjugates do not change withsystem pH, when carboxy-containing substituted phthalocyanine covalently bind toalbumin framework. It would inspire the design of the photosensitizer that has highpH capacity and is protein target-mediated.
     The dissertation also explores the noncovalent interaction with monosubstitutedphthalocyanine2and albumin, compares the effect of conjugation way (covalentconjugation and noncovalent conjugation) on spectrum property and existent state ofsubstituted phthalocyanine. It shows that there is strong noncovalent interactionbetween phthalocyanine2and albumin, and the binding constant is about1.0105mol-1·L. The binding sites competition experiment indicates that the noncovalentinterzction site locates in subdomain ⅠB of human serum albumin. The phthalocyanine conjugated with albumin, no matter covalent conjugate or noncovalentconjugate, both displays more obvious monomer chacteristic absorption thancorresponding free phthalocyanine, which is a property beneficial to photodynamictherapy. Covalent conjugate leads to Q-band maximum absorption of phthalocyanine2red-shift about5nm, while noncovalent conjugate does not cause red-shift.Comparatively, the red-shift of action spectrum for photodynamic therapy is abeneficial change, because the longer wavelength the better for the light permeation tohuman tissue.
引文
[1] Berns M.W. Laser surgery. Scientific American,1991,264(6):84-90.
    [2] Robert J.M., Phillips D., Photodynamic therapy. Chemistry&Industry,1992,17-20.
    [3] Tedesco A.C., Rotta J.C.G., Lunardi C.N. Synthesis, Photophysical and Photochemical Aspectsof Phthalocyanines for Photodynamic Therapy. Curr. Org. Chem.,2003,7:187-196.
    [4] Moan J., Berg K. Photochemotherapy of cancer: experimental research. Photochem. Photobiol.,1992,55:931-948.
    [5] Brown S.B., Brown E.A., Walker I. The present and future role of photodynamic therapy incancer treatment. Lancet. Oncol.,2004,5(8):497-508.
    [6]徐尚杰,张晓星,陈申,等.新型光动力药物-竹红菌衍生物的研究与进展.科学通报,2003,48(10):1005-1015.
    [7]黄剑东.金属酞菁配合物作为抗癌光敏剂的研究:[博士学位论文].福州:福州大学化学系,1998.
    [8] Pandey R.K. Recent advances in photodynamic therapy. J. Porphyrins Phthalocyanines,2000,4:368-373.
    [9] Kasuga K., Fujita A., Miyazako T., et al. Photocatalytic decomposition of trichlorophenol byzinc(II) phthalocyanine derivatives in aerated organic solvents. Inorganic ChemistryCommunications,2000,3:634-636.
    [10] Ochsner M. Photophysical and photobiological processes in the photodynamic therapy oftumours. Journal of Photochemistry and Photobiology B: Biology,1997,39:1-8.
    [11] Macdonald T.J., Dougherit T.J. Basic Principles of Photodynamic Therapy. Journal ofPorphyrins and Phthalocyanines,2001,5:105-129.
    [12]许德余.光动力治疗学的临床应用.基础医学与临床,1997,17(3):173-177.
    [13] Markolf H.N.,张镇西译.激光与生物组织的相互作用—原理及应用.第3版,西安:西安交通大学出版社,2005.
    [14] Bonnett R. Chemical Aspects of photodynamic Therapy. Gordon&Breach SciencePublishers,2000.
    [15] Penning L.C., Dubbelman T.M. Fundamentals of photodynamic therapy: cellular andbiochemical aspects. Anti-Cancer Drugs,1994,5(2):139-146.
    [16] Henderson R.W., Dougherty T.J. How does photodynamic therapy work?. Photochem.Photobiol.,1992,55:145-157.
    [17]黄金陵,黄剑东,刘尔生,等.酞菁配合物的结构与其光动力抗癌活性.物理化学学报,2001,17(7):662-671.
    [18]孙纲春.酞菁金属配合物的合成、表征及光动力活性研究:[博士后论文].福州:福州大学化学系,2005.
    [19] Lo Pui-chi, Wang Shuang-qing, Ng D.K.P., et al. Preparation and photophysical properties ofhalogenated silicon(IV) phthalocyanines substituted axially with poly(ethylene glycol)chains.Tetrahedron Letters Pergamon,2003,44:1967-1970.
    [20] Star W.M. Light dosimetry in vivo. PhysMed Bio.,1997,42(5):763-787.
    [21] Rausch P.C, Rolfs F., Winkler M.R., et al. Pulsed versus continous wave excitationmechanisms in photodynamic therapy of differently graded squamous cell carcinomas intumour-implanted nude mice. Eur. Arch. Otorhinolaryngol,1993,250:82-87.
    [22] Raab O. Uber die wirkugn fluoreszierender staff auf influroniea. Z Biol.,1900,9:534-546.
    [23] Hausmann W. The sensitizing action of hematoporphyrin. Biochem. Z.,1911,30:176.
    [24] Betz M.F. Untersuchungen uber die biologieme (photodynamische) wirkung deshematoporphyrins und anderer derivate des blut und gal-lenfarbstoffs. Dtsch Arch Klin Med.,1913,112:476-503.
    [25] Auler H., Benzer G. Unter suchugen uber die rolle der porphyrine BEI Geschwul strankenund tieren. Z Krebsforsch,1942,53:65-68.
    [26] Figge F.H.J., Well G., Manganiello L. Cancer detection and therapy: Affinity of neoplasticembryonic and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc ExptlBiol Med,1948,68:640-641.
    [27] Rassmussen T.D.S., Ward G.E., Figge F.H.J. Fluorenscene of human lymphatic and cancertissues following high doses of intravenous hematoporphyrin. Cancer,1955,8:78-81.
    [28] Lipson R.L., Baldes E.J., Olsen A.M. The use of derivative of hematoporphyrin in tumordetection. J. Nat. Cancer Inst.,1961,26:1-8.
    [29] Gregorie H.B. Hematoporphyrin fluorenscence in malignant neoplasm. Ann. Surg.,1968,107:820-828.
    [30] Lipson R.L., Gray M.J., Baldes E.J. Hematoporphyrin derivative for detection andmanagement of cancer. Cancer,1967,20:2255-2258.
    [31] Diamond I., Mcdonalgh A.F., Wilson S.G., et al. Photodynamic therapy of malignant tumors.Lancet.,1972,2:1175-1178.
    [32] Kelly J.F., Snell M.E., Berenbaum M.C. Photodynamic destruction of human bladdercarcinoma. Br. J. Cancer,1975,31:237-244.
    [33] Dougherty T.J., Grindy G.B., Fiel R., et al. Photoradiation therapy II. Cure of animal tumorswith hematoporphyrin and light. J. Nat. Cancer Inst.,1975,55:115-121.
    [34] Dougherty T.J., Kaufman J.H., Goldfarb A., et al. Photoradiation therapy for the treatmentofmalignanttumors. Cancer Res.,1978,38:2628-2635.
