hOGG1基因特异性锤头状核酶体外切割活性及其在A549细胞内瞬时效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的采用分子生物学技术与核酶技术抑制人肺腺癌A549细胞中DNA氧化损伤修复基因人8-羟基鸟嘌呤-DNA糖苷酶(Human8-oxoguanineDNAglycosylasel,hOGGl)的表达,以探讨肺癌的发生与发展同DNA氧化损伤修复基因的关系。
     方法运用计算机软件人工设计并合成锤头状核酶基因(Ribozyme,RZ),将该核酶基因克隆到真核表达载体pcDNA3.1(+)中,重组子由BamHⅠ和EcoRI酶切,琼脂糖凝胶电泳鉴定及DNA测序证实。多聚酶链反应(PolymeraseChainReaction,PCR)扩增锤头状核酶作用的靶基因hOGGl保守序列,将PCR扩增序列插入体外转录载体pBluescriptSK(+),经SPeⅠ和SacⅡ酶切电泳及测序鉴定。采用地高辛(Digoxigenin,DIG)标记检测系统,体外转录核酶基因及hOGGl基因,获得核酶与带有DIG标记的底物hOGGlmRNA。通过调整核酶体外实验中不同的反应条件,确定核酶体外切割实验方案;然后经RNA变性凝胶电泳分离切割片段,真空转印正电荷尼龙膜固定mRNA,再经DIG的检测系统反映核酶对靶基因的体外切割效率。含有核酶基因的重组载体pcDNA3.1(+)-RZ在类似脂质体的转染试剂FuGENE6的介导下引入人肺腺癌A549细胞,逆转录多聚酶链反应(ReverseTranscriptase-PCR,RT-PCR)扩增耐受新霉素的Neo基因以鉴定阳性转染细胞。以人甘油醛-3-磷酸脱氢酶(Humanglyceraldehydes-3-phosphatedehydrogenase,hGAPDH)为内参照,RT-PCR法半定量检测转染细胞中hOGGlmRNA的表达量。以阿霉素为受试物,MTT法检测转染前后细胞存活率的变化,彗星试验检测转染
Objective To study the correlation between pathogenesis of lung cancer and oxidative DNA damage and repair genes, the expression of human 8-oxoguanine DNA glycosylase gene(hOGG1 gene), which could specially excise 8-oxoguanine induced by reactive oxygen species(ROS), was down-regulated in human lung cancer A549 cells by molecular biological and ribozyme technology.Methods According to design by computer, two specific restriction site BamH I and EcoR I were added to both ends of the hammerhead ribozyme gene, then the modified ribozyme gene was synthesized and cloned into the eukaryotic expression vector pcDNA3.1(+). The positive recombinants were screened by tolerance of ampicillin, and plasmids were extracted from the positive recombinants and digested by BamH I and EcoR I, and then were analyzed by agarose gel electrophoresis and DNA sequencing. By the similar means, the conservative hOGGl gene sequence amplified by polymerase chain reaction (PCR) was inserted into in vitro transcription vector pBluescript SK(+) between restriction site Spe Ⅰ and Sac Ⅱ. Then, the ribozyme gene and hOGGl gene were transcribed in vitro respectively. The transcripts of ribozyme and its target RNA sequence with DIG-11-UTP were mixed, followed by a specific hammerhead ribozyme cleaving reaction to hOGG1 mRNA. In succession, the recombinants containing ribozyme DNA were transiently transfected into A549 cells. The
    positive recombinant was identified by reverse transcriptase-polymerase chain reaction (RT-PCR) targeting to Neo gene, which was a neomycin resistance gene for selection of stable cell lines and only appeared in vectors. The changes of hOGGl mRNA in A549 cells were detected by semi-quantitative RT-PCR. Then the cellular sensitivity to adriamycin was tested by comparison between untransfected cells and transfected cells by MTT assay. The adriamycin-induced DNA damage was investigated by comet assay or named single cell gel electrophoresis (SCGE) between untransfected and transfected cells.Results The recombinants containing the ribozyme gene and the recombinants containing hOGGl gene were successfully selected by restriction endonuclease digestion and agarose gel electrophoresis, and were proved by DNA automatic sequencing, respectively. The transcripts of ribozyme and hOGGl were acquired by in vitro transcription, and then cleavage in vitro assay was carried out under different conditions including mole ratio of 1:1, 1:2, 1:4, 1:8 and 1:10, reaction time of 30min, 60min and 90min, reaction temperature of 37°C, 42°C and 50°C, concentration of Mg2+ of lOmmol/L, 15mmol/L and 20 mmol/L. But, under these conditions, the effect of in vitro cleavage of hOGGl mRNA by ribozyme could not be detected. A549 cells