土地利用变化对土壤及其团聚体有机碳结合态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以本底条件比较一致的地处亚热带地区的天然林(阿丁枫)、人工林(杉木和木荷以及封育林)、园地(桔园和茶园)、坡耕地为研究对象,通过研究土地利用变化对土壤、团聚体结合态有机碳的影响,以及结合态有机碳与土壤全碳之间的相关关系分析,来揭示亚热带山地红壤固碳的团聚体保护和化学键合机制,通过比较干筛和湿筛法在研究两种结合态有机碳的差异,了解在亚热带地区土壤团聚体的干、湿筛法的适用性,分析土壤团聚体易氧化态有机碳、矿物保护态以及化学抗性有机碳对全碳的贡献以及与土地利用变化的关系,了解有机碳在土壤中的保护过程和矿化过程,这些都涉及土壤有机碳的固定与稳定,阐明土地利用变化对土壤有机碳固定的影响,从而为调整我国亚热带山地土地科学的利用方式、增强碳汇能力提供思路。主要有如下结论:
     1天然林转化为人工林、园地、坡耕地以后,土壤中的结合态有机碳出现一定程度的下降,其中,钙键结合态有机碳的下降幅度高于铁铝键结合态有机碳,但是下降幅度的差异不显著,且0-10cm土层的结合态有机碳含量大于10-20cm土层。对于团聚体内部的结合态有机碳来说,土地利用变化对它们的影响也比较大,天然林转化为其他利用土地以后,铁铝键结合态有机碳的下降幅度极显著高于钙键结合态有机碳的下降水平,特别是天然林转化为坡耕地后,团聚体内部的结合态有机碳的损失率最高达到97.18%,其差异原因可能在于铁铝键结合态有机碳主要为松结态,钙键结合态有机碳主要为稳结态,因此,土地利用方式的转变,使铁铝键合态有机碳的下降程度更大。而且对于不同粒径的团聚体,结合态有机碳在<0.25mm微团聚体内部的降低幅度最大,也就是说微团聚体中结合态有机碳对全碳的贡献最为突出。
     2干筛和湿筛两种不同的团聚体筛分方法对不同粒径团聚体两种结合态有机碳的影响不一致。对团聚体钙键结合态有机碳含量造成一定差异,但是差异不显著。铁铝键结合态有机碳,湿筛相对于干筛来讲,造成了其含量的降低。而两种筛分方法对结合态有机碳造成两种迥异的结果可能是与它们具有不一致的热稳定性,以及与腐殖物质不一致的络合力有关。
     3天然林转化为其他利用土地以后,土壤各粒径团聚体的易氧化态有机碳含量都发生大幅度的损失,特别是开垦为农用耕地后,易氧化态有机碳储量损失高达约87%,这表明易氧化态有机碳对土地利用变化响应比较敏感。同一利用方式土壤不同粒径团聚体中,微团聚体里的易氧化态有机碳的含量大于大团聚体中的相应含量,因此,土地管理过程中,更应该注意减少对微团聚体的干扰,以减少有机碳的损失。
     4林地转化为园地或是坡耕地,土壤团聚体的各个粒径中矿物保护态有机碳出现很大程度的降低,特别是开垦为坡耕地后,损失量高达97%。同样,化学抗性有机碳含量也出现比较大的损失,但幅度小于矿物保护态有机碳,其最大损失量也达70%左右。同一利用方式不同粒径团聚体中的矿物保护态以及化学抗性有机碳都表现为微团聚体大于大团聚体(杉木林除外)。
     5不同土地利用方式下,团聚体中结合态有机碳与全碳均有极显著的相关关系。土壤中结合态有机碳与全碳的相关关系则变化不一,其中,天然林、人工林中钙键结合态有机碳与全碳有极显著正相关关系,但是园地无相关关系,对于铁铝键合态有机碳,在各个利用方式土壤中,均和全碳无相关关系,所以,团聚体中结合态有机碳可以作为表征全碳含量的指标之一。各个土地利用方式团聚体的易氧化态有机碳含量与全碳含量均有显著性相关,全碳含量的增加会带动易氧化态有机碳含量的上升。因此,土壤团聚体中易氧化态有机碳可以作为反映土地利用变化的敏感指标之一。不同粒径团聚体中化学抗性有机碳、矿物保护态有机碳与全碳含量均无显著性相关。
In this study,select the same conditions of the natural forests (Altingia gracilipes),plantation(Cunninghamia lanceolata and Schima and seal silviculture),orchard (citrus orchard and teagarden),slope farmland which located in the subtropical regions as the research objects,throughresearching the land use changes to influence on soil,aggregates speciation organic carbon,and therelationship between speciation organic carbon and soil carbon to reveal the protection ofmountain soils carbon sequestration aggregates and chemical bonding mechanism insubtropical,through comparing dry sieving with wet sieving to study the differences between twokinds of speciation organic carbon to understand the applicability of dry and wet sieving methodin soil aggregates in the subtropical regions,analysis soil aggregates easily oxidized organiccarbon.Mineral protected organic carbon and chemical recalcitranced organic carbon madecontribution to the total carbon and the relationship between land use changes,provide ideas forthe adjustment of mountain land used in scientific way,and enhance the capacity of carbon sink insub-tropical area in our Country,so as to further illustrate the impact of land use change on soilorganic carbon sequestration,these are all of great significance to promote the ecological cycle forachieving sustainable use of the northern Fujian land. Mainly the following conclusions:
     1After natural forest conversion to plantation,orchard and slope farmland,the whole soilorganic carbon decreased in some extent, the Ca-SOC decline more than Fe(Al)-SOC,but thedescender was not significant, and the content of soil organic carbon in0-10cm soil horizon wasmore than10-20cm. For the internal aggregates speciation organic carbon,the land use changeshave an effect on them,after natural forest converted to other used land, the decline of theFe(Al)-SOC was significantly higher than the Ca-SOC,especially in natural forest conversion tothe sloping land,the loss rate of the internal aggregates speciation organic carbon is up to97.18%,the difference may be due to the Fe(Al)-SOC is mainly loose state,Ca-SOC is mainly steadystate,therefore,land use change in the pattern,so that a greater degree of Fe(Al)-SOC declinedorganic carbon knot steady state,therefore,the change in land use make a greater descender inFe(Al)-SOC.The different size of Aggregates,speciation organic carbon make the greatestdescender of internal aggregates speciation organic carbon in the <0.25mm, which means thatSOC in soil aggregates made the greatest contribution to the total carbon.
     2Two different aggregates screening method of dry sieving and wet sieving make differenceinfluence on two different kinds of particle size aggregate speciation organic carbon.It causedsome differences in Aggregates Ca-SOC content, but was not significant.For Fe(Al)-SOC,interms of the wet sieving and dry sieving,the wet sieving resulting in a reduction of its content. Twoscreening methods make the two very different results,may be attribute to their inconsistencthermal stability, and inconsistent with the bond of humic substances.
     3After natural forest conversion for other use of land, the content of LOC in soil aggregates have undergone a significant loss,especially reclamation for the arable land,the loss of LOCreserves up to about87%,it is suggest that LOC is more sensitive to the changes of land use. In thesame way use of different soil particle size aggregates,the content of LOC in micro-reunion ismore than large aggregates. So that,in the process of land management,should pay attention toreduce the interference of micro-aggregates in order to reduce the loss of organic carbon.
     4The conversion of forest land to the garden or sloping land,appeared a large extentreduction in the particle size of soil aggregates,mineral protected organic carbon,especiallyreclaimed to sloping land,the rate of loss is up to97%. Similarly,the content of chemicalrecalcitranced organic carbon is relatively large loss,but the magnitude is less than the mineralprotected organic carbon,the maximum loss amount is up to about70%. in the same use patternsof different size aggregates mineral protection of state,and chemical recalcitranced organic carbonare both assume the micro-aggregates are greater than large aggregates (except for Cunninghamialanceolata).