    [35] Dougherty T.J., Lawrence G., Kaufman J.H., et al. Photoradiation treatment of recurrent brestcarcinoma. J. Nat. Cancer Inst.,1979,62:233-237.
    [36] Bonnett R., Ridge R.J., Scourides P.A., et al. On the nature of hematoporphyrin derivate. J.Chem. Soc. Perkin I,1981,3135-3139.
    [37] lezy D.S., Hai T.T., Henderson R.W., et al. The chemistry of pyrrolic compounds. Ⅳ.Hematoporphyrin derivative: Hematoporphyrin diacetateas the main product of the reactionof hematoporphyrin with a mixture of acetic and sulfuric acids. Aust. J. Chem.,1980,33:585-597.
    [38] Bonnett R., Ridge R.J., Scourides P.A. Hematoporphyrin derivative. J. Chem. Soc.1980:1198-1199.
    [39] Kessel D., Chou Ta-shu. Porphyrin localizing phenomena. In: Kessel D, Dougherty TJ, eds.Porphyrins Photosensitization. New York: Plenum Press,1983,115-127.
    [40] Dougherty T.J., Boyle D.G., Weishaupt K.R., et al. Photoradiation therapy: Clinical and drugadvances. In: Kessel D, Dougherty TJ, eds. Porphyrins Photosensitization. NewYork:PlenumPress,1983.3-13.
    [41] Dougherty T.J., Potter WR, Weishaupt KR. The structure of the active component ofhemato-porphyrin derivative. In: Adreoni A, Cubeddu Red. Porphyrin in Tumor Phototherapy.New York: Plenum Press,1984.23-36.
    [42]北京制药工业研究所.北京医药工业1983年增刊《癌卟啉(HpD)专缉》,3-32,40-63.
    [43]刘永隆,朱路州,吴鹏,等.血卟啉衍生物及其有效组分的色谱分析.药学学报,1984,19:706-709.
    [44]刘永隆,朱路州,吴鹏.血卟啉衍生物的分离和鉴定.药学学报,1984,19:547-549.
    [45]许德余,殷祥生,陈雄,等.癌光啉(PsD-007)的化学研究.第二军医大学报,1986,7:247-257.
    [46]许德余,殷祥生,陈文晖,等.肿瘤光化学诊治新药癌光啉(PsD-007)的研究.中国医药工业杂志,1989,20:440-446.
    [47]陈文晖,叶和楚,许德余,等.癌光啉对动物移植瘤的光化学诊治作用.第二军医大学学报,1986,7:253-257.
    [48]陈文晖,殷祥生,许德余.癌光啉(PsD-007)的化学组成及其主要成分的肿瘤光生物活性研究.第二军医大学学报,1991,6:309.
    [49] Gemert J.C., Berenbaum M.C., Gijsbers G.H. Wavelength and light-dose dependence intumour phototherapy with haematoporphyrin derivative. Br. J. Cancer,1985,52:43-49.
    [50] Barr H., Tralau C.J., Boulos P.B., et al. The contrasting mechanisms of colonic collagendamage between photodynamic therapy and thermal injury. Photochem. Photobiol.,1987,46:795-800.
    [51] Kessel D. Proposed structure of the tumor localizing fraction of HpD(hematoporphyrinderivative). Photochem.Photobiol.,1986,44:193-196.
    [52] Pandey R.K., Smith K.M., Dougherty T.J. Porphyrin dimmers as photosensitizers inphotodynamic therapy. J. Med. Chem.,1990,33:2032-2038.
    [53] Pandey R.K., Shiau F., Dougherty T.J., et al. Regioselective synthesis of ether-linkedporphyrin dimers and trimers related to Photofrin II.Tetrahedron,1991,47:9571-9584.
    [54] Sternberg E., Dolphin D., Brückner C. Porphyrin-based photosensitizers for use inphotodynamic therapy. Tetrahedron,1998,54:4151-4202.
    [55] Siegel M.M., Tabei K., Tsao R., et al. Comparative mass spectrometric analyses of photofrinoligomers by fast atom bombardment mass spectrometry, UV or IR matrixassisted laserdesorption/ionization mass spectrometry, electrospray ionization mass spectrometry andlaser desorption/jet-cooling photoionization mass spectrometry. J. Mass. Spectrom.,1999,34:661-669.
    [56]马金石.卟啉类第二代光敏剂的发展.感光科学与光化学,2002,20(2):131-147
    [57]黄金陵,陈耐生,黄剑东,刘尔生,薛金萍,杨素苓,黄自强,孙建成,用于光动力治疗的金属酞菁配合物-两亲性酞菁锌配合物ZnPcS2P2的制备、表征及抗癌活性,中国科学(Series B),2000,30(6):481-488.
    [58] Peng Yi-ru,Huang Feng-hua,Lin Zhi-peng, et al. Synthesis and characterization of anunsymmetrical diimide-disulfonato phthalocyaninatozinc dipotassium salt. InorganicChemistry Communications,2004,7:967-970
    [59] Gao Lin-dong, Qlan Xu-hong, Zhang Yuan-xing, Zhang Li. Soluble Fluoroalkoxyl MetalPhthalocyanate: Novel Photosensitizer for Photodynamic Tumor Therapy. PhotographicScience and Photochemistry.200119(4):244-249
    [60]江舟.不同取代酞菁配合物的合成及其性质研究:[博士学位论文].福州:福州大学化学化工学院,2006.
    [61]黄金陵,陈耐生,刘尔生等.酞菁锌配合物及其制造方法和在制抗癌药中的应用,中华人民共和国国家知识产权局.中国发明专利号ZL96117137.5CN1053906C.
    [62]刘尔生,黄剑东,戴志飞,等.磺酸基邻苯二甲酰亚氨甲基酞菁锌的合成及光动力抗肿瘤活性研究.无机化学学报,1997,13(4):411-415.
    [63]沈永嘉.酞菁的合成与应用.北京:化学工业出版社,2002.2.
    [64] Braun A., Tcherniac T.C. Uber die Produckte Einwirkung von Acetanhydridauf Phthalamid.Ber.,1907,40:2709-2714.
    [65] H.de Diesbach, E.von. der Weid. Quelques sels Compless des o-dintriles aves le cuivre et lapyridine, Helv. Chim. Acta,1927,10:886-888.
    [66] R. P. Linstead. phthalocyanines. Part I. A new type of synthetic colouring matter. J. Chem.Soc.,1934,1013-1017.
    [67] Linstesd R.P., Lowe A.R. phthalocyanines. Part III. Preliminary experiments on thepreparation of phthalocyanine from phthalonitrile. J. Chem. Soc.,1934,1022-1027.
    [68] Robertson J.M. An X-ray study of the structure of the phthalocyanines, Part I, The metal-freenickel, copper, and platinum compounds. J. Chem. Soc.,1935,615-621.