containing the recombinants were identified by RT-PCR because Neo genes were amplified only in cells transfected successfully. The expression of hOGGl mRNA in A549 cells transfected ribozyme was 36% significantly less than in control cells(P<0.05). MTT assay showed that on the same concentration, the sensitivity of transfected cells to adriamycin were increased in comparison with untransfected cells. The comet assay showed that the extent of DNA damage induced by 1 |ig/ml adriamycin of transfected cells were worse than unrtransfected cells on the same transfection time (P<0.05), but there was no time-dependent reaction relationship.Conclusion The eukaryotic expression vector with genes of hammerhead ribozyme targeting to hOGGl mRNA and the in vitro transcription vector with its
    substrate hOGGl gene were constructed successfully. Though in vitro cleavage assay could not detect ribozyme's cleavage to its substrate mRNA, it effectively inhibited the expression of hOGGl gene in lung cancer A549 cells, and increased the cellular sensitivity to adriamycin, and it helps to study deeply the functions of base excision repair genes hOGGl.
引文
[1] 尹娇杨,李继承.DNA修复基因:核苷酸切除修复基因单核苷酸多态与癌症发生危险的研究进展[J].国外医学遗传性分册,2004,27(1):23-26.
    [2] Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair gene and associations with cancer risk[J]. Cancer Epidemiology B iomarkers & Prevtion, 2002, 11(12): 1513-1530.
    [3] Cadet J, Berger M, Douki T, et al. Oxidative damage to DNA: formation, measurement and biological significance[J]. Reviews of Physiology, Biochemistry Pharmacology. 1997; 131: 1-87.
    [4] Morland I, Rolseth V, Luna L, et al. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA[J]. Nucleic Acids Research, 2002, 30(22): 4926-4936.
    [5] Pouisen HE, Prieme H, Loft S. Role of oxidative damage in cancer initiation and promotion[J]. Europe Joumal of Cancer Prevention, 1998, 7(1): 9-16.
    [6] Shinmura K, Kasai H, Sasaki A, et al. 8-hydroxyguanine (7, 8-dihydro-8-oxoguanine) DNA glycosylase and AP lyase activities of hOGG1 protein and their substrate specificity[J]. Mutation Research, 1997, 385(1): 75-82.
    [7] Radicella JP, Dherin C, Desmaze C, et al. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(15): 8010-8015.
    [8] Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress[J]. B iochimie, 1999, 81(1-2): 59-67.
    [9] Nishioka K, Ohtsubo T, Oda H, et al. Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs[J]. Molecular Biology of the Cell, 1999, 10(5): 1637-1652.
    [10] Abul E, Zhong Z, Jong P, et al. The human OGGI DNA repair enzyme and its association with orolaryngeal cancer risk[J]. Carcinogenesis, 2002, 23(7): 1229-1234.
    [11] Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the pocess of carcinogenesis[J]. Archives of Biochemistry and Biophysics, 2000, 377(1): 1-8.
    [12] Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA[J]. Oncogene, 1998, 16(25): 3219-3225.
    [13] Dherin C, Radicella JP, Dizdaroglu M, et al. Excision of oxidatively damaged DNA bases by the human alpha-hOggl protein and the polymorphic alphah-Oggl(Ser326Cys) protein which is frequently found in human populations[J]. Nucleic Acids Research, 1999, 27(20): 4001-4007.
    [14] Greenlee RT, Murray T, Bolden S, et al. Cancer statistics, 2000[J]. CA: A Cancer Journal for Clinicians, 2000, 50(1): 7-33.
    [15] 邢德印,林东昕.hOGG1基因与肿瘤[J].癌症,2000,19(5):499-501.
    [16] Baksh FK, Dacic S, Finkelstein SD, et al. Widespread molecular alterations present in stage I non-small cell lung carcinoma fail to predict tumor recurrence[J]. Modem Pathology, 2003, 16(1): 28-34.
