中国东部陆架海区溴甲烷和氯甲烷的浓度分布和海—气通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴甲烷和氯甲烷是大气中重要的痕量温室气体,对全球变暖和大气化学具有重要作用。海洋在溴甲烷和氯甲烷的生物地球化学循环中具有复杂的作用,海洋即是大气溴甲烷和氯甲烷的源,也是其汇,其中近岸海湾和陆架海域可能是大气中溴甲烷和氯甲烷的源区,虽然其面积只占到整个海洋面积的一小部分,但对温室气体释放的贡献较大。因此对这些海洋环境中溴甲烷和氯甲烷溶解的状态进行研究,对在全球尺度上准确地估算海洋对大气溴甲烷和氯甲烷的贡献和对未来气候的影响具有重要意义。
     本文以中国近海有代表性的陆架区—东海和黄海以及受人类活动影响较大的海湾—胶州湾为研究目标,对这些海域海水中溶解的溴甲烷和氯甲烷的浓度分布特征、饱和状态和海-气通量的时空变化进行了较为系统的研究,为估算中国海域对大气中溴甲烷和氯甲烷的区域性贡献提供了科学依据,同时为全球海洋溴甲烷和氯甲烷的数据库提供了大量的近海现场调查数据。本论文的主要研究成果如下:
     1.分别于2009年4-5月和2007年11月对东海、2008年8月对长江口附近海域海水中溶解的溴甲烷和氯甲烷进行了研究,结果表明:春季东海表层海水中溴甲烷和氯甲烷的平均浓度分别为4.75±0.83和85.7±18.8 pmol/L;秋季分别为2.74±1.49和83.5±11.8 pmol/L;夏季长江口附近海域分别为7.76±1.21和86.1±34.6 pmol/L,相应的春季和秋季长江口附近海域分别为5.24±0.59、90.6±12.8和2.82±1.13、87.3±8.7 pmol/L。因此东海水体中溶解的溴甲烷呈现明显的季节变化,总体上是夏季高于春季高于秋季;氯甲烷浓度尽管有季节差异,但变化幅度较小。春季和秋季表层海水中的溴甲烷和氯甲烷浓度自近岸向远海呈逐渐降低的趋势,在闽浙沿岸和长江口外呈现出明显的高浓度区,在陆架的东部出现了溴甲烷和氯甲烷浓度分别小于2.0-4.0和80.0 pmol/L的低值区,表明东、黄海海水中溴甲烷和氯甲烷的水平分布主要受到了近岸入海径流如长江冲淡水和闽浙沿岸流以及外海黑潮水的影响。春、秋季航次中对东海不同断面和黑潮水域不同站位水体中溴甲烷和氯甲烷浓度的垂直分布进行了研究,结果表明受长江冲淡水、台湾暖流和黑潮等水团以及光照和生物活动的共同影响,在不同断面和不同站位垂直分布存在一定的差异,但总体上垂向最大浓度均位于0-75m混合层内。春季东海表层海水中溴甲烷和氯甲烷的饱和异常值分别为248.3±56.6%和27.9±25.9%;夏季长江口附近海域分别为659.4±127.2%和91.2±62.4%;秋季东海分别为122.3±106.4%和42.6±16.3%。因此溴甲烷和氯甲烷的饱和异常值也有明显的季节性变化,且三个季节调查的东海海域溴甲烷和氯甲烷均处于过饱和状态,表明东、黄海在调查期间是大气溴甲烷和氯甲烷的源。根据现场风速和表层海水中溴甲烷和氯甲烷的浓度,利用Wanninkhof (1992)公式(W92)分别计算了上述调查海区中溴甲烷和氯甲烷的海-气通量,结果表明:春季溴甲烷和氯甲烷的平均海-气通量分别为59.4±50.5和286.0±324.2nmolm-2d-1;夏季分别为0.6±0.4和3.7±3.4 nmol m-2d-1;秋季分别为31.0±38.0和463.0±385.8nmolm-2d-1。因此可以看出二者的海-气通量也具有一定的季节变化,但由于受到风速的强烈影响,通量的变化趋势与浓度不完全一致,夏季由于受到低风速的影响通量最小
     2.分别于2008年7、8月、2009年3、5月和2007年11月对南黄海西部海水中溶解的溴甲烷和氯甲烷进行了研究,结果表明:南黄海西部上述5次调查(按顺序)溴甲烷的平均浓度分别为11.85±5.51、5.79±2.18、4.24±1.26、5.86±1.07和3.93±1.30 pmol/L;氯甲烷的平均浓度分别为240.9±104.1、135.0±50.1、81.6±31.8、86.1±22.1和104.5±23.2 pmol/L。因此南黄海西部表层海水中溴甲烷和氯甲烷的浓度呈现明显的季节变化,溴甲烷的浓度总体上呈现出夏季高于春季高于秋季;氯甲烷浓度夏季高于秋季高于春季。受到人类活动和生物及海洋物理状况的共同作用,黄海西部表层海水中溴甲烷和氯甲烷浓度的水平分布没有一致的规律性,但2008年夏季浒苔的生消明显影响了水体中溴甲烷和氯甲烷的浓度及其分布。秋季对35°N断面进行了溴甲烷和氯甲烷垂直分布的研究,结果表明由于受到各种人类活动、生物活动和南黄海冷水团的共同影响,二者的垂向最高浓度出现在0-30 m层。南黄海西部上述5次调查中溴甲烷的平均饱和异常值分别为940.4±496.0%、432.4±205.3%、98.6±52.1%、257.3±76.4%和163.4±75.6%;氯甲烷分别为352.4±189.8%、169.4±100.0%、-19.7±28.9%、7.2±25.8%和48.2±29.5%。因此二者的饱和异常值也表现出明显的季节变化,且溴甲烷在各次调查中均呈过饱和状态,表明在上述调查期间南黄海西部是大气溴甲烷的源;氯甲烷在2009年3月初春之际,总体上是处于不饱和状态,表明该次调查期间南黄海西部是大气氯甲烷的汇,其它调查期间是源。根据现场风速和表层海水中溴甲烷和氯甲烷的浓度,利用W92公式分别计算了上述调查中南黄海西部溴甲烷和氯甲烷的海-气通量,结果表明:南黄海西部上述5次调查中溴甲烷的平均海-气通量分别为108.9±82.1、0.4±0.4、35.1±29.2、77.1±109.7和29.2±31.2 nmolm-2d-1;氯甲烷的平均海-气通量分别为1738.1±1002.7、6.6±7.3、-272.5±506.2、104.0±311.1和307.9±245.3 nmolm-2d-1。可见在南黄海西部水域二者的平均海-气通量也有明显的季节变化,受到夏季现场调查较低风速的影响,2008年8月的通量值明显减小
     3.分别于2009年5月和2007年10月对山东半岛北部附近海域和北黄海海水中溶解的溴甲烷和氯甲烷进行了研究,结果表明:春季溴甲烷和氯甲烷的平均浓度分别为5.06±0.57和92.2±6.92 pmol/L;秋季分别为6.22±3.21和83.6±19.0 pmol/L,因此所调查的北黄海海域表层海水中溴甲烷和氯甲烷的浓度也呈现一定的季节变化,但其变化幅度不大。春季山东半岛北部附近海域溴甲烷和氯甲烷的饱和异常值分别为172.7±36.9%和4.4±10.1%;秋季北黄海分别为344.5±227.0%和27.7±28.8%,表明二者的饱和异常值也有季节变化,且在调查期间北黄海是大气溴甲烷和氯甲烷的源。根据现场风速和表层海水中溴甲烷和氯甲烷的浓度,利用W92公式分别计算了春、秋季所调查的北黄海海域溴甲烷和氯甲烷的海-气通量,结果表明:春季山东半岛北部附近海域溴甲烷和氯甲烷的平均海-气通量分别为56.4±24.5和35.0±207.6nmolm-2d-1;秋季北黄海分别为66.8±86.9和231.6±356.7nmolm-2d-1,总体上秋季通量大于春季。
     4.分别于2007年6、8月、2008年1月对胶州湾和2007年10月、2008年11月对胶州湾邻近海域海水中溶解的溴甲烷和氯甲烷进行了研究,结果表明:胶州湾上述3次调查(按顺序)溴甲烷的平均浓度分别为10.99±4.38、11.87±5.74和6.22±1.95pmol/L;氯甲烷的平均浓度分别为249.6±60.8、382.9±145.4和145.5±43.0pmol/L;其邻近海域2次秋季调查溴甲烷浓度分别为5.86±1.07、4.16±1.40pmol/L,氯甲烷浓度分别为151.6±24.8、144.4±48.6pmol/L。因此胶州湾及其邻近海域海水中溴甲烷和氯甲烷的浓度呈现出夏季高于春、秋季高于冬季的季节变化。受到人类活动、生物活动及海湾内外水交换的共同作用,胶州湾表层海水中溴甲烷和氯甲烷浓度的水平分布总体表现为东高西低,北高南低,湾内高湾外低的趋势。上述各次调查(按顺序)胶州湾及其邻近海域溴甲烷的饱和异常值分别为707.1±322.1%、949.7±460.0%、140.8±72.0%、449.1±107.2%和170.9±88.5%;氯甲烷饱和异常值分别为290.4±95.1%、668.3±296.9%、31.7±40.7%、169.7±42.6%和94.2±63.7%,因此胶州湾及邻近海域表层海水中溴甲烷和氯甲烷的饱和异常值具有明显的季节变化,其变化趋势与浓度一致,各次调查的饱和异常值数据表明胶州湾在各调查期间是大气溴甲烷和氯甲烷的源。根据胶州湾长期风速和表层海水中溴甲烷和氯甲烷的浓度,利用W92公式分别计算了上述调查中胶州湾及其邻近海域的溴甲烷和氯甲烷的海-气通量,结果表明:上述各次调查中胶州湾及其邻近海域溴甲烷的平均海-气通量分别为73.0±33.2、84.14±40.6、26.84±14.4、55.34±13.3和27.44±14.3nmol m-2 d-1;氯甲烷平均通量分别为1253.54±410.7、2312.84±1022.4、225.5±291.5、864.5±218.1和659.8±447.5 nmol-2d-1。由此可以看出,溴甲烷和氯甲烷的海-气通量具有一定的季节变化,且与二者浓度的季节变化趋势一致。其中胶州湾氯甲烷的海-气通量由于受其较高浓度的影响,通量普遍高于东、黄海。