    [69]佘远斌,杨锦宗.酞著类催化剂的研究进展,北京工业大学学报,1998,24(2):115-120
    [70] Parton R.F., Vankelecom l.F.J., Casselman M.J.A., et al. An efficient mimic of cytochromeP-450from a zeolite-engaged Fe complex in a polymer membrane. Nature,1994,370:541-544
    [71] Wu Yong-zhong, Tian He, Chen Kong-chang, et al. Synthesis and properties of solublemetal-free phthalocyanines containing tetra-or octa-alkyloxy substituents, Dyes andPigments,1998,37(4):317-325
    [72] Selami, Sasmaz, Erbil Agar, et al. Synthesis and characterization of phthalocyaninescontaining phenothiazine moieties, Dyes and Pigments,1999,42:137-142
    [73] Decreau R., Chanon M., Julliard M. Synthesis and characterization of a series ofhexadecachlorinated phthalocyanines. Inorganica Chimica Acta,1999,293:80-87
    [74] William E.F., Michael A.J.R., Schechtman L.A., et al. Synthesis and photochemical propertiesof aluminum, gallium,silicon, and tin naphthalocyanines. Inorg. Chem.,1992,31:3371-3377
    [75] Keiichi Sakamoto, Eiko Ohno. Electrochemical characterization of soluble cobaltphthalocyanine derivative. Dyes and Pigments1998,37:291-306
    [76] Hu W.P., Liu Y.Q., Liu S.G., et al. The synthesis of amino tri-tert-butyl phthalocyanine and itsgas sensitivity to nitrogen dioxide, Supermolecular Science,1998,5:507-510
    [77] Cook M, Thin film formations of substituted phthalocyanines, J. Mater Chem,1996,6:677-689
    [78] Aoudia M, Cheng G., Kennedy V.O., et al. Synthesis of a series of octabutoxy-andoctabutoxybenzo-phthalocyanines and photophysical properties of two members of the series.J. Am. Chem. Soc.,1997,119:6029-6039
    [79] Cook MJ, Jafari-Fini A, Thiophenotribenzoporphyrazines: novelphthalo-near-IR absorbingdyes. J. Mater. Chem.,1997,7:5-7
    [80] Jan Janczak, Ryszard Kubiak, Friedemann Hahn, Aneutral molecule of Iz as a bridge fordimerization of iodine Iron(II)phthalocyanine, Inorganica Chimica Acta,1999,287:101-104
    [81] Kobayashi N., Kobayashi Y., Osa T., Optically active phthalocyanines and their circulardichroism, J. Am. Chem. Soc.,1993,115:1994-1995
    [82] Jung R., Schweikart K.H., Hanack M., Synthesis of an oligo (phenylenevinylene) bridgedphthalocyanine dimmer, Synthetic Metals,2000,111-112,453-454
    [83] Fox J.M., Katz T.J., Elshocht S.V., Verbiest T., et al, Synthesis, self-assembly, and nonlinearoptical properties of conjugated helical metal phthalocyanine derivativesm, J. Am. Chem.Soc.,1999,121:3453-3459
    [84]汪茫,陈红征,杨士林,酞著类聚合物功能材料研究进展,功能高分子学报,1994,7(2):186-194
    [85]司玉贵,龚跃法,张正波,多氟烷氧基取代金属酞着配合物的简便合成及其光谱特征,高等学校化学学报,1999,20(3):403-406
    [86] Gao L., Meng F.S., Gong X.D., Xiao H.M., et al. Synthesis and spectral properties of solubletrimethylsilyl substituted metal-phthalocyanines, Dyes and Pigments,2001,49:83-91
    [87] Beck A., Mangold K.M., Hanack M. Chem. Ber.1991,124:2315-2321.
    [88] Zhang Xian-fu, Wu Hui-jun. Influence of halogenation and aggregation on photosensitizingproperties of zinc phthalocyanine (ZnPc). Chem. Soc. Faraday Trans.1993,89:3347-3351.
    [89] Beeby A., FitzGerald S., Stanley C.F. A photophysical study of protonated (tetra-tert-butylphthalocyaninato)Zinc. J. Chem. Soc. Perkin Trans.,2001,2:1978-1982.
    [90] Bishop S.M., Beeby A., Parker A.W., et al. The preparation and photophysical measurementsof perdeutero zinc phthalocyanine. J. Photochem. Photobiol. A: Chem.1995,90:39-44.
    [91] Cook M.J., Dunn A.J., Howe S.D., et al. Alkoxyphthalocyanine and naphthalocyaninederivatives: dyes with Q band absorption in the far red or near-infrared. J. Chem. Soc.Perkin Trans. I,1988,2453-2458.
    [92] K. Kasuga, M. Kawashima, T. Sugimori. Preparation of one Structure Isomer of Tetra-substituted Phthalocyanine,1,8,15,22-Tetra (3’-pentoxy)-phthalocyanine, and a crystalstructure of its Nick(II) Complex. Chemistry Letters,1996,867-868.
    [93] Kuninobu Kasuga, Kenichiro Asano, Liang Lin, et al. Solvent Extraction of Anionic Silver(I)Thiocyanate Complex as Ion-Pairs with Tetrabutylammonium Ions into Chloroform and4-Methyl-2-pentanone. Bull. Chem. Soc. Jpn.,1997,70:1859-1865.
    [94] Cook M. J., Dunn A. J., Howe S. D., et al. Octa-alkoxy phthalocyanine and naphthalocyaninederivatives:dyes with Q-band absorption in the far red or near infra-red. J. Chem. Soc.Perkin. Trans.,1988,1:2453-2458.
    [95] M. J. Chen, D. E. Fremgen, J. W. Rathke. Oxygen aton transfer fron μ-oxo-bis[1,4,8,11,15,18,22,25-octakis (trifluoromethyl) phthalocyaninato] diiron (III): evidence for an FeIV=Ointermediante. J. Porphyrins Phthalocyanines,1998,2:473-482.
    [96] Fukuda T., Homma T., Kobayashi N., et al. A higly deformed iron(II) low-spinphthalocyanine which shows two MLCT teansitions beyond the Q-band. Chem. Commun.,2003,13:1574-1575.
    [97] Mukaddes S., Esin H. Novel phthalocyanines with pentafluoro benzyloxy-substituents. Dyesand Pigments,2007,74(1):17-20.
    [98]杨树卿,等.中国发明专利ZL85.1.089320.1,1985.
    [99] T, Kudo, M. Kimura, et al., Fabrication of Gas Sensors Based on SoluablePhthalocyanines. J.Porphyrins Phthalocyanines1999,3:65-69.
    [100] Chen Jin-can, Chen Nai-sheng, Huang Jin-ling, et al. Derivatizable phthalocyanine withsingle carboxyl group: Synthesis and purification. Inorganic Chemistry Communications,2006,9:313-315.