     5Under different land use pattern,there are very significant correlation between bond-organiccarbon and total carbon of soil aggregates,but varied in soil.In natural forest and plantation,thereare highly significant positive correlation between the Ca-SOC and SOC,and no correlation inorchard.There is no correlation between Fe(Al)-SOC and SOC in each soil of different land usepattern.Therefore,bounded organic carbon in soil aggregates can be used as one of the indicatorsthat characterize the total carbon content.Sililarly,the content of LOC significantly related to thecontent of SOC,the increasing in SOC will lead to the rising of the content of LOC,LOC in soilaggregates can be used as a sensitive indicator reflects the land use change.Mineral protectedorganic carbon and chemical recalcitranced organic carbon were not significantly correlated toSOC in different size of soil aggregates.
引文
[1]陈庆强,沈承德,易惟,等.土壤碳循环研究进展[J].地球科学进展.1998,13(6):555-563.
    [2]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    [3] Schimel D S,Braswell B H,Holland E A,et al. Climatic,edaphic,and biotic controls overstorage and turnover of carbon in soils [J].Glob.Biogeochemistry.Cycle,1994,8:279-293.
    [4]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29-35.
    [5]于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积[M].北京:气象出版社,2003,275-297.
    [6] World Meteorological Organization.The State of Greenhouse Gases in the Atmosphere UsingGlobal Observations through2008.Switzerland:WMO Greenhouse Gas Bulletin.2009.23-32.
    [7] Davidson E A,Trumbore S E,Amundson R,Soil warming and organic carboncontent[J].Nature,2000,408(14):789-790.
    [8]黄昌勇.土壤学[M].北京:中国农业出版社,2000,105-125.
    [9] Lawlor D W,Mitchell R A C.Crop ecosystem responses to climatic change:wheat.In: R-eddy K R,Hodges H F,eds. Climate change and global crop productivity. Wallingford: CABInternational Press,2000,57-80.
    [10]周广胜,王玉辉,白莉萍,等.陆地生态系统与全球变化相互作用的研究进展[J].气象学报,2004,62(5):692-707.
    [11] Singh J S,Gupta S R.Plant decomposition and soil respiration in terrestrial ecosystems[J].The Botanical Review,1977,43:449-528.
    [12]杨钙仁,童成立,张文菊,等.陆地碳循环中的微生物分解作用及其影响因素[J].土壤通报,2005,36(4):605-609.
    [13] Liang C,Das K C,McClendon R W.The influence of temperature and moisture contentsregimes on the aerobic microbial activity of a biosolids composting blend[J].BioresourceTechnology,2003,86:131-137.
    [14] Batjes N H.Total carbon and nitrogen in the soils of the world[J].Europe Journal of SoilsScience,1996,47:151-163.
    [15] Raich J W, Schlesinger W H.The global carbon dioxide flux in soil respiration and itsrelationship to vegetation and climate[J].Tellus,1992,44B:81-99.
    [16]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机C分解的影响[J].应用生态学报,2002,13(6):709-714.
    [17] Giardina C P,Ryan M G.Evidence that decomposition rates of organic carbon in mine-ral soil do not vary with temperature[J].Nature,2000,404:858-861.
    [18] Janssens I A,Lankreijer H,Matteucci G,et al.Productivity overshadows temperature indetermining soil and ecosystem respiration across European forests[J].Global Change Biolo-gy,2001,7:269-278.
    [19]李琳,李素娟,张海林,等.保护性耕作下土壤碳库管理指数的研究[J].水土保持学报,2006,20(3):106-109.
    [20] Lal R.Soil C sequestration impacts on global climatic change and food security.Scien-ce,2004,304:1623-1627.
    [21]方精云,刘国华,徐嵩龄.中国陆地生态系统碳循环及其全球意义.见:王庚辰,温玉璞,编.北京:中国环境科学出版社,1996,129-139.
    [22]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18:349-355.
    [23]王绍强,周成虎,李克让.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55:533–544.
    [24] Li Z P,Han F X,Su Y,et al.Assessment of soil organic and carbonate carbon storagein China.Geoderma,2007,138:119-126.
    [25] Yu D S,Shi X Z,Wang H J,et al.National scale analysis of soil organic carbon storag-e in China based on chinese soil taxonomy.Pedosphere,2007,17:11-18.