     5.根据所调查海域的面积及其平均海-气通量,东、黄海面积约占全球海洋的0.3%,初步估算出东、黄海年释放溴甲烷和氯甲烷分别约为2.0和8.1 Gg,约占全球海洋释放量的3%和1%。当然由于各种不确定因素的存在,该释放量与实际释放量之间可能存在一定的误差。我们的研究表明,陆架海区,尤其是中低纬度陆架海域,虽然只占全球海洋的一小部分,但对全球海洋释放溴甲烷和氯甲烷的贡献不容忽视。
Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are important atmospheric trace gases, which play significant roles in the global warming and atmospheric chemistry. The ocean plays important and complex roles in the global biogeochemical cycles of these methyl halides. Coastal regions such as continental shelves, estuaries and bays appear to be the sources of atmospheric CH3Br and CH3Cl and responsible for a large part of the oceanic emission of CH3Br and CH3Cl, though their areas only occupy a small part of the world ocean. Therefore, studies on the occurrence of CH3Br and CH3Cl in coastal waters will be helpful to estimate the contribution of oceanic emission to the atmospheric CH3Br and CH3Cl on the global scale, and to predict the influence of oceanic to the global climate, especially in middle-low latitude.
     In the present dissertation, distributions, saturation anomalies, sea-air fluxes of CH3Br and CH3Cl in the coastal waters of China, i.e. the East China Sea (ECS) and the Yellow Sea (YS), and the Jiaozhou Bay, are studied systematically. The main research works are as follows:
     1. Distributions, saturation anomalies, sea-air fluxes of CH3Br and CH3Cl are determined in the ECS during Apr-May,2009 and Oct-Nov,2007 and in the waters adjacent to the Yangtze Estuary during Aug,2008. The results show that the average concentrations of CH3Br and CH3Cl in the surface waters of the ECS are 4.75±0.83 and 85.7±18.8 pmol/L in spring; those are 2.74±1.49 and 83.5±11.8 pmol/L in autumn, respectively. In the waters off the Yangtze River Estuary, those are 5.24±0.59 and 90.6±12.8 pmol/L in spring,7.76±1.21 and 86.1±34.6 pmol/L in summer,2.82±1.13 and 87.3±8.7 pmol/L in autumn, respectively. In general, average concentrations of CH3Br in the surface waters in the ECS show obvious seasonal variations, with those in summer higher than those in spring and higher than those in autumn, while seasonal variations of CH3Cl are not distinct. The horizontal distributions of CH3Br and CH3Cl in the ECS are obviously influenced by the Yangtze River and the Kuroshio waters in spring and autumn, illustrating a decreasing trend from inshore to offshore sites, without being strongly biased by temporal change. The vertical distributions along different transects and at different stations of CH3Br and CH3Cl in the ECS are studied. The results show that the distributions are influenced by the coastal currents, the Taiwan Warm Current and the Kuroshio. The vertical profiles of the two gases differed among stations, with maxima generally appearing in the mixed layer (0-75 m). The surface waters of the ECS in spring, summer and autumn are generally supersaturated for CH3Br and CH3Cl and the saturation anomalies (SA) of CH3Br are 248.3±56.6%,659.4±127.2% and 122.3±106.4%; those of CH3Cl are 27.9±25.9%,91.2±62.4% and 42.6±16.3%, respectively, indicating that the ECS is a net source for the atmospheric CH3Br and CH3Cl in the investigated time. Based on in situ wind speeds and the surface concentrations, Wanninkhof relationship (W92) is employed to estimate the sea-to-air fluxes of CH3Br and CH3Cl. The results show that average CH3Br fluxes in spring, summer and autumn are 59.4±50.5,0.6±0.4 and 31.0±38.0 nmol m-2 d-1; those of CH3Cl are 286.0±324.2,3.7±3.4 and 463.0±385.8 nmol m-2 d-1, respectively. Therefore, the and CH3Cl fluxes display obvious seasonal variations, which are not agreement with the concentration variations, with the lowest in summer due to lower wind speeds.