    [101]王竹庭,鲁开娟,王晓筠.酞菁氧钛的合成及晶型转化.应用化学,1994,11:72-75.
    [102] Matsunami M., Takaki A., Maekawa H., et al. Synthesis and behavior of novelphthalocyanines possessing intramolecular crown ether bridges between their differentaromatic rings for effective extraction multi metal inclusion. Science and Technology ofAdvanced Materials,2005,6(2):172-180.
    [103] Ma Chun-yu, Ye Kai-qi, Yu Shu-kun, et al. Synthesis and hypochromic effect ofphthalocyanines and metal phthalocyanines. Dyes and Pigments,2007,74(1):141-147
    [104] Cormick M.P., Rovera M., Durantini E.N. Synthesis, spectroscopic properties andphotodynamic activity of a novel Zn(II) phthalocyanine substituted by fluconazole groups.Journal of Photochemistry and Photobiology A: Chemistry,2008,194(2-3):220-229.
    [105] Kobayashi N., Kondo R., Nakajima S., et al. New route to unsymmetrical phthalocyanineanalogues by the use of structurally distorted subphthalocyanines. J. Am. Chem. Soc.,1990,112:9640-9641.
    [106] Ikeda Y., Konami H., Hatano M. Synthesis of Non-Symmetrically Benzo-SubstitutedPhthalocyanines. Chem. Lett.,1992,763-768.
    [107] Leznoff C.C., Hall T.W. The Synthesis of a Soluble Unsymmetrical Phthalocyanine on aPlolumer Support. Tetrahedron Lett.,1982,23:3023-3026.
    [108] Rihter B.D., Kenney M.E., Ford W.E., et al. Synthesis and photoproperties of diamagneticoctabutoxyphthalocyanines with deep red optical absorbance. J. Am. Chem. Soc.,1990,112(22):8064-8070.
    [109] Nevin W.A., Liu W., Greenberg S., et al. Synthesis, aggregation, electrocatalytic activity,and redox properties of a tetranuclear cobalt phthalocyanine. Inorg.Chem.,1987,26(6):891-899.
    [110] Angela S., Belen, del Rey, Tomas T. Synthesis of Novel Unsymmetrically SubstitutedPush-Pull Phthalocyanines. J. Org. Chem.,1996,61(24):8591-8597.
    [111] Clarkson G.J., Mckeown N.B., Treacher K.E. Synthesis and characterisation of some novelphthalocyanines containing both oligo(ethyleneoxy) and alkyl or alkoxy side-chains: novelunsymmetrical discotic mesogens. J. Chem. Soc., Perkin Trans. I,1995,14:1817-1823.
    [112] Ali-Adib Z., Clarkson G.J., Cook A., et al. Synthesis and Characterization of MesogenicPhthalocyanines Containing a Single Poly(oxyethylene) Side Chain: An Example of StericDisturbance of the Hexagonal Columnar Mesophase, Macromolecules,1996,29(3):913-917.
    [113] Kobayashi N., Ashida T., Osa T. Synthesis, spectroscopy, electrochemistry, andspectroelectrochemistry of a zinc phthalocyanine with D2hsymmetry. Chem. Lett.,1992,2031-2032.
    [114] Leznoff C.C., SvirsKaya P.I., Khouw B., et al. Syntheses of monometalated andunsymmetrically substituted binuclear phthalocyanines and a pentanuclear phthalocyanineby solution and polymer support methods. J. Org. Chem.,1991,56(1):82-90.
    [115] Leznoff C.C., Hall T.W.. The Synthesis of a Soluble Unsymmetrical Phthalocyanine onSolid Phases. Tetrahedron Lett.,1982,23:3023-3026.
    [116] Leznoff C.C., McArthur C.R., Qin Y. Phthalocyanine Modified Silica Gels and TheirApplication in the Purification of Unsymmetrical Phthalocyanines. Can. J. Chem.,1993,71:1319-1326.
    [117]王小兵,唐代华,甄珍,等.可溶性亚酞菁的合成、光谱及聚集性质的研究.感光科学与化学,1999,17(2):168-171
    [118] Svetlana V.K., Sandra G., Lier J.E. Synthesis of trisulfonated phthalocyanines and theirderivatives using boron(iii) subphthalocyanines as intermediates. J. Org. Chem.,1996,61:5706-5707.
    [119] Kobayashi N., Kondo R., Nakajima S., et al. New route to unsymmetrical phthalocyanineanalogues by the use of structurally distorted subphthalocyanines. J. Am. Chem. Soc.,1990,112:9640-9641.
    [120] Musluoglu E., Giirek A., Ahsen V., et al. Unsymmetrical Phthalocyanines with a singleMacrocyclic Substituent. Chem. Ber.,1992,125(10):2337-2339.
    [121] Dabak S., Guel A., Bekaroglu O. Hexakis(alkylthio)-Substituted UnsymmetricalPhthalocyanines. Chem. Ber.,1994,127(10):2009-2012.
    [122] K. J. M. Nolan, M. Hu, C.C. Leznoff.“Adjacent” substituted phthalocyanies. Synlett,1997,593-594.
    [123]吴少峰.交叉缩合法合成ABAB型酞菁配合物及其谱学性质研究:[硕士学位论文].福州:福州大学,2005.
    [124] Lever A.B.P., Pickens S.R., Minor P.C., et al. Charge-Transfer Spectra ofMetallophthalocyanines: Correlation with Electrode Potentials. J. Am.Chem.Soc.,1981,103:6800-6806.
    [125] Dini D., Hanack M..Phthalocyanines as materials for advanced technologies: some examples.J. Porphyrins and Phthalocyanines,2004,8:915-933.
    [126] Eberhardt W., Hanack M. Synthesis of Hexadecaalkoxy-Substituted Nickel and IronPhthalocyanines. Synthesis.,1997,1:95-100.
    [127] Cook M.J., Dunn A.J., How S. D., et al. Alkoxyphthalocyanine and naphthalocyaninederivatives:dyes with Q band absorption in the far red or near-infrared. J. Chem. Soc.Perkin Trans.I,1988,2453-2458.
    [128]薛金萍.含氮芳氧基取代酞菁金属配合物的合成及光敏活性研究:[博士学位论文].福州:福州大学,2005.
    [129]黄金陵,黄剑东,刘尔生,等.酞菁配合物的结构与其光动力抗癌活性.物理化学学报,2001,17(7):662-671.
    [131]许秀芝.两亲性酞菁锌的合成、分离方法及其光物理化学性质研究.[博士学位论文].福州大学,2005,12.
    [132]黄剑东,刘尔生,黄金陵,等.某些金属酞菁配合物的单体电子吸收光谱和荧光光谱.光谱学与光谱分析.2000,20:95-98.
    [133]陈国珍,黄贤智,郑朱萍,等编著,荧光分析法,北京:科学出版社,1990.