    [17] Jong P, Lan Chen, Melvyn ST, et al. The human 8-oxoguanine DNA N-glycosylase 1(hOGG 1) DNA repair enzyme and its association with lung cancer risk[J]. Pharmacogenetics, 2004, 14(2): 103-109.
    [18] Asami S, Manabe H, Miyake J, et al. Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung[J]. Carcinogenesis, 1997, 18: 1763-1766.
    [19] Hodges NJ, Chipman JK. Down-regulation of the DNA-repair endonuclease8-oxo-guanine DNA glycosylase 1(hOGG1)by sodium dichromate in cultured human A549 lung carcinoma cells[J]. Carcinogenesis, 2002, 23(1): 55-60.
    [20] Kim HN, Morimoto Yasuo, Tsuda T, et al. Changes in DNA 8-hydroxyguanine levels, 8-hydroxyguanine repair activity, and hOGGI and hMTHI mRNA expression in human lung alveolar epithelial cells induced by crocidolite asbestos[J]. Carcinogenesis, 2001, 22(2): 265-269.
    [21] 邢德印,谭文,宋南,等.DNA修复基因hOGG1多态与食管癌遗传易感性[J].中华医学遗传学杂志,2000,17(6):377-380.
    [22] 丛文铭,吴孟超,陈汉.肝内胆管癌多基因变异表型分析[J].中华医学杂志,2001, 81(5):271-273.
    [23] 程斌,王思元.原发性肝癌DNA修复酶hOGG1,hMTH1基因表达与DNA氧化损伤的修复[J].世界华人消化杂志,2003,11(3):272-275.
    [24] 成军.RNA干扰在基因表达调控研究中的应用[J].中华肝脏病杂志,2004,12(9):557.
    [25] 石建林,章为,周雪.核酶技术简介[J].四川解剖学杂志,2002,10(1):25-29.
    [26] Zharkov DO, Rosenquist TA. Inactivation of mammalian 8-oxoguanine-DNA glycosylase by cadmium(IⅡ): implications for cadmium genotoxicity[J]. DNA Repair, 2002, 1(8): 661-570.
    [27] 肖娟,邹萍,陆华中.核酶技术在白血病基因治疗中作用的研究进展[J].国外医学输血及血液学分册,2003,26(1):51-53.
    [28] 程晋,张学庸,胡家露,等.核酶技术研究进展[J].国外医学肿瘤学分册,1997,24(1):32-34.
    [29] 谷仲平,王云杰.核酶在肺癌基因治疗中的应用[J].国外医学呼吸系统分册,2003,23(3):141-143.
    [30] Poulsen HE, Prieme H, Loft S. Role of oxidative damage in cancer initiation and promotion[J]. European journal of cancer prevention, 1998, 7(1): 9-16.
    [31] 刘起展,庄志雄,江高峰,等.双链断裂修复蛋白hKu70缺陷细胞株的建立及其生物学特性[J].中华劳动卫生职业病杂志,2003,21(2):105-107.
    [32] 周李承,蒋易,吴晓明,等.核苷酸切除修复基因XPB反义RNA表达质粒的构建及其功能的初步研究[J].癌症,2003,22(9):907-911.
    [33] Elena PF, Cristina RL, Alicia BD, et al. Ribozyme: recent advances in the development of RNA tools[J]. FEMS Microbiology Reviews, 2003, 27(1): 75-97.
    [34] 张俊霞.核酶在血管增殖性疾病中的应用[J].国外医学:生理病理科学与临床分册,2003,23(1):50-52.
    [35] Arai K, Morishita K, Shinmura K, et al. Cloning of a human homolog of the yeast OGGI gene that is involved in the repair of oxidative DNA damage. Unpublished.
    [36] Symons RH. Small catalytic RNAs[J]. Annual Review of Biochemistry, 1992, 61: 641-671.
    [37] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning(A laboratory manual on the web)[M]. Cold spring harbour laboratory press, 2001: 33.
    [38] 何斌,金锡御,杨唐俊,等.锤头状核酶对长底物mdrl mRNA的体外切割[J].中华泌尿外科杂志,1998,19(9):515-518.
    [39] 赵国强,刘栋,赵勤,等.重组突变型DNA聚合酶β表达载体pcDNA3.1-polβ的构建[J].郑州大学学报(医学版),2003,38(4):480-483.
    [40] Dieffenbach, Dveksler. PCR技术实验指南[M].科学出版社,1998:15-16.