     2. Distributions and fluxes of CH3Br and CH3Cl are determined during 5 surveys on the western part of the Southern Yellow Sea (WPSYS) in Jul, Aug,2008, Mar, May,2009 and Nov,2007. The surface CH3Br and CH3Cl concentrations show apparently seasonal variations, with the highest observed in summer and the lowest in autumn (CH3Br) or early spring (CH3Cl). The average concentrations of CH3Br in the surface waters of 5 surveys above are 11.85±5.51,5.79±2.18, 4.24±1.26,5.86±1.07 and 3.93±1.30 pmol/L; those of CH3C1 are 243.9±104.1, 135.0±50.1,81.6±31.8,86.1±22.1 and 104.5±23.2 pmol/L, respectively. The two gases show different distributions in the WPSYS of 5 surveys, and the bloom of Enteromorpha Prolifera affects strongly the distributions of CH3Br and CH3Cl in Jul,2008. Results of the vertical profiles of CH3Br and CH3Cl at 35°N transect in the Southern Yellow Sea (SYS) show that the distribution are influenced by SYS Cool Water and anthropogenic activity, with maxima generally appearing in the mixed layer (0-30 m). The CH3Br SA of 5 surveys are 940.4±496.0,432.4±205.3, 98.6±52.1,257.3±76.4 and 163.4±75.6%; those of CH3Cl are 352.4±189.8, 169.4±100.0,-19.7±28.9,7.2±25.8 and 48.2±29.5%, respectively. Therefore, the SA of CH3Br and CH3Cl show obvious seasonal variations, which are similar to the concentrations. The SYS are supersaturated for CH3Br in 5 surveys and also for CH3Cl except for the survey on Mar,2009, indicating that the WPSYS is a net source of atmospheric CH3Br during the studied time and of CH3Cl except for Mar,2009. Study on the flux in the WPSYS demonstrates that there exists the seasonal cycle of the fluxes of CH3Br and CH3Cl. The fluxes of CH3Br of 5 surveys in the WPSYS are 108.9±82.1,0.4±0.4,35.1±29.2,77.1±109.7 and 29.2±31.2 nmol m-2 d-1; those of CH3Cl are 1738.1±1002,6.6±7.3,-272.5±506.2, 104.0±311.1 and 307.9±245.3 nmol m-2 d-1, respectively. The fluxes in summer are lowest due to lower wind speeds, similar to the ECS.
     3. Distributions and fluxes of CH3Br and CH3Cl are determined in the Northern Yellow Sea (NYS) in May,2009 and Oct,2007. The results show that the average concentrations of CH3Br and CH3Cl in the surface waters are 5.06±0.57 and 92.2±6.92 pmol/L in spring; those are 6.22±3.21 and 83.6±19.0 pmol/L in autumn, respectively. Therefore, the CH3Br and CH3Cl concentrations in the NYS also varied with the season, but the range of variation are not large. The saturation anomalies of CH3Br and CH3Cl are 172.7±36.9% and 4.4±10.1% in spring; those are 344.5±227.0% and 27.7±28.8% in autumn, respectively. Therefore, the seasonal variations of the SA are observed in the NYS for the two gases, with the SA in autumn higher than those in spring. The NYS are supersaturated for the two gases, indicating that the NYS is a net source of atmospheric CH3Br and CH3Cl during the investigated time. The fluxes of CH3Br and CH3Cl in the NYS are 56.4±24.5,35.0±207.6 nmol m-2 d-1 in spring and 66.8±86.9,231.6±356.7 nmol m-2 d-1 in autumn, respectively.
     4. Distributions and fluxes of CH3Br and CH3Cl are determined during 3 surveys on the Jiaozhou Bay in Jun, Aug,2007, Jan,2008 and its adjacent areas in Oct,2007 and Nov,2008. The surface CH3Br and CH3Cl concentrations in the Jiaozhou Bay show apparently seasonal variations, with the concentrations in summer higher than those in spring and the lowest in winter. The average concentrations of CH3Br in the surface waters of 3 surveys above are 10.99±4.38,11.87±5.74 and 6.22±1.95 pmol/L; those of CH3Cl are 249.6±60.8,382.9±145.4 and 145.5±43.0 pmol/L, respectively. The average concentrations of CH3Br in the waters adjacent to the Bay are 5.86±1.07 pmol/L in Oct,2007 and 4.16±1.40 pmol/L in Nov,2008; those of CH3Cl are 151.6±24.8 and 144.4±48.6 pmol/L, respectively. The two gases show similar distributions in the Jiaozhou Bay and display a decrease from the eastern to western coast, from the northern to southern part of the Bay, influenced strongly by the input of the polluted river waters and the sewage waters along the eastern coast. The CH3Br SA of 5 surveys in the Bay and its adjacent areas are 707.1±322.1%,949.7±460.0%,140.8±72.0%,449.1±107.2% and 170.9±88.5%; those of CH3C1 are 290.4±95.1%,668.3±296.9%,31.7±40.7%, 169.7±42.6% and 94.2±63.7%, respectively. Therefore, the Jiaozhou Bay is supersaturated and is a net source for atmospheric CH3Br and CH3Cl. Based on long-term wind speeds and the surface concentrations, Wanninkhof relationship (W92) is employed to calculate the sea-to-air fluxes of CH3Br and CH3Cl in the Jiaozhou Bay. The results show that average CH3Br fluxes of 5 surveys are 73.0±33.2,84.1±40.6,26.8±14.4,55.3±13.3 and 27.4±14.3 nmol m-2 d-1; those of CH3Cl are 1253.5±410.7,2312.8±1022.4,225.5±291.5,864.5±218.1 and 659.8±447.5 nmol m-2 d-1, respectively. Therefore, sea-to-air fluxes of CH3Br and CH3Cl in the Jiaozhou Bay show obvious seasonal variations, with the highest occurring in summer and the lowest in winter, which are agreement with the concentration variations.
     5. Based on the investigated area and the average fluxes of CH3Br and CH3Cl, the annual CH3Br and CH3C1 emission from the ECS and the Yellow Sea (YS) are estimated to be 2.0 and 8.1 Gg/a. Although the ECS and YS occupies only 0.3% of the total ocean in area, the contributions of the ECS and YS to the net global sea-to-air CH3Br and CH3Cl fluxes are estimated to be about 3% and 1%, which means that shelf waters contribute significant amount to the total oceanic CH3Br and CH3Cl fluxes compared with open waters, especially in middle-low latitude shelf waters.