    [134] Ogunsipe A., Maree D., Nyokong T. Solvent effects on the photochemical and fluorescenceproperties of zinc phthalocyanine derivatives. J. Mol. Struct.,2003,650:131-140.
    [135] Kobayashi N., Effect of Peripheral Substitution on the Electronic Absorption andFluorescence Spectra of Metal-Free and Zinc Phthalocyanines. Chem. Eur. J.,2003,9:5123-5134.
    [136] Leznoff C.C., Lever A.B.P.(Eds.) Phthalocyanines: Properties and Applications, vols.1-4,New York: VCH Publishers,1989,1993,1993,1996.
    [137] McKeown N.B. Phthalocyanines Materials: Synthesis, Structure and Function. CambridgeUniversity Press, Cambridge,1998.
    [138] Hanack M., Lang M. Conducting Stacked Metallophthalocyanines and Related Compounds.Adv. Mater.1994,6:819-833.
    [139] Sugimori T., Okamoto S., Kotoh N., et al. Syntheses and Magnetic and ConductiveProperties of New Low-Dimensional Complexes. Chem. Lett.,2000,1200-1201.
    [140]陈仕艳,刘云圻,黄学斌,等.酞菁在分子材料器件方面的研究进展.自然科学进展,2004,14(2),125-131.
    [141] Faassen E., Kerp H. Explanation of the low oxygen sensitivity of thin film phthalocyaninegas sensors. Sensors and Actuators B: Chemical,2003,88(3):329-333.
    [142] Wang Kun, Xu Jing-Juan, Tang Kai-Shi, et al. Solid-contact potentiometric sensor forascorbic acid based on cobalt phthalocyanine nanoparticles as ionophore. Talanta,2005,67(4):798-805.
    [143] Debnath A.K., Samanta S., Singh A., et al. Parts-per-billion level chlorine sensors with fastkinetics using ultrathin cobalt phthalocyanine films. Chemical Physics Letters,2009,480(4-6):185-188
    [144] Wang Yuan, Deng Kai, Gui Lin-lin, et al. Preparation and Characterization of NanoscopicOrganic Semiconductor of Oxovanadium Phthalocyanine. Journal of Colloid and InterfaceScience,1999,213(1):270-272.
    [145] Liu M.O., Hu A.T. Microwave-assisted synthesis of phthalocyanine–porphyrin complex andits photoelectric conversion properties. Journal of Organometallic Chemistry,2004,689(15):2450-2455.
    [146] Abramczyk H., Szymczyk I., Waliszewska G., et al. Photoinduced Redox Processes inPhthalocyanine Derivatives by Resonance Raman Spectroscopy. J. Phys. Chem. A,2004,108(2):264-274.
    [147] Cupere V.D., Tant J., Viville P., et al. Effect of Interfaces on the Alignment of a DiscoticLiquid Crystalline Phthalocyanine. Langmuir,2006,22(18):7798-7806.
    [148] Sheu Ching-wen, Lin Kuen-mo, I-Hsun Ku, et al. On the Langmuir–Blodgett transfer ofcopper tetra-tert-butyl phthalocyanine monolayers in the presence of arachidic acid.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,207:81-88.
    [149] Woolley R.A.J., Martin C.P., Miller G., et al. Adsorbed molecular shuttlecocks: An NIXSWstudy of Sn phthalocyanine on Ag(111) using Auger electron detection. Surface Science,2007,601(5):1231-1238.
    [150] Yamane H., Kikuchi H., Kajiyama T. Laser-addressing rewritable optical informationstorage of (liquidcrystalline side chain copolymer/liquid crystals photo responsivemolecule) ternary composite systems. Polymer,1999,40:4777-4785
    [151] Gan Fu-xi, Hou Li-song, Wang Guang-bin, et al. Optical and recording properties of shortwavelength optical storage materials, Materials Science and Engineering,2000, B76:63-68
    [152]常俊丽,陈祖兴,王世敏,非线性光学材料及其分子设计和聚集态设计述评,湖北大学学报(自然科学版),1998,20(2):176-183
    [153] Liang Zhi-jian, Gan Fu-xi, Sun Zhen-rong, et al. Resonant third-order optical nonlinearity ofa new subphthalocyanine. Optical Materials,2000,14:13-17
    [154] Mandal B.K., Bihari B., Sinha A.K., et al. Third-order nonlinear optical response in amultilayered phthalocyanine composite, Appl. Phys. Lett.1995,66(8):932-934
    [155] Abdeldayem H.A., Frazier D.O., Penn B.G., et al. Non-linear optothermal properties ofmetal-free phthalocyanine, Thin Solid Films,1999,350:245-248
    [156] Schneider G., Wohrle D., Spiller W., et al. Photooxidation of2-mercapoethanol by variouswater-soluble phthalocyanines in aqueous alkaline solution under irradiation with visiblelight. Photochemistry and Photobiology,1994,60(4):333-342.
    [157] Seelan S., Agashe M.S., Srinivas D. Effect of peripheral substitution on spectral andcatalytic properties of copper phthalocyanine complexes. Journal of Molecular Catalysis A:Chemical,2001,168:61-68.
    [158] Deng Hui-hua, Mao Hai-fang, Lu Zu-hong, et al. Influence of molecular aggregation andorientation on the photoelectric properties of tetrasulfonated gallium phthalocyanineself-assembled on a microporous Ti02electrode. Thin Films,1998,315:244-250
    [159] Han Du-sang, Lee Ying-jun, Kim J.S., et al. Photocurrent generation of poly (titanyloxo-phthalocyanine)s and silica hybrid film. Synthetic Metals,2001,117:203-205
    [160] Wrobel D., Boguta A., Ion R.M. Mixture of synthetic organic dyes in a photoelectrochemicalcell. Journal of Photochemistry and Photobiology A: Chemistry,2001,138:7-22
    [161] Song Chao-jie, Zhang Lei, Zhang Jiu-jun. Reversible one-electron electro-reduction of O2toproduce a stable superoxide (O2-) catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. Journal of Electroanalytical Chemistry,2006,587:293-298.
    [162] Pakhomov G.L., Leonov E.S., Klimov A.Y. Rectification and NIR photoresponse inp-Si/phthalocyanine/metal heterostructures. Microelectronics Journal,2007,38:682-685
    [163] Thomas S., Ruiz G., Ferraudi G. Preparation and Reactivity of Pendent---CO2RhIII(phthalocyanine) Bound to a Poly(acrylate) Backbone. Effects of the Hypercoiled Backboneon the Association, Photochemical, and Thermal Redox Reactions of the PendentMacrocycle. Macromolecules,2006,39(19):6615-6621
    [164] Ben-Hur E., Rosenthal L. Photoinactivation of V-79Chinese hamster cells by tetrasulfo-phthalocyanines. Photochem. Photobiol.,1985,42:515-521.
    [165] Moser J.D. Photodynamic Tumor Therapy2nd and3rd generation photo-sensitizer. NewDelhi: Harwood academic publisher,1998,171.