    [41] De Prat Gay G, Ruiz-Sanz J, Neira JL, et al. Folding of a nascent polypeptide chain in vitro: cooperative formation of structure in a protein module[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(9): 3683-3686.
    [42] Kolb VA, Makeyev EV, Spirin AS. Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system[J]. Journal of Biological Chemistry, 2000, 275(22): 16597-16601.
    [43] Sosnick TR, Pan T. RNA folding: models and perspectives[J]. Current opinion in structural biology, 2003, 13(3): 309-316.
    [44] Pyle AM. Ribozymes: a distinct class of metalloenzymes[J]. Science, 1993, 261(5122): 709-714.
    [45] 梁蓉.核酶抗白血病作用的研究进展[J].国外医学:输血及血液学分册,1997,20(3):182-186.
    [46] 万永玲.核酶在肿瘤治疗中的应用[J].国外医学:肿瘤学分册,1998,25(1):18-21.
    [47] 郭焕珍,李奇芬,于乐成,等.基因治疗新药核酶的研究进展[J].中国药物化学杂志,2000,10(3):216-221.
    [48] 刘灿辉,田波.特异切割12-脂加氧酶mRNA的核酶体外活性及动力学研究[J].生物工程学报,2000,16(1):96-98.
    [49] 卢圣栋主编.现代分子生物学实验技术(第二版)[M].中国协和医科大学出版社,1999,159.
    [50] Kobayashi H, Takemura Y, Wang FS, et al. Retrovirus-mediated transfer of anti-MDR1 hammerhead ribozymes into multidrug-resistant human leukemia cells: screening for effective target sites[J]. International Journal of Cancer, 1999, 81 (6): 944-950.
    [51] 赵军,童松强,邢毅飞,等.锤头状核酶对短片段雄激素受体mRNA的体外切割作用[J].中华实验外科杂志,2003,20(3):248-249.
    [52] 张遵真,衡正昌,李南,等.五种氯化有机物对V79细胞DNA损伤作用的研究[J].癌变·畸变·突变,1999,11(1):5-8.
    [53] 潘光锦,韩金详.核酶在肿瘤基因治疗中应用的研究进展[J].肿瘤防治杂志,2001,8(5):563-564.
    [54] 宋新强.基因治疗及其研究进展[J].信阳师范学院学报(自然科学版),2002,15(4):473-477.
    [55] 李谨革,聂青和,黄长形.抗乙型肝炎病毒核酶的研究进展[J].世界华人消化杂志,2003,11(2):238-241.
    [56] 胡义德,高楠,曹晓运,等.Fugene6—一种介导体外真核细胞高效率基因转染的新方法[J].免疫学杂志,2001,17(2):138-140.
    [57] 刘凌志,周向东,黄桂君,等.人肺腺癌细胞原代培养药敏检测及4种耐药相关蛋白表达的研究[J].第三军医大学学报,2003,25(8):712-714.
    [58] 葛棣,曾亮.肺癌基因治疗研究进展[J].中国航天工业医药,2001,3(3):70-73.
    [59] 冯硕,李正平,张淑红,等.阿霉素与DNA相互作用的研究初探[J].河北职工医学院学报,2004,2 1(2):43-45.
    [60] Bozena C. In vitro evaluation of genotoxie activity of adriamycin and bleomyein in mcuse embryo cells which differ in catalase and superoxide dismutase activity[J]. ldentification and evaluation of environmental mutagens, ecogenotoxicology, S-ⅩⅢ: S119.
    [61] Powis G. Free radical formation by antitumor quinones[J]. Free Radical Biology & Medicine, 1989, 6(1): 63.
    [62] Miyake H, Hara I, Hara S, et al. Synergistic chemosensitization and inhibition of tumor growth and metastasis by adenovirus-mediated p53 gene transfer in human bladder cancer model[J]. Urology, 2000, 56(2): 332-336.
    [63] 安小惠,李军.DNA修复与肿瘤[J].现代肿瘤医学,1997,5(2):124-125.
    [64] 蒋易,周李承,吴晓明,等.核苷酸切除修复基因XPD反义RNA表达载体的构建及功能研究[J].华中科技大学学报(医学版),2003,32(3):242-245.
    [65] Mckelvey-Martin VJ, Green MH, Schmezer P, et al. The single cell gel electrophoresis assay (comet assay): a European review[J]. Mutation Research, 1993, 288(1): 47-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700