引文
[1]Abrahamsson K, Klick S. Determination of biogenic and anthropogenic volatile halocarbons in sea water by liquid-liquid extraction and capillary gas chromatography. Journal of Chromatography,1990,513:39-45
    [2]Abrahamsson K, Ekdahl A. Gas chromatographic determination of halogenated organic compounds in water and sediment in the Skagerrak. Journal of Chromatography,1993, 643:239-248
    [3]Abrahamsson K, Ekdahl A, Collen J, et al. Marine algae-a source of trichloroethylene and perchloroethylene. Limnology and Oceanography,1995,40(7):1321-1326
    [4]Abrahamsson K, Lorena A, Wulffb A, Wangberg S. Air-sea exchange of halocarbons:the influence of diurnal and regional variations and distribution of pigments. Deep-Sea Research Ⅱ,2004,51:2789-2805
    [5]Allonier A S, Khalanski M, Bermond A, Camel V. Determination of trihalomethanes in chlorinated sea water samples using a purge-and-trap system coupled to gas chromatography. Talanta,2000,51:467-477
    [6]Anderson J G Brune W H, Lloyd S A, et al. Kinetics of 03 Destruction by CIO and BrO within the Antarctic Vortex:An Analysis Based on in situ ER-2 Data. Journal of Geophysical Research,1989,94:11480-11520
    [7]Anbar A D, Yung Y L, Chavez F P. Methyl bromide:ocean sources, ocean sinks, and climate sensitivity. Global Biogeochemical Cycles,1996,10:175-190
    [8]Atalas E, Pollock W, Greenberg J, et al. Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during SAGA 3. Journal of Geophysical Research,1993,98:16933-16947
    [9]Baker J M, Reeves C E, Nightingale P D, Penkett S A, Gibbs S W, Hatton A D. Biological production of methyl bromide in the coastal waters of the North Sea and open ocean of the northeast Atlantic. Marine Chemistry,1999,64:267-285
    [10]Baker J M, Sturges W T, Sugier J, et al. Emisssion of CH3Br, organoiodines from temperate macroalgae. Chemosphere-Global Change Science 3,2001,93-106
    [11]Ballschmiter K. Pattern and sources of naturally produced organohalogens in the marine environment:biogenic formation of organohalogens. Chemosphere,2003,52:313-324
    [12]Barletta B. Meinardi S, Simpson I J, Rowland F S, Chan C-Y, Wang X, Zou S, Chan L Y, Blake D R. Ambient halocarbon mixing ratios in 45 Chinese cities. Atmospheric Environment,2006,40:7706-7719
    [13]Baykut G, Voigt A. Spray Extraction of Volatile Organic Compounds from Aqueous Systems into the Gas Phase for Gas Chromatography/Mass Spectrometry. Analytical chemistry,1992,64(6):677-681
    [14]Bell N, Hsu L, Jacob D J, et al. Methyl iodide:Atmospheric budget and use as a tracer of marine convection in global models. Journal of Geophysical Research,2002,107(D17):4303, doi:10.1029/2001 JD001151
    [15]Biziuk M, Przyjazny A. Methods of isolation and determination of volatile organohalogen compounds in natural and treated waters. Journal of Chromatography A,1996,733:417-448
    [16]Butler J H. The potential role of the ocean in regulating atmospheric CH3Br. Geophysical Research Letters,1994,21(3):185-188
    [17]Butler J H, Battle M, Bender M L, et al. A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature,1999,399:749-755
    [18]Butler J H. Better budgets for methyl halides? Nature,2000,403:260-261
    [19]Butler J.H., Rodriguez J.M. Methyl bromide in the atmosphere[A]. The Methyl Bromide Issue[C]. John Wiley Sons Ltd,1996:27-90
    [20]Campillo N, Vinas P, Lopez-Garc'ia I, Aguinaga N, Hernandez-Cordoba M. Purge-and-trap capillary gas chromatography with atomic emission detection for volatile halogenated organic compounds determination in waters and beverages. Journal of Chromatography A, 1997,1035:1-8
    [21]Cantoni, G L, Anderson D G. Enzymic cleavage of dimethylpropiothetin by Polysiphonia lansoa. J. Biol. Chem.1956,222:171-177
    [22]Chan L Y, Chu K W. Halocarbons in the atmosphere of the industrial-related Pearl River Delta region of China. Journal of Geophysical Research,2007,112 (D04305), doi:10.1029 /2006JD 007097.
    [23]Chan C Y, Tang J H, Li Y S, Chan L Y. Mixing ratios and sources of halocarbons in urban, semi-urban and rural sites of the Pearl River Delta, South China. Atmospheric Environment, 2006,40:7331-7345
    [24]Christof O, Seifert R, Michells W. Volatile halogenated organic compounds in European estuaries. Biogeochmistry,2002,59:143-160
    [25]Chuck A L, Turner S M, Liss P S. Ocean distributions and air-sea fluxes of biogenic halocarbons in the open ocean. Journal of Geophysical Research,2005,110, C10022. doi: 10.1029/2004JC002741
    [26]Class T, Ballschmiter K. Evidence of natural marine sources for chloroform in regions of high primary production. Fresenius Zeitschrift fur Analytische Chemie,1987a,327:40-41
    [27]Class T, Ballschmiter K. Chemistry of organic traces in air Ⅸ*:evidence of natural marine sources for chloroform in regions of high primary production. Fresenius Z Anal Chem, 1987b,327:39-41
    [28]Dacey J W H, Blough N V. Hydroxide decomposition of DMSP to form DMS. Geophysical Research Letters,1987,14:1246-1249
    [29]Dawes V J, Waldock M J, Measurement of volatile organic compounds at UK national monitoring plan stations. Marine Pollution Bulletin,1994,28:291-298
    [30]De Bruyn W J, Saltzman E S. Diffusivity of methyl bromide in water. Marine Chemistry, 1997a,57:55-59
    [31]De Bruyn W J, Saltzman E S. The solubility of methyl bromide in pure water.35‰ sodium chloride and seawater. Marine Chemistry,1997b,56:51-57
    [32]Dewulf J, Huybrechts T, Langenhove H V. Developments in the analysis of volatile halogenated compounds. Trends in Analytical Chemistry,2006,25(4):300-309
    [33]Ekdahl, A, Pedersen, M, Abrahamsson, K. A study of the diurnal variation of biogenic volatile halocarbons. Marine Chemistry,1998,63:1-3
    [34]Ekdahl A, Abrahamsson K. A simple and sensitive method for the determination of volatile halogenated organic compounds in sea water in amol·L-1 to pmol·L-1range. Analytica Chimica Acta 1997,357:197-209
    [35]Ekdahl A. On the origin and assessment of biogenic halocarbons. Ph.D. thesis, Goteborg University, Goteborg.1997
    [36]Elliott S, Rowland F S. Nucleophilic substitution rates and solubilities for methyl halides in seawater. Geophysical Research Letters,1993,20(11):1043-104
    [37]Erickson D J. A stability dependant theory for air-sea gas exchange. Journal of Geophysical Research,1993,98:8471-8488
    [38]Fogelqvist E, Tanhua T, Basturk O, et al. The distribution of man-made and naturally produced halocarbons in a double layer flow strait system. Continental Shelf Research,1996, 9:1185-1199
    [39]Fogelqvist E, Krysell M. The anthropogenic and biogenic origin of low molecular weight halocarbons in a polluted fjord, the Idefjorden. Marine Pollutution Bulletin,1986,17: 379-382
    [40]Giese B, Laturnus F, Adams F, et al. Release of volatile Iodinated C1-C4 Hydrocarbons by marine macroalgae from various climate zones. Environ Sci. Technol.,1999,33:2432-2439