    [166]刘尔生,黄剑东,戴志飞,等.磺酸基邻苯二甲酞亚氨甲基酞普锌的合成及光动力抗肿瘤活性研究.无机化学学报,1997,13:411-415.
    [167]黄金陵,陈耐生,刘尔生等,酞菁锌配合物及其制造方法和在制抗癌药中的应用,中华人民共和国国家知识产权局.中国发明专利号ZL96117137.5CN1053906C.
    [168] Huang J.L., Chen N.S., Huang J.D., et al. Metal phthalocyanine as photosensitizer forphotodynamic therapy (PDT): Preparation, characterization and anticancer activities of anamphiphilic phthalocyanine ZnPcS2P2. Science in China Series B: Chemistry,2001,44:113-122.
    [169] Luktanets E.A. Phthalocyanines as photosensitizers in the photodynamic therapy of cancer. J.Porphyrins Phthalocyanines,1999,3(6-7):424-432.
    [170] Allen C.M., Sharm W.M., Van Lier J.E. Current status of phthalocyanines in thephotodynamic therapy of cancer. J. Porphyrins Phthalocyanines,2001,5(2):161-169.
    [171] Choi C.F., Tsang P.T., Ng D.K.P., et al. Synthesis and in vitro photodynamic activity of newhexadeca-carboxy phthalocyanines. Chem. Commun,2004,2236-2237.
    [172] Liu W., Timothy J.J., Frank R.F., et al. Synthesis and cellular studies of nonaggregatedwater-soluble phthalocyanine. J. Med. Chem.2005,48:1033-1041.
    [173]卢珊. β-四(羧基苯氧基)酞菁的合成与光敏活性研究:[硕士学位论文].南京:南京师范大学,2006.
    [174] Ke Mei-rong, Huang Jian-dong, Weng Sheng-mei. Comparison between non-peripherallyand peripherally tetra-substituted Zinc(Ⅱ) phthalocyanines as photosensitizers: Synthesis,spectroscopic, photochemical and photobiological properties. J. Photochem. Photobiol. A:Chemistry,2009,201,23-31.
    [175] Mahmut Durmus, Vefa Ahsen. Water-soluble cationic gallium(III) and indium(III)phthalocyanines for photodynamic therapy. Journal of Inorganic Biochemistry,2010,104(3):297-309
    [176] Liu Jian-yong, Lo Pui-chi, Ng D.K.P., et al. Effects of the number and position of thesubstituents on the in vitro photodynamic activities of glucosylated zinc(II) phthalocyanines.Org. Biomol. Chem.,2009,7:1583-1591
    [177] Sibrian-Vazquez M., Ortiz J., Nesterova I.V., et al. Synthesis and properties of cell-targetedZn(II)-phthalocyanine-peptide conjugates. Bioconjugate Chem.,2007,18:410-420.
    [178] Derycke A.S., de Witte P.A. Liposomes for photodynamic therapy. Adv, Drug. Deliv. Rev.,2004,56(1):17.
    [179] Walker G.T., Nadeau J.G., Linn C.P., et al. Strand displacement amplication (SDA) andtransient state fluorescence polarization detection of Mycobacterium tuberculosis DNA.Clin. Chem.,1996,42:9-13.
    [180] Priscilla P.S. Lee X.Y., Lo P.C., et al. Synthesis and in vitro photodynamic activity of novelgalactose-containing phthalocyanines. Tetrahedron Letters,2005,46:1551-1554.
    [181] Taquet J.P., Frochot C., Manneville V., et al. Phthalocyanines covalently bound tobiomolecules for a targeted photodynamic therapy. Current Medicinal Chemistry,2007,14(15):1673-1687.
    [182] Vrouenraets M.B., Visser G.W.M., Stigter M., et al. Targeting of aluminum (III)phthalocyanine tetrasulfonate by use of internalizing monoclonal antibodies: Improvedefficacy in photodynamic therapy. Cancer Res.,2001,61:1970-1975.
    [183] Lutsenko S.V., Feldman N.B., Finakova G.V., et al. Targeting phthalocyanines to tumor cellsusing epidermal growth factor conjugates. Tumour Biol,1999,20(4):218-224.
    [184] Aina O.H., Sroka T.C., Chen M.L., et al. Therapeutic cancer targeting peptides. Biopolymers,2002,66(3):184-199.
    [185] Gerd S., Andreas W., Herrmann S.H., et al. Albumin-based drug carriers: comparisonbetween serum albumins of different species on pharmacokinetics and tumor uptake of theconjugate. Anti-Cancer Drugs,1999,10(8):785.
    [186] Sharman W. M., van Lier J. E., Allen C. M. Targeted Photodynamic. Therapy via ReceptorMediated Delivery Systems. Adv. Drug Rev.,2004,56:53-76.
    [187] Lang K., Mosinger J., Wagnerova D. M. Photophysical properties of porphyrinoidsensitizers noncovalently bound to host molecules. Coord. Chem. Rev.,2004,248:321-350
    [188] Meloun B., Moravek L., Kostka V. Complete amino acid sequence of human serum albumin.FEBS Letters,1975,58:134-137.
    [189] Behrens P.Q., Spiekerman A.M, Brown J.R. Structure of Human Serum Albumin. Fed. Proc.,1975,34:591-596.
    [190] He X.M. Carter D.C. Atomic structure and chemistry of human serum albumin. Nature,1992,358(16):209-215.
    [191] Sudlow G., Birkett D., Wade D.N., The characterization of two specific drug binding sites onhuman serum albumin. Mol. Pharmacol.,1975,(11):824-832
    [192] Sudlow G., Birkett D.J., Wade D.N. Further characterization of specific drug binding sites onhuman serum albumin. Mol. Pharmacol.,1976,(12):1052-1061
    [193] Matthew J.B., Gurd F.R., Garcia-Moreno B., et al. pH-dependent processes in proteins. CRCCrit. Rev. Biochem.,1985,18(2):91-197.
    [194] Luetscher J. Serum Albumin. XI. Identification of more than one albumin in horse andhuman identification serum by electrophoretic mobility in acid solution. J. Am. Chem. Soc.,1939,61:2888-2890.
    [195] Forster J.F. In The Plasma Proteins. Putman F.W., Eds. New York: Academic Press,1960.
    [196] Qiu W.H., Zhang L.Y., Okobiah O., et al. Ultrafast solvation dynamics of human serumalbumin: correlations with conformational transtions and site-selected recognition. J. Phys.Chem. B,2006,110:10540-10549.
    [197] Ahmad B., Parveen A., Khan R.H. Effect of albumin conformation on the binding ofciprofloxacin to human serum albumin: a novel approach directly assigning binding site.Biomacromolecules,2006,7:1350-1356.
    [198] Dockal M., Carter D.C., Ruker F. Conformational transitions of the three recombinantdomains of human serum albumin depending on pH. J. Biol. Chem.,2000,275:3042-3050.