    [26] Yu D S,Shi X Z,Wang H J,et al.Regional patterns of soil organic carbon stocks inChina.Environment,2007,85:680–689.
    [27]赵生才.我国农田土壤碳库演变机制及发展趋势-第236次香山科学会议侧记.地球科学进展,2005,20:587-590.
    [28] Lal R.Soil management and restoration for C sequestration to mitigate the acceleratedgreenhouse effect.Prog Environment Science,1999,1:307-326.
    [29] Intergovernmental Panel on Climate Change.Climate Change1995:Impact Adaptationsand Mitigation of Climate Change Scientific Technical Analysis.Cambridge:Cambridge Uni-versity Press,1996,112-130.
    [30] Lindert P H,Lu I,Wu W.Trends in the soil chemistry of South China since the1930s.Soil Science,1996,161:329-342.
    [31]李长生.土壤碳库量之减少,中国农业之隐患:中美农业生态系统碳循环比较研究[J].第四纪研究,2000,20:345-350.
    [32]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    [33] Lugo A E,Sanchez M J,Land use and organic carbon content of some subtropical soil[J].Plant and Soil,1986,96:185-196.
    [34] Wu H B,Guo Z T,Peng C H.Land use induced changes of organic carbon storage insoils of China.Global Change Biology,2003,9:305-315.
    [35]杨玉盛,谢锦升,盛浩,等.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J].地理学报,2007,62(11):1123-1131.
    [36]任京辰,张平究,潘根兴,等.岩溶土壤的生态地球化学特征及其指示意义[J].地球科学进展,2006,21:504-512..
    [37]李恋卿,潘根兴,张平究,等.植被恢复对退化红壤表层土壤颗粒中有机碳和Pb、Cd分布的影响[J].生态学报,2001,21:1769-1774.
    [38]张旭辉,李典友,潘根兴,等.我国湿地土壤资源保护与气候变化问题[J].气候变化研究进展,2008,4:202-208.
    [39]潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展.2008,4(5):282-290.
    [40] Food and Agriculture Organization(FAO).Soil Carbon Sequestratio for Improved LandManagement[R].World Soil Resources Report No.96,ISSN0532-0488.Rome,Italy:FAO,2001.
    [41] Smith P,Martino D,Cai Z,et al.Policy and technological constraints to implementationof greenhouse gas mitigation options in agriculture[J].Agriculture,Ecosystem and Environm-ent,2007,118:6-28.
    [42] Lal R.Soil C sequestration impacts on global climatic change and food security[J].Sci-ence,2004,304:1623-1627.
    [43] Sun W J,Huang Y,Zhang W,et al.Carbon sequestration and its potential in agriculturalsoils of China.Global Biogeochemistry Cycles,2010,24:1302-1307.
    [44]吴乐知,蔡祖聪.基于长期实验资料对中国农田表土有机碳含量变化的估算[J].生态环境,2007,16(6):1768-1774.
    [45]许信旺,潘根兴,汪艳林,等.中国农田耕层土壤有机碳变化特征及控制因素[J].地理研究,2009,28:601-612.
    [46]黄耀,孙文娟.近20年来我国耕地土壤有机碳含量的变化趋势[J].科学通报,2006,51:753-763.
    [47]祝列克.中国林业在应对气候变化中的贡献[EB/OL].中国林业网.http://www.forestry.gov.cn/portal/sbj/s/2649/content-415774.html.
    [48]陈永昌.大力开发森林碳汇经济的战略思考[J].黑龙江生态工程职业学院学报.2011,24(2):1-3.
    [49]李剑泉,李智勇.森林与全球气候变化的关系[J].西北林学院学报.2010,25(4):23-28.
    [50]刘广文.森林与碳循坏[J].现代农业科技.2007,19:219-220.
    [51]翁伯琦,雷锦桂.依靠科技进步发展低碳农业[J].生态环境学报[J].2010,19(6):1495-1501.
    [52]国家林业局应对气候变暖课题组.高度重视发挥林业在应对气候变暖中的重大作用[J].绿色中国:综合版,2007,3:46-49.
    [53]铁铮.森林是最大有机碳库,生活工作中的低碳经济[N].北京日报,2009-9-27(4).