    [41]Giannakou I O, Anastasiadis I. Evaluation of chemical strategies as alternatives to methyl bromide for the control of root-knot nematodes in greenhouse cultivated crops. Crop Protection,2005,24(6):499-506
    [42]Gribble G W. Natural Organohalogens, Euro Chlor Science Dossier,2004
    [43]Groszko W, Moore R M. Ocean-atmosphere exchange of methyl bromide:NW Atlantic and Pacific Ocean studies. Journal of Geophysical Research,1998,103 (D13):16737-16741
    [44]Gschwend P M, Macfarlane J K, Newman K A. Volatile halogenated organic compounds released to sea water from temperate marine macroalgae. Science,1985,227:1033-1036
    [45]Gossett J M. Measurement of Henry's law constants for C1 and C2 chlorinated hrdryocarbons. Environ. Sci. Technol.,1987,21:202-208
    [46]Guo H, Lee S C, Louie P K K, Ho K F. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong. Chemosphere,2004,57:1363-1372
    [47]Happell J D, Wallace Douglas W R. Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean:vidence for photochemical production. Geophysical research letters. 1996,23(16):2105-2108
    [48]Hashimoto S, Toda S, Suzuki K, Kato S, Narita Y, Kurihara M K, Akatsuka Y, Oda H, Nagai T, Nagao I, Kudo I, Uematsu M. Production and air-sea flux of halomethanes in the western subarctic Pacific in relation to phytoplankton pigment concentrations during the iron fertilization experiment (SEEDS Ⅱ). Deep-Sea Research II,2009,56(26):2928-2935
    [49]Hu L, Yvon-Lewis S A, Liu Y. Salisbury J E, O'Hern J E. Coastal emissions of methyl bromide and methyl chloride along the eastern Gulf of Mexico and the east coast of the United States, Global Biogeochem. Cycles,2010,24, GB1007. doi:10.1029/2009GB003514
    [50]Hu Z, Moore R M.1996. Kinetics of methyl halide production by reaction of DMSP with halide ion. Marine Chemistry,52:147-155
    [51]Hur H B. Jacobs G A, Teague W J. Monthly variation of water masses in the Yellow and East China Sea, Journal of Oceanography,1999,55:171-184
    [52]Huybrechts T, Dewulf J, Moerman O, Langenhove H V. Evaluation of purge-and-trap-high-resolution gas chromatography-mass spectrometry for the determination of 27 volatile organic compounds in marine water at the ngl-1 concentration level. Journal of Chromatography A,2000,893:367-382
    [53]Itoh N, Tsujita M. Ando T, et al. Formation and emission of monohalomethanes from marine algae. Phytochemistry,1997,45(1):67-73
    [54]Itoh and Shinya,1994. Seasonal evonlution of bromomethanes from coralline algae (corallinaceae) and its effect on atmospheric ozone, Marine Chemistry,45:95-103
    [55]Jeffers, P.M., Wolfe. N.L.,1996. On the degradation of methyl bromide in sea water. Geophysical Research Letters,23(14):1773-1776
    [56]Jo D, Herman V L. Anthropogenic volatile organic compounds in ambient air and natural waters:a review on recent developments of analytical methodology, performance and interpreeation of field measurements. Journal of Chromatography A,1999,843:163-177
    [57]Keller M D. Dimethylsulfide production and marine phytoplankton:the importance of species composition and cell size. Biol. Oceanogr,1988,6:375-382
    [58]Keller M D. Bellows W K. Guillard RL.1989. Dimethylsulfide production by marine phytoplankton. In:Saltzman E S. Cooper W J., Eds., Biogenic Sulphur in the Enviroment. American Chemical Society, Washington
    [59]Kettle A J, Andreae M O. Flux of dimethylsulfide from the oceans:A comparison of updated data sets and flux models. Journal of Geophysical Research,2000,105:26793-26808
    [60]Kiene R P, Linn L J, Bruton J A. New and important roles for DMSP in marine microbial communities. Journal of Sea Research,2000,43:209-224
    [61]Kiene R P, Linn L J. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnology and Oceanography.2000.45:849-861
    [62]Khalil M A K, Rasmussen R A. Gunawardena R. Atmospheric methyl bromide:Trends and global mass balance. Journal of Geophysical Research,1993,98(D2):2887-2896
    [63]Khalil M A K, Rasmussen R A. Atmospheric methyl chloride. Atmosphere Environment, 1999,33:1305-1321
    [64]Khalil M A K, Moore R M. Happer D B. et al. Natural emissions of chlorine-containing gases:Reactive Chlorine Emissions Inventory. Journal of Geophysical Research,1999,104 (D7):8333-8346
    [65]King D B, Butler J H, Montzka S A, Elkins J W. Implications of methyl bromide supersaturations in the temperate North Atlantic Ocean, seawater:Chemical and biological rates. Journal of Geophysical Research,2000,105(D 15):19763-19769
    [66]King D B, Saltzman E S. Removal of methyl bromide in coastal seawater:Chemical and biological rates. Journal of Geophysical Research,1997,102(8):18715-18721
    [67]Kolb B, Auer M, Pospisil P. Methods for the quantitative analysis of volatile halocarbons from aqueous samples by equilibrium headspace gas chromatography with capillary columns. Journal of Chromatography,1983,279:341-348
    [68]Krysell M, Nightingale P D. Low molecular weight halocarbons in the Humber and Rhine estuaries determined using a new purge-and-trap gas chromatographic method. Continental. Shelf. Research,1994,14:1311-1329
    [69]Krysell M. Carbon tetrachloride and methyl chloroform as tracers of deep water formation in the Weddell Sea, Antarctica. Marine Chemistry,1992,39:297-310
    [70]Krysell M, Wallace DW R. Arctic Ocean Ventilation Studied with a Suite of Anthropogenic Halocarbon Tracers. Science,1988,242:746-748
    [71]Kuran P, Sojak L. Environmental analysis of volatile organic compounds in water and sediment by gas chromatography. Journal of Chromatography A,1996,733:119-141
    [72]Kurylo M J, Rodriguez J M. Short-lived ozone-related compounds. Scientific Assessment of Ozone Depletion:1998. World Meteorological Organization, Geneva,1999
    [73]Langer S, Mcgovney B T, Finlayson-Pitts B J, et al. The dimethyl sulfide reaction with atomic chlorine and its implications for the budget of methyl chloride. Geophysical Research Letters,1996.23:1661-1664
    [74]Large W G, Pond S. Open ocean momentum flux measurements in 329 moderate to strong winds, J. Phys. Oceanogr.,1981,11:324-336
    [75]Laturnus F, Wiencke C, Hloser H. Antarctic macroalgae-Sources of volatile halogenated organic compounds. Marine Environmental Research,1996,41(2):169-81
    [76]Laturnus F. Volatile halocarbons released from Arctic macroalgae. Marine Chemistry,1996, 55:359-366
    [77]Laturnus F, Adams F C. Methyl halides from Antarctic macroalgae. Geophysical Research Letters,1998,25(6):773-776
    [78]Ledyard K M, Dacey J W H. Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnology and Oceanography,1996,41:33-40
    [79]Lee M R, Lee J S, Hsiang W S, Chen C M. Purge-and-Trap gas chromatography-mass spectrometry in the analysis of volatile organochlorine compounds in water. Journal of Chromatogrphy A,1997,115:261-214