    [199] Bos O.J., Remijn J.P., Fischer M.J., et al. Location and characterization of the warfarinbinding site of human serum albumin, a comparative study of two large fragments. Biochem.Pharmacol.,1988,37:3905-3909.
    [200] Lapresele C. Study of albumin conformational changes in human serum using animmunoenzymatic technic using monoclonal antibodies (French)(Review). Ann. Biol. Clin.(Paris),1990,48:105-110.
    [201] Qiu W., Zhang L., Kao Y.T., et al. Ultrafast hydration dynamicsin melittin folding andaggregation: helix formation and tetramer selfassembly. J. Phys. Chem. B,2005,109:16901-16910.
    [202] Jeffrey R.S., Patricia A.Z., James A.H., et al. Location of high and low affinity fatty acidbinding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol.Biol.,2006,361:336-351.
    [203] Sudlow G., Birkett D.J., Wade D.N. The characterization of two specific drug binding siteson human serum albumin. Mol. Pharmacol.,1975,11:824-832.
    [204] He X.M., Carter D.C. Atomic structure and chemistry of human Serum albumin. Nature(Lond.),1992,358:209-215.
    [205] Sugio S., Kashima A., Mochizuki S., et al. Crystal structure of human serum albumin at2.52resolution. Protein Eng.,1999,12:439-446.
    [206] Ahmad B., Khan M.K.A., Haq S.K., et al. Intermediate formation at lower ureaconcentration in ‘B’ isom of human serum albumin: a case study using domain specicligands. Biochemical and Biophysical Research Communications,2004,314:166-173.
    [207] Rahaman, Habibur M. et al. Bio. Pharm. Bull.,1993,16(11):169.
    [208] Lhiaubet-Vallet V., Sarabia Z., Bosca F., et al. Human serum albumin-mediated stereodifferentiation in the triplet state behavior of (S)-and (R)-carprofen. J. Am. Chem. Soc.,2004,126(31):9538-9539.
    [209] Jimenez M.C., Miranda M.A., Vaya I. Triplet excited states as chiral reporters for thebinding of drugs to transport proteins. J. Am. Chem. Soc.,2005,127:10134-10135.
    [210]郭茂林,杨频,杨斌盛.金属茂类化合物抗癌活性及其作用机理的研究.化学通报,1995,3:1-4.
    [211]魏晓芳,刘会洲. Triton X-100与牛血清白蛋白的相互作用.分析化学,2000,28(6):699-701.
    [212]祝大昌,陈剑鋐,等.分子发光分析,上海:复旦大学出版社,1985,17.
    [213]陈国珍,黄贤智,郑朱梓,等.荧光分析法(第二版).北京:科学出版社,1990,502-506.
    [214] Jiang X.J., Huang J.D., Zhu Y.J., et al. Preparation and invitro photodynamic activities ofnovel axially substituted silicon (IV) phthalocyanines and their bovine serum albuminconjugates. Bioorganic and Medicinal Chemistry Letters,2006,16:2450-2453.
    [215] Zhu Y.J., Huang J.D., Jiang X.J. Novel silicon phthalocyanines axially modified bymorpholine: Synthesis, complexation with serum protein and in vitro photodynamic activity.Inorganic Chemistry communications,2006,9:473-477.
    [216] Filyasova A.I., KudelinaI A., Feofanov A.V. A spectroscopic study of the interaction oftetrasulfonated aluminum phthalocyanine with human serum albumin. Journal of MolecularStructure,2001,565-566:173-176.
    [217]刘丽珍.水溶性酞菁金属配合物的合成及其与牛血清白蛋白的相互作用:[硕士学位论文].福州:福建师范大学,2005.
    [218] Itoh T., Nakashima K., Tsuda Y., et al. Stereoselective binding of carbenicillin epimers tohuman serum albumin. Chirality,1996,8:201-206.
    [219] Mignot I., Presle N., Lapicque F., et al. Albumin binding sites for etodolac enantiomers.Chirality,1996,8:271-280.
    [220] González-Jiménez J., Moreno F., Garcia B.F., et al. J. Pharm. Pharmacol.,1995,47:436-441.
    [221] Zhao B.Z., Song L.M., Liu X., et al. Spectroscopic studies of the interaction betweenhypocrellin B and human serum albumin. Bioorganic&Medicinal Chemistry,2006,14:2428–2432.
    [222] Valduga G., Pifferi A., Taroni P., et al. Steady-state and time-resolved spectroscopic studieson low-density lipoprotein-bound Zn(II)-phthalocyanine. J. Photochem. Photobiol. B: Biol.,1999,49:198-203.
    [223]梁宏,宋仲容,周永洽,等.血清白蛋白的构象研究Ⅳ: pH诱导HSA构象变化的光谱研究.光谱学与光谱分析,1994,14(6):39-42.
    [224] Gantchev, Tsvetan G., Ouellet, et al. Binding interactions and conformational changesinduced by sulfonated aluminum phthalocyanines in human serum albumin. Archives ofBiochemistry and Biophysics,1999,366(1):21-30.
    [225] Tabata K., Fukushima K., Oda K., et al. Selective aggregation of zinc phthalocyanines in theskin. Journal of Porphyrins and phthalocyanines,2000,4:278-284.
    [226] Mishra P., Anindya D. Difference in the effect sofsurfactants and albumin on the extent ofdeaggregation of purpurin18, amodel of hydrophobic photosensitizer. BiophysicalChemistry,2006,121:224-233.
    [227] Ogunsipe A., Nyokong T. Photophysicochemical consequences of bovineserum albuminbinding to non-transition metal phthalocyanine sulfonates. Photochem. Photobiol. Sic.,2005,4:510-516.
    [228] Sharman W.M., Van L.J.E., Allen C M. Targeted photodynamic therapy via receptormediated delivery systems. Adv Drug Deliv Rev,2004,56:53-76.
    [229] Larroque C., Pelegrin A., Van L.J.E. Serum albumin as a vehicle for zinc phthalocyanine:photodynamic activities in solid tumor models. Br. J. Cancer,1996,74:1886-1890.
    [230] Reddi E., Zhou C., Biolo R., et al. Liposome-or LDL-administered Zn(Ⅱ)-phthalocyanineas a photodynamic agent for tumours. Br J Cancer,1990,61:407-411.
    [231]陈燕梅.酞菁与蛋白质的相互作用研究及其复合物的制备:[硕士学位论文].福州:福州大学,2005.
    [232] Chatterjee S., SrivastavaT S. Spectral investigations of the interaction of some porphyrinswith bovine serum albumin. Journal of Porphyrins and phthalocyanines,2000,4(2):147-157.