    [54] Jastrow J D,Boutton T W,Miller R M.Carbon dynamics of aggregate-asSOCiated or-ganic matter estimated by carbon-13natural abundance[J].Soil Science SOCiety of America Journal,1996,60:801-807.
    [55] Guggenberger G,Kaiser K.Dissolved organic matter in soils.Challenging the paradigmof sorptive preservation[J].Geoderma,2003,113(1):293-310.
    [56]Krull E S,Baldock J A,Skjemstad J O.Importance of mechanisms and processes of thestabilization of soil organic matter for modeling carbon turnover [J].Function Plant Biology.2003,30:207-222.
    [57]宋国函.耕垦下表土有机碳库变化及水稻土有机碳的团聚体分布与结合[D].南京:南京土壤研究所,2005.
    [58] Lal R,Kimble J M.Conservation tillage for carbon sequestration[J].Nutrient Cycling inAgroecosystems,1997,49(1):243-253.
    [59]章明奎,何振立.成土母质对土壤团聚体形成的影响[J].热带亚热带土壤科学,1997,6(3):198-202.
    [60] Emerson W W A.Classification of soil aggregates based on their coherence in water[J].Soil Resource.1967,(5):47-57.
    [61] Edwards A P,Bremner J M.Dispersion of soil particles by sonic vibration[J].J.Soil Sci-ence,1967,18:47-63.
    [62] Tisdall J.M.and Oades J.M.Organic matter and water-stable aggregates in soils[J].J.SoilScience.1982,31,141-163.
    [63] Elliott E T,Coleman D C.Let the soil work for us[J].Ecol.Bull.1988,39:23-32.
    [64]魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土壤团聚体关系[J].土壤学报,1996,33(1):70-76.
    [65] Six J,Elliott E T,Paustian K,et al.Aggregation and soil organic matter accumulation incultivated and native grassland soils[J].Soil Science.1998,62:1367-1372.
    [66]Tisdall J M,Oades J M.Organic matter and water-stable aggregates in soils[J].Journal ofSoil Science,1982,33(2):141-163.
    [67] Cambardella C A,Elliott E T.Carbon and nitrogen dynamics of soil organic matter fr-actions from cultivated grasslandsoils[J].Soil Science SOCiety of America Journal,1994,58(1):123-130.
    [68] Feller C,Beare M H.Physical control of soil organic matter dynamics in the tropics[J].Geoderma,1997,79(1):69-116.
    [69]刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展[J].生态学报,2007,27(6):2642-2649.
    [70] Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter asSOCiated with particle size fractions of water-stable aggregates[J].European Journal of Soil Science,2000,51(4):595-605.
    [71] Carter M R.Soil quality for sustainable land management:Organic matter and aggregatio-n interactions that maintain soil function[J].Agronomy Journal,2002,94(1):38-47.
    [72] Six J,Bossuyt H,Degryze S,et al.A history of research on the link between(micro)aggre-gates,soil biota,and soil organic matter dynamics[J].Soil and Tillage Research,2004,79(1):7-31.
    [73] De Gryze S,Six J,Merckx R.Quantifying water-stable soil aggregate turnover and itsimplication for soil organic matter dynamics in a model study[J].European Journal of SoilScience,2006,57(5):693-707.
    [74] Denef K,Zotarelli L,Boddey R M,et al.Microaggregate-asSOCiated carbon as a diagnosticfraction for management-induced changes in soil organic carbon in two Oxisols[J].Soil Biologyand Biochemistry,2007,39(5):1165-1172.
    [75] Blanco-Canqui H,Lal R.Mechanism of C sequestration in soil aggregates[J].Critical Reviewin Plant Science,2004,23(6):481-504.
    [76] Balabane M,Plante A F.Aggregation and carbon storage in silty soil using physicalfractionation techniques[J].European Journal of Soil Science,2004,55(2):415-427.
    [77] Garten J C T,Post W M,Hanson P,et al.Forest soil carbon inventories and dynamicsalong an elevation gradient in the southern Appalachian Mountains[J].Biogeochemistry,1999,45:115-145.