    [80]Liu S X. Shen Y, Wang S H. Preliminary analysis of distribution and variation of perennial monthly mean water masses in the Bohai Sea, the Huanghai Sea and the East China Sea. Acta Oceanologica Sinica,1992,11(4):483-498
    [81]Lobert J M, Butler J H, Montzka S A, et al. A net sink for atmospheric CH3Br in the east Pacific Ocean, Science.1995,267:1002-1005
    [82]Lobert J M, Yvon-Lewis S A, Butler J H, Montzka S A, Myers R C, Undersaturation of CH3Br in the Southern Ocean. Geophysical Research Letters,1997,24:171-172
    [83]Lovelock J E, Maggs R G, Wade R J. Halogenated hydrocarbons in and over the Atlantic. Nature,1973,241:194-196
    [84]Lovelock J E. Natural halocarbons in air and in the sea. Nature,1975.256:193-194
    [85]Lu X-L. Yang G-P, Song G-S, Zhang L. Distributions and fluxes of methyl chloride and methyl bromide in the East China Sea and the Southern Yellow Sea in autumn. Marine Chemistry, doi:10.1016/j.marchem.2009.11.002,2010,118:75-84
    [86]MacDonald S, Moore R M. Seasonal and spatial variations in methyl chloride in NW Atlantic waters. Journal of Geophysical Research,2007,112, C05028, doi:10.1029/ 2006JC003812
    [87]Malin G., Turner S M, Liss P S. Holligan P M, Harbour D S. Dimethylsulphide and dimethylsulphoniopropionate in the Northeast Atlantic during the summer coccolithophore bloom. Deep-Sea Res.,1993,40:1487-1508
    [88]Mangani G, Berloni M, Marione M. "Cold" solid-phase microextraction method for the determination of volatile halocarbons present in the atmosphere at ultra-trace levels. Journal of Chromatography A.2003,988:167-175
    [89]Manley S L, Cuesta J L. Methyl iodide production from marine phytoplankton cultures. Limnology and Oceanography,1997,42(1):142-147
    [90]Manley S L, Dastoor M N. Methylhalide (CH3X) production from the giant kelp, Macrocystis, and estimates of globe CH3X production by kelp. Limnology and Oceanography,1987,32(3):709-715
    [91]Manley S K, Goodwin K, North W J. Laboratory production of bromoform, methylene bromide and methyl iodide by macroalgae and distribution in near shore southern California waters.1992 Limnology and Oceanography,37:1652-1659
    [92]Manley S L, Dastoor M N. Methyl iodide (CH3I) production by kelp and associated microbes. Marine Biology,1998,98:477-482
    [93]Mcconnell O, Fenical W, Halogen chemistry of the red alga Asparagopsis. Phytochemistry, 1977,16:367-374
    [94]McFiggans G. Coe H. Burgess R, Allan J, Cubison M. Alfarra M R, Saunders R, Saiz-Lopez A, Plane J M C, Wevill D J, Carpenter L J, Rickard A R, Monks P S. Direct evidencefor coastal iodine particles fromLaminaria macroalgae-linkage to emissions of molecular iodine. Atmospheric Chemistry and Physics,2004,4:701-713
    [95]Montzka S A. Butler J H, Hall B D, Mondeel D J, Elkins J W. A decline in tropospheric organic bromine. Geophysical Research Letters,2003.30(15):1826, doi:10.1029/2003 GL 017745
    [96]Montzka S A, Fraser P J. Controlled substances and other source gases. WMO Scientific Assessment of Ozone Depletion. Global Ozone Research and Monitoring Project, Report, vol. 47. World Meterological Organization, Geneva,2003 www.wmo.ch/web/arep/reports/ozone_2002/06_chapterl.pdf
    [97]Moore R M. Marine Sources of Volatile Organohalogens. The Handbook of Environmental Chemistry,3, Part P,2003,85-101
    [98]Moore R M, Tokarczyk R. Volatile biogenic halocarbons in the northwest Atlantic. Global Biogeochemical Cycles,1993,7:195-120
    [99]Moore R M, Groszko W, Niven S. Ocean-atmosphere exchange of methyl chloride:Results from NW Atlantic and Pacific Ocean studies. Journal of Geophysical Research,1996, 101(C12):28529-28538
    [100]Moore R M, Zafiriou O C. Photochemical production of methyl iodide in seawater. Journal of Geophysical Research,1994,99:16415-16420
    [101]Moore R M, Webb M. The relationship between methyl bromide and chlorophyll a in high latitude ocean waters. Geophysical Research Letters,1996,23:2951-2954
    [102]Moore R M. The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere. Chemosphere-Global Change Science,2000.2(l):95-99
    [103]Moore R M, Gut A, Andreae M O. A pilot study of methyl chloride emissions from tropical woodrot fungi. Chemosphere,2005,58:221-225
    [104]Moore R M, Wang L. The influence of iron fertilization on the fluxes of methyl halides and isoprene from ocean to atmosphere in the SERIES experiment. Deep-Sea Research.2006, 53:2398-2409
    [105]Moore R M. Methyl halide production and loss rates in sea water from field incubation experiments. Marine Chemistry,2006,101:213-219
    [106]Moore R M. A photochemical source of methyl chloride in saline waters. Environmental Science and Technology,2008,42:1933-1937
    [107]Mtolera M S P, Collen J. Stress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. Euro. J. Phycol.,1996,31:89-95
    [108]Nightingale P D, Malin G, Liss P S. Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnology and Oceanography,1995,40:680-689
    [109]O'Dowd C D, Jimenez J L, Bahreini R, Flagan R C, Seinfeld J H, Hameri K, Pirjola L, Kulmala M, Jennings SG, Hoffmann T. Marine aerosol formation from biogenic iodine emissions. Nature,2002,417:632-636
    [110]Parsons T R, Maita Y, Lalli C M. A Manual for Chemical and Biological Methods for Seawater Analysis. Oxford:Pergamon Press,1984.23-58
    [111]Penkert S A, Butler J H, Kurylo M J, et al. Methyl bromide. Scientific Assessment of Ozone Depletion:1994. World Meteorological Organization, Geneva,1995,1-26
    [112]Piliniis C, King D B, Saltsman E S. The ocean:A source or a sink of methyl bromide? Geophsical Reseach Letters,1996,23,8:817-820
    [113]Platt U. Janssen C. Observation and Role of the Free Radicals NO3. ClO, BrO and 10 in the Troposphere. Faraday Discuss.,1995.10:175-198
    [114]Rasmussen R A. Rasmussen L E. Khalil M A K, Dalluge R W. Concentration distribution of methyl chloride in the atmosphere. Journal Geophysical Research,1980,85:7350-7356
    [115]Reeves C E. Atmospheric budget implications of the temporal and spatial trends in methyl bromide concentration, Journal Geophysical Research,2003,108,4343, doi:10.1029/2002 JD002943
    [116]Reifenhauser W, Heumann K G. Determination of methyl iodide in the Antarctic atmosphere and the South Polar sea. Atmospheric Evironment,1992,26:2905-2912
    [117]Report of the Fourth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, at Copenhagen. United Nations Environment Program, Copenhagen,1992
    [118]Rhew R C, Miller B R, Weiss R F. Natural methy1 bromide and methyl chloride emissions from coastal salt marshes. Nature,2000,403:293-295
    [119]Rhew R C. Production and consumption of methyl bromide and methyl chloride by the terrestrial biosphere. San Diego, University of California. A dissertation for PHD.2001.