    [233] Chen Y.H., Miclea R., Srikrishnan T., et al. Investigation of human serum albumin(HSA)binding specicity of certain photosensitizers related to pyropheophorbide-a andbacteriopurpurinimide by circular dichroism spectroscopy and its correlation with invivophotosensitizing efficacy. Bioorganic&Medicinal Chemistry Letters,2005,15:3189-3192.
    [234] Wood P.J., Sansom J.M., Newell K., et al. Reduction of tumour intracellular pH andenhancement of melphalan cytotoxicity by the ionophore nigericin. Int. J. Cancer,1995,60:264-268.
    [235] Kubat P., Lang K., Cigler P., et al. Tetraphenylporphyrin-cobalt (III) bis (1,2-dicarbollide)conjugates: from the solution characteristics to inhibition of HIV protease. J. Phys. Chem. B,2007,111:4539-4546.
    [236] Liu W., Jensen T.J., Frank R., et al. Synthesis and cellular studies of nonaggregatedwater-soluble phthalocyanines. J. Med. Chem.,2005,48:1033-1041.
    [237] Datta A, Dube A., Jain B., et al. The effect of pH and surfactant on the aggregation behaviorof chlorinp6: a fluorescence spectroscopic study. Photochem. Photobiol.,2002,75:488-494.
    [238] Sharma M., Dube A., Bansal H., et al. Effect of pH on uptake and photodynamic action ofchlorin p6on human colon and breast adenocarcinoma celllines. Photochem. Photobiol. Sci.,2004,3:231-235.
    [239] Das K., Jain B., Dube A., et al. pH dependent binding of chlorin-p6with phosphatidylcholine liposomes. Chem. Phys. Lett.,2005,401:185-188.
    [240]李东辉,朱庆枝,陈秋影,等.四羧基铝酞菁作为新型pH红区荧光探针的研究.第十届全国有机分析学术研讨会论文集(下).1998,17-18.
    [241]李东辉,杨黄浩,郑洪,等.用四磺化铝酞菁直接测定血清中白蛋白.分析化学研究报告,1999,9:1018-1021.
    [242] Li Dong-hui, Yang Huang-hao, Zhen Hong, et al. Fluorimetric determination of albumin andglobulinin human serum using tetra-substituted sulphonated aluminum phthalocyanine.Analytica Chimica Acta,1999,401:185-189.
    [243][澳大利亚]佩林等著,时雨译.实验室化学药品的提纯方法.北京:化学工业出版社,1987.02.
    [244] Ng A.C.H., Li X.Y., Ng D.K.P. Synthesis and photophysical properties of nonaggregatedphthalocyanines bearing dendritic substituents. Macromolecules,1999,32:5292-5298.
    [245]刘丰冉.功能取代酞菁配合物的合成表征与性质研究:[硕士论文].福州:福州大学,2005.
    [246]柯美荣.四取代及单取代酞菁锌配合物的合成、表征与性质研究:[硕士论文].福州:福州大学,2007.
    [247]温进坤,韩梅.医学分子生物学:理论与研究技术.北京:科学出版社,1999,219.
    [248] Wei Jia, Huang Jun-lian. Synthesis of an Amphiphilic Star Triblock Copolymer ofPolystyrene, Poly(ethylene oxide), and Polyisoprene Using Lysine as Core Molecule.Macromolecules,2005,38:1107-1113.
    [249]卢希勤,施海燕,王鸣华.甲氰菊酯人工抗原的合成和鉴定,免疫学杂志,2009,25(3):346-348.
    [250] Furukawa K., Katsumi T., Shibuya H. Photodynamic therapy using a diode laser withmono-L-aspartyl chlorin e6(NPe6). Proceedings of SPIE,1996,2675:222-227.
    [251]宁永成.有机化合物结构鉴定与有机波谱学(第二版).北京:科学出版社,2000.01
    [252]刘涛,张贵锋,周卫斌,等.凝胶过滤色谱-多角度激光散射法测定琥珀酰明胶自由氨基修饰度.分析化学,2007,35(1):43-48
    [253]毛文学,苏勇,唐经武.胶束电动色谱法测定蛋白质表面自由氨基.有机化学.2006,26(5):707-710.
    [254] LI Xi-you, HE Xu, Ng A.C.H., et al. Influence of Surfactants on the Aggregation Behaviorof Water-Soluble Dendritic Phthalocyanines. Macromolecules,2000,33:2119-2123.
    [255] Liu W., Jensen T.J., Fronczek F.R. et al. Synthesis and Cellular Studies of NonaggregatedWater-Soluble Phthalocyanines. J. Med. Chem.,2005,48:1033-1041.
    [256] Jori G. Far-red absorbing photosensitizers: their use in the photodynamic therapy of tumors.J. Photochem. Photobiol. A,1992,62:371-378.
    [257] Ng D.K.P. Dendritic phthalocyanines: synthesis, photophysical properties, and aggregationbehavior. C. R. Chimie,2003,6:903-910.
    [258]黄剑东,刘尔生,杨素苓,等.抗癌光敏剂ZnPcSP在溶液中的存在状态及其对活性的影响.高等学校化学学报.2002,23(12):2287-2291.
    [259]黄剑东,刘尔生,杨素苓,等.某些金属酞菁配合物的单体电子吸收光谱和荧光光谱.光谱学与光谱分析,2000,20(1):95-98.
    [260] Nyokong T. Effects of substituents on the photochemical and photophysical properties ofmain group metal phthalocyanines. Coordination Chemistry Reviews,2007,251:1707-1722
    [261] Jori G. Far-red-absorbing photosensitizers: their use in the photodynamic therapy of tumours.J. Photochem. Photobiol. A: Chemistry,1992,62:371-378.
    [262] Alarcón E., Edwards A.M., Garcia A.M., et al. Photophysics and photochemstry of zincphthalocyanine/bovine serum albumin adducts. Photochem. Photobiol. Sci.,2009,8(2):255-263.
    [263] Filyasova A.I., Kudelina I.A., Feofanov A.V. Spectroscopic study of the interaction oftetrasulfonated aluminum phthalocyanine with human serum albumin. J. Mol. Struct.,2001,565-566:173-176.
    [264] Ogunsipe Abimbola, Nyokong Tebello. Photophysicochemical consequences of bovineserum albumin binding to non-transition metal phthalocyanine sulfonates. Photochem.Photobiol. Sci.,2005,4,510-516.
    [265] LIU Yuan, XIE Meng-xia, Jiang Min, et al. Spectroscopic investigation of the interactionbetween human serum albumin and three organic acids. Spectrochimica Acta Part A,2005,61(9):2245-2251.
    [266] Zunszain P.A., Ghuman J., Komatsu T., et al. Crystal structural analysis of human serumalbumin complexed with hemin and fatty acid. BMC Struct. Biol.2003,7(3):6-14.
    [267] Detty M.R., Gibson S.L., Wagner S.J. Current Clinical and Preclinical Photosensitizers forUse in Photodynamic Therapy. J. Med. Chem.,2004,47(16):3897-3915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700