    [78]刘中良,宇万太.土壤团聚体中有机碳研究进展[J].中国生态农业学报.2011,19(2):447-455.
    [79]傅积平,杨敬森.石灰性土壤微团聚体的分组分离及其特性的初步研究[J].土壤学报,1963,4-14.
    [80]魏朝富,谢德体.土壤有机无机复合体的研究进展[J].地球科学进展.2003,18(2):228-331.
    [81] Schnitzer M,Kodama H.Interactions between organic and inorganic components in par-ticlesize fractions separated from four soils[J].Soil Science SOCiety of American Journal,1992,56:1099-1105.
    [82]徐建民,袁可能.土壤有机矿质复合体研究V胶散复合体组成和生成条件的剖析[J].土壤学报,1993,30(1):43-51.
    [83]徐建民,袁可能.土壤有机矿质复合体研究Vl胶散复合体的化学组成及其结合特征[J].土壤学报,1994,31(1):29-33.
    [84]魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土粒团聚的关系[J].土壤学报,1996,33(1):70-77.
    [85]宋长青,冷疏影.21世纪中国地理学综合研究的主要领域[J].地理学报,2005,60(4):546-552.
    [86]潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,10(4):136-145.
    [87]王聪,刘艇.土壤胶散复合体的研究进展[J].吉林农业科学.2011,36(1):23-25.
    [88]袁可能,陈通权.土壤有机矿质复合体研究Ⅱ土壤各级团聚体中有机矿质复合体的组成及其氧化稳定性[J].土壤通报.1981,18(4),335-344.
    [89] Clough A,Skjemstad J O.Physical and chemical protection of soilorganic carbon inthree agricultural soilswith different contentsof cal-cium carbonate[J].Soil Resource.2000,(38):1005-1016.
    [90]李世朋,汪景宽.土壤中钙键和铁铝键结合的有机碳差异的比较[J].土壤通报,2003,34(6):501-505.
    [91] Osher L J,Matson P A,Amundson R.Effect of land use change onsoil carbon in Haw-aii[J].Biogeochemistry,2003,65:213-232.
    [92]何云峰,徐建民.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响[J].浙江农业学报.1998,10(4):197-200.
    [93] Wershaw R L.Membrane-micelle model for humus in soils and sediments and its rela-tion to humification[M].U.S.Geological Survey Water-Supply Paper,United States Governm-ent Printing Office,1994,213-229.
    [94] Schnitzer M.Soil organic matter:the next75years[J].Soil Science,1991,151:41-58.
    [95] Piccolo A,Mbagwu J S C.Role of hydrophobic components of soil organic matter insoil aggregate stability[J].Soil Science SOCiety of American Journal,1999,63:1801-1810.
    [96]毛艳玲.土壤有机质分组方法研究[J].泉州师范学院学报(自然科学).2008,26(6):70-76.
    [97] Kaiser M,Ellerbrock R H.Functional characterization of soil organic matter fractionsdifferent in solubility originating from a longterm field experiment[J].Geoderma,2005,127:196-206.
    [98] Armstrong R D.Changes in soil chemical and physical properties following legumesand opportunity cropping on a cracking clay soil[J].Australian Journal of Experimental Ag-riculture,1999,39:445-456.
    [99] Biederbeck B O,Zentner R P.Labile soil organic matter as influenced by cropping pr-actices in an arid environment.Soil Biology Biochemistry,1994,26(12):1647-1656.
    [100] Rethemeyer J,Grootes P M,Bruhn F,et al.Age heteroge-neity of soil organic matter[J].Nuclear Instruments and Methods in Physics Research B,2004,223/224:521-527.
    [101]吴宏海,郭杏妹.土壤和沉积物中NOM稳定性矿物学机制研究的理论与方法[J].地学前缘(中国地质大学(北京);北京大学),2007,14(5):254-263.
    [102] Mikutta R,Kleber M,Torn M S,et al.Stabilization of soilorganic matter:asSOCiation wit-h minerals or chemical recalcitrance[J].Biogeochemistry.2006,77:25-56.