    [120]Richter U A, Wallace D W R. Production of methyl iodide in the tropical Atlantic Ocean. Geophysical Research Letters,2004,31, L23S03, doi:10.1029/2004GL020779
    [121]Rogers H R, Crathorne B. Watts C D. Sources and fate of organic contamination of in the Mersey estuary. Volatile orgnohalogen compounds. Marine Pollution Bulletin,1992,24: 82-91
    [122]S(?)mundsdottir S, Matrai P A. Biological production of methyl bromide by culturs of marine phytoplankton. Limnology and Oceanography,1998,43:81-87
    [123]Scarratt M G, Moore R M. Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton. Marine Chemistry,1996,54:263-272
    [124]Scarratt M G, Moore R M. Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton Ⅱ. Marine Chemistry,1998,59:311-320
    [125]Schauffler S M, Atlas E L, Blake D R, et al. Distributions of bromonated organic compounds in the troposphere and lower stratosphere. Journal of Geophysical Research, 1999,104:21513-21535
    [126]Schall C. Heumann K G. GC determination of volatile organoiodine and organobromine compound in Arctic seawater and air sample. Fresenius Journal of Analytical Chemistry, 1993.346:717-722
    [127]Schall C. Laturnus F, Heumann K G. Biogenic volatile organoiodine and organobromine compounds released from polar macroalage. Chemsphere,1994,28(7):1315-1324
    [128]Singh H B, Salas L J. Shigeishi H. et al. Atmospheric halocarbons, hydrocarbons and sulfur hexafluroride:Global distribution, sources and sinks. Science,1979,203:899-903
    [129]Singh H B, Salas L J, Stiles R E. Methyl halides in and over the Eastern Pacific(40°N-32°S)[J]. Journal of Geophysical Research,1983,88(C6):3684-3690
    [130]Singh H B, Kanakidou M. An investigation of the atmospheric sources and sinks of methyl bromide. Geophsical Research Letters,1993,20(2):133-136
    [131]Solomen S. Antarctic ozone:Progress towards a quantitative understanding. Nature,1990, 347:347-354
    [132]Solomon S, Mills M. Heidt L E, et al. On the evaluation of ozone depletion potentials. Journal of Geophysical Research,1992,97:825-842
    [133]Sturrock G A, Reeves C E, Mills G P, Penkett S A. Parr C R. McMinn A, Corno G, Tindale N W, Fraser P J. Saturation levels of methyl bromide in the coastal waters off Tasmania. Global Biogeochem. Cycles,2003,17(4),1101, doi:10.1029/2002GB002024
    [134]Su J-L. Circulation dynamics of the China seas north of 18°N. In:Robinson A R, Brink K H, eds. the Sea. New York:John Wiley & Sons Inc.,1998. vol.11,483-505
    [135]Swain C G, Scott C B. Quantitative correlation of recation rates. Comparison of hydroxide ion with other nucleophilic reagents toward alkyl halides, esters, epoxides, and acyl halides. J. Am. Chem. SOC.1953,75:141-147
    [136]Swinnerton J W, Linnebaum V J. Determination of C1-C4 hydrocarbons in seawater by gas chromatography. Journal of Gas Chromatography,1967,5:570-573
    [137]Tait V K. An investigation of the oceanic source of methyl chloride [D]. Halifax:Dalhousie University,1995
    [138]Tait V K, Moore R M, Tokarczyk R. Measurements of methyl chloride in the northwest Atlantic. Journal of Geophysical Research,1994,99:7821-7833
    [139]Tait V K, Moore R M. Methyl chloride (CH3C1) production in phytoplankton cultures. Limnology and Oceanography,1995,40(1):189-195
    [140]Taylor J M, Doney S C, Brasseur G P. A global three-dimensional atmosphere-ocean model of methyl bromide distributions. Journal of Geophysical Research,1998,103(D13): 16039-16057
    [141]Taylor B F. Bacterial transformation of organic sulfur compounds in marine environments. In:Oremland R S, ed. The biogeochemistry of global change:Radiatively active trace gases. New York:Chapman and Hall,1993,745-781
    [142]Tian R C, Hu F X, Martin J M. Summer nutrient fronts in the Changjiang (Yangtze River) estuary. Estuarine, Coastal and Shelf Science,1993.37:27-41
    [143]Tom H, Jo D, Olivier M, Herman V L. Evaluation of purge-and-trap-high-resolution gas chromatography-mass spectrometry for the determination of 27 volatile organic compounds in marine water at the ng·1-1 concentration level. J. Chrom. A.,2000,893:367-382
    [144]Tokarczyk R, Moore R M. A seasonal study of methyl bromide concentrations in the North Atlantic(35°-60°N). Journal of Geophysical Research,2006,111. D08304, doi:10.1029/ 2005JD006487
    [145]Tokarczyk R. Methyl bromide loss rates in surface water of the North Atlantic Ocean, Caribbean Sea, and eastern Pacific Ocean (8°-45°N)[J]. Journal of Geophysical Research, 2001,106(D9):9843-9851
    [146]Tokarczyk R, Goodwin K D, Saltzman ES. Methyl chloride and methyl bromide degradation in the Southern Ocean. Geophysical Research Letters,2003a,30 (15):1808, doi: 10.1029/2003GL017459
    [147]Tokarczyk R, Saltzman E S. Moore R M, Yvon-Lewis S A. Biological degradation of methyl chloride in coastal seawater. Global Biogeochemical Cycles,2003b,17 (2):1057, doi:10.1029/2002GB001949
    [148]Tsunogai S. Henmi T. Iodine in the surface water of the ocean. J. Oceanoga. Soc. Japan, 1971,27:67-72
    [149]Turner S M, Malin G, Liss P S, Harbour D S, Holligan P M. The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol. Oceanogr,1988,33 (3):364-375
    [150]Urhahn T, Ballschmiter K. Chemistry of the biosynthesis of halogenated methanes: C1-organohalogens as pre-industrial chemical stressers in the environment. Chemosphere, 1998,37:1017-1032
    [151]Wakeham S G, Dacey J W H. Biogeochemical cycling of dimethylsulfide in marine environments. In:Saltzman S, Cooper W J, eds. Biogenic sulfur in the environment. Washington D C:American Chemical Society Symposium Series 393,1989,152-166
    [152]Wayne R P, Poulet G. Biggs P, Burrows J P, Cox R A, Crutzen P J, Hayman G D, Jenkin M E. Bras G. Moortgat G K, Platt U, Schindler R N. Halogen oxides:Radicals, sources and reservoirs in the laboratory and in the atmosphere. Atmospheric Environment,1995, 29:2677-2884
    [153]Wang J. Li R. Guo Y, Qin P, Sun S. The flux of methyl chloride along an elevational gradient of a coastal salt marsh, Eastern China. Atmospheric Environment,2006,40:6592-6605
    [154]Wang T, Wong C H, Cheung T F, Blake D R, Arimoto R, Baumann K, Tang J, Ding G A. Yu X M, Li Y S, Streets D G, Simpson I J. Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China during spring 2001. Journal of Geophysical Research,2004,109, D19S05, doi:10.1029/2003 JD004119
    [155]Wang J L. Cai W L. Construction and validation of automated purge-and-trap-gas chromatography for the determination of volatile organic compounds. Journal of Chromatography A.2001,927:143-154
    [156]White R H. Analysis of dimethyl sulfonium compounds in marine algae. Journal of Marine Research,1982,40:529-536
    [157]World Meteorological Organization (WMO). Scientific assessment of ozone depletion. WMO Global Ozone research and Monitoring Project-Report No.47. Geneva, Switzerland. 2002
    [158]Wuosmaa A M, Hager L P. Methyl chloride transferase:a carbocation route for biosynthesis of halometabolites. Science,1990,249:160-162
    [159]Yamasaki T, Oki N, Okuno T. Cycle of halocarbons in the air-water phase. Water Science and Technology,1992,25:33-39
    [160]Yang G-P, Lu X-L, Song G-S, Wang X-M. (in press) Study on the Purge-and-Trap Gas Chromatography Method for Analyzing Methyl Chloride and Methyl Bromide in Seawater, Chinese Analytical Chemistry,2010.
    [161]Yokouchi Y, Machida T, Barrie L A, et al. Latitudinal distribution of atmospheric methyl bromide:Measurements and modeling.Geophysical Research Letters,2000,27:697-700
    [162]Yokouchi Y, Toom-Sauntry D, Yazawa K, Inagaki T, Tamaru T. Recent decline of methyl bromide in the troposphere. Atmospheric Environment,2002,36:4985-4989
    [163]Yuan D, Qiao F, Su J. Cross-shelf penetrating fronts off the southeast coast of China observed by MODIS. Geophysical Research Letters,2005,32 (19), L19603. doi:10.1029/2005GL023815.
    [164]Yuan D, Zhu J, Li C, Hu D. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations. Journal of Marine Systems,2008,70:134-149
    [165]Yvon S A, Butler J H. An improved estimate of the oceanic lifetime of atmospheric CH^Br. Geophysical Research Letters,1996,23:53-56
    [166]Yvon-Lemis S A, Butler J H. The potential effect of oceanic biological degradation on the lifetime of atmospheric methyl bromide. Geophysical Research Letters,1997,24: 1227-1230
    [167]Yvon-Lewis S A, Butler J H, Saltzman PA, et al. Methyl bromide cycling in a warm-core eddy of the North Atlantic Ocean.Global Biogeochemical Cycles,2002,16(4):1-6
    [168]Yvon-lewis S A, King D B, Tokarczyk R, Goodwin K D, Saltzman E S, Butler J H. Methyl bromide and methyl chloride in the Southern Ocean. Journal of Geophysical Research, 2004,109, C02008, doi:10.1029/2003JC001809
    [169]Yvon-Lewis S A, Saltzman E S, Montzka S A. Recent trends in atmospheric methyl bromide:analysis of post-Montreal Protocol variability. Atmos. Chem. Phys.,2009, 9:5963-5974
    [170]Zafiriou O C. Reaction of methyl halides with seawater and marine aerosols. Journal of Marine Research,1975,33(1):75-81
    [171]Zhang J. Nitrous oxide in the sea. Marine Chemistry,1976,4:189-202
    [172]Zoccolillo L, Amendola L, Tarallo G A. Halocarbons in Antarctic surface waters and snow. Intern J Environ Anal Chem,1996,63:91-98
    [173]Zoccolillo L, Amendola L, Cafaro C, et al. Improved analysis of volatile halogenated hydrocarbons in water by purge-and-trap with gas chromatography and mass spectrometric detection. Journal of Chromatography A,2005,1077:181-187
    [174]曹坳程.溴甲烷及其替代品.农药,2003,42(6):1-5
    [175]崔仙舟,尹衍军,曾韶辉,王中柱.液上空间气相色谱法测定海水中的卤代烃.青岛海 洋大学学报,1995,25(4):517-522
    [176]刁焕祥,沈志良.1985。黄海冷水域水化学要素的垂直分布特征。海洋科学集刊,25:41-51
    [177]冯士榨,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999
    [178]管秉贤.黄海冷水团水温变化以及环流特征的初步分析.海洋与湖沼,1963,5(4):255-284
    [179]赫崇本,汪圆祥,雷宗友,等.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼,1959,2(1):11-15
    [180]国家海洋局.胶州湾环境调查监测监视和执法管理实施计划专辑.海洋通报,1992,11(3):1280
    [181]江蓓洁,鲍献文,吴德星,许建平.北黄海冷水团温、盐多年变化特征及影响因素。海洋学报,2007,29(4):1-10
    [182]焦念志.海湾生态过程与持续发展.科学出版社.2001.
    [183]金惜山,李炎.鸭绿江洪季的河口最大浑浊带.东海海洋,2001,19(1):1-9
    [184]李大秋,贺双颜,杨倩,刘俊鹏,于凤,贺明霞,胡传民.青岛海域浒苔来源与外海分布特征研究.环境保护,2008,402:45-46
    [185]李坤平.黄海冷水团对海洋变动的响应.海洋学报,1991,13(6):779-785
    [186]林建平.浙江沿岸上升流区溶解氧分布特征.海洋科学,1983,(1):6-8
    [187]缪经榜,刘兴泉,薛亚.北黄海冷水团形成机制的初步探讨—Ⅰ模式解。中国科学B辑,1990,(12):1311-1320
    [188]缪经榜,刘兴泉,薛亚.北黄海冷水团形成机制的初步探讨—Ⅱ模式解的讨论。中国科学B辑,1991,(1):74-81
    [189]刘素美,张经,陈洪涛,2000。黄海和东海生源要素的化学海洋学。海洋环境科学,19(1):68-74
    [190]刘振乾,骆世明,陈桂株,等.大气溴甲烷的释放与控制研究.生态科学,2002,21(2):170-174
    [191]钱国栋,汉红燕,刘静,梁生康,石晓勇,王修林.近30年胶州湾海水中主要化学污染物时空变化特征.中国海洋大学学报,2009,39(4):781-788
    [192]钱晓荣,董毛毛,丁成.吹扫-捕集气相色谱法测定水中挥发性卤代烃.分析测试技术与仪器.2002,8:161-164
    [193]乔方利,马德意,朱明远,李瑞香,藏家业,于洪军.2008年黄海浒苔爆发的基本状况与科学应对措施.海洋科学进展,2008,26(3):409-410
    [194]任慧军,詹杰民.黄海冷水团的季节变化特征及其形成机制研究.水动力学研究进展(A辑),2005,20(sup.):887-896
    [195]宋贵生.东海和黄海中氯甲烷和溴甲烷的分布与海-气通量研究。中国海洋大学硕士学 位论文.2008
    [196]苏纪兰.黄大吉.黄海冷水团的环流结构.海洋与湖沼增刊,1995,26(5):1-7
    [197]孙湘平.中国近海区域海洋.北京:海洋出版社,2006
    [198]孙湘平.气候异常引起的黄海冷水团及渤海冰情变异的若干例证.海洋湖沼通报,1980,1:1-8
    [199]王悠,俞志明,宋秀贤,张善东.大型海藻与赤潮微藻以及赤潮微藻之间的相互作用研究.环境科学,2006,27(2):274-280
    [200]翁传学,张以恳,王从敏,张启龙.黄海冷水团的变化特征。海洋与湖沼,1988,19(4):369-379
    [201]闫菊.胶州湾海域海岸带综合管理研究.青岛:中国海洋大学,博士学位论文,2003
    [202]杨斌.中国东海、黄海和南海北部海水中挥发性卤代烃的分布与海-气通量研究.中国海洋大学硕士论文.2010
    [203]姚云,郑世清,沈志良.胶州湾营养盐及富营养化特征.海洋通报,2007,26(4):91-98
    [204]姚云,沈志良.胶州湾海水富营养化水平评价.海洋科学,2004,28(6):14-17
    [205]游奎,马彩华,高会旺,李凤岐,王波.胶州湾环境演变与治理研究.海洋环境科学,2009,34-40
    [206]于非,张志欣,刁新源,郭景松,汤毓祥.黄海冷水团演变过程及其与邻近水团关系的分析.海洋学报,2006,28(5):26-34
    [207]袁业立.黄海冷水团环流,Ⅰ.冷水中心部分的热结构和环流特征.海洋与湖沼,1979,10(3):187-213
    [208]袁业力,李惠卿.黄海冷水团环流结构及生成机制研究—Ⅰ0阶解及冷水团的环流结构.1993,23(1):93-103
    [209]张书文.黄海冷水团夏季叶绿素垂向分布结构的影响机制.海洋与湖沼,2003,34(2)179-184
    [210]张哲,王江涛.胶州湾营养盐研究概述.海洋科学,2009,33(11):90-94
    [211]张洪海.中国东海、黄海中DMS和DMSP的生物地球化学研究.中国海洋大学博士论文,2009
    [212]张苏平,刘应辰,张广泉,管磊.基于遥感资料的2008年黄海绿潮浒苔水文气象条件分析.中国海洋大学学报,2009,39(5):870-876
    [213]张景明,刘建琳,周雯,等.水样中痕量有机物分析的前处理方法.中国环境监测,2001,17(3):31-33
    [214]赵葆仁.黄海冷水团锋面与潮混合。海洋与湖沼,1985,16(6):451-460
    [215]赵葆仁.长江口外的上升流现象.海洋学报,1993,15(2):108-114
    [216]赵葆仁.北黄海冷水团环流结构探讨—潮混合锋对环流结构的影响.海洋与湖沼,1996,27(4):429-433
    [217]赵保仁,任广法,曹德明,杨玉玲.长江口上升流海区的生态环境特征.海洋与湖沼,2001.32,327-333
    [218]朱明远,毛兴华,吕瑞华,孙明华.黄海海区的叶绿素a和初级生产力.黄渤海海洋,1993,11(3):38-51
    [219]朱建荣.夏季长江口外水下河谷西侧上升流产生的动力机制.科学通报,2003,48(23):2488-2492
    [220]邹景忠,董丽萍,秦保平.富营养化和赤潮问题的初步研究.海洋环境科学,1983,2(2):41-54
    [221]邹娥梅,郭炳火,汤毓祥,李载学,李兴宰.南黄海及东海北部夏季若干水文特征和环流的分析.海洋与湖沼,2001,32(3):340-348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700