    [103] Curry K J,Bennett R H,Mayer L M,et al.Direct visualization of clay microfabric sig-natures driving organic matter preservation in fine-grained sediment[J].Geochimica et Cosm-ochimica Acta,2007,71:1709-1720.
    [104]宋建中.珠江三角洲土壤和沉积物中的有机质异构的研究[D].北京:中国科学研究院,2003,10-16.
    [105]吴宏海,郭杏妹.土壤和沉积物中NOM稳定性矿物学机制研究的理论与方法[J].地学前缘(中国地质大学(北京);北京大学).2007,14(5):254-26.
    [106] Liang B C,Wang X L,Ma B L.Maize root-induced change in soil organic carbon po-ols[J].Soil Science,2002,66:845-84.
    [107] Spaccini R,Piccolo A,Haberhauer G,et al.Transformation of organic matter from maiz-eresidues into labile and humic fractions of three European soils as revealed by13C distri-bution and CPMAS-NMRspectra[J].European Journal of Soil Science,2000,51:583-594.
    [108] Gleixner G,Poirier N,Bol R,et al.Molecular dynamics of organicmatter in a cultivatedsoil[J].Organic Geochemistry,2002,33:357-366.
    [109]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000,12-269.
    [110]徐建民,赛夫,袁可能.土壤有机矿质复合体研究IX [J].土壤学报,1998,36:168-178.
    [111]周萍,潘根兴.南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ团聚体物理保护作用[J].土壤学报,2008(6):269-278.
    [112] Sainju U M,Terrill T H,Gelaye S,et a1.Soil aggregation and carbon and nitrogen po-ols under rhizoma peanut and perennial weeds[J].Soil Research SOCiety of America Journal,2003,67(1):146-155.
    [113]李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    [114]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2177-2l83.
    [115] Elliott E T.Aggregate structure and carbon,nitrogen,and phosphorus in native and cul-tivated soils[J].Science SOCiety of America Journal,1986,50(1):627-633.
    [116] http://www.hnagri.gov.cn/web/zzs/zzlr/zcjg/content_64195.html.
    [117]李世朋,汪景宽,王开勇,等.土壤中钙键和铁/铝键结合的有机碳差异的比较[J].土壤通报.2003,34(6):501-505.
    [118] Alison H M,John D A. Variation in soil net mineralization rates with dissolved carbonadditions[J]. Soil Biology Biochemistry,2000,32:597-601.
    [119] Sanju U M.Carbon and nitrogen pool in soil aggregates separated by dry and wet sievingmethods[J].Soil Science,2006,171(12):937-949.
    [120] Schutter M E,Dick R P.Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil[J]. Soil Science SOCiety of America Journal,2002,66(1):142-153.
    [121] Post W W,Kwon K C.Soil carbon sequestration and land use change: Processes andpotential.Global Change Biology,2000,6:317-327.
    [122] Pan G X,Li L Q,Wu L S,et al.Storage and sequestration potential of topsoi lorganic carbon inChina’spaddy soils.GlobalChange Biology,2003,10:79-92.
    [123] Piccolo A,Spaccini R,Nieder R,et al.Sequestration of abiologically labile organic carbon insoils by humified organicmatter.Climatic Change,2004,67:329-343.
    [124] Blair G J,Lefroy R D,Lisle L. Soil carbon fractions based on their degree of oxidation andthe development of a carbon management index for agricultural systems[J]. Australian Journal ofAgricultural Research,1995,46:1459-1466.
    [125] Mikutta R,Kleber M,Torn M S,et al. Stabilization of soil organic matter: AsSOCiation withminerals or chemical recalcitrance [J].Biogeochemistry,2006,77:25-56.
    [126]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学报,2004,23(6):77-83.
    [127]刘满强,胡锋.土壤有机碳稳定机制研究进展[J].生态学报.2007,27(6):2642-2651.
    [128] Christensen B T.Physical fractionation of soil and structural and funtional complexityin organic matter turnover[J].Europe.Soil Science,2001,52:345-353.
    [129]周萍.南方典型水稻土长期试验下有机碳积累机制研究Ⅳ颗粒有机质热裂解-气相-质谱法分子结构初步表征[J].土壤学报.2011,28(1):110-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700