新型自热式抗结壳沼气反应器发酵特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沼气是厌氧产甲烷微生物分解有机物产生的清洁可再生生物质能源,也是我国农村利用形式最广的可再生生物质能源,它不仅具有将有机废弃物资源化利用和保护环境的双重效益,还具有生产成本低,产出效益高等优点。但在沼气发酵过程中发酵原料在附着的气泡上升力作用下上浮至沼液表面,经水分蒸发而形成结壳,由此影响了发酵原料的充分降解和产生的沼气扩散逸出分离,导致沼气池发酵速率减慢、产气率和甲烷含量降低、燃烧热值低等不足。此外,户用沼气池还存在保温性能较差,沼液发酵温度较低,常用发酵原料营养成分单一,氮、磷、钾等微生物代谢必需元素和部分维生素含量较低的问题,延长了沼气反应器的发酵启动时间,降低了发酵原料的水解率和产气率,限制沼气技术实际推广应用。针对上述问题,根据沼气反应器内沼渣结壳原理,设计了一种兼有防止沼渣上浮和集气功能的抗结壳装置,并实验研究该新型沼气反应器的抗结壳性能和产气性能,以及固体物浓度、外源添加物对沼气发酵性能的影响。此外还研究了有机玻璃钢池体材料的机械和传热特性,并中试试验了具有抗结壳装置和保温特性的玻璃钢沼气池发酵产气特性。课题研究得到以下主要研究成果和结论:
     1.实验室制备的有机玻璃钢沼气池池体材料具有较高的机械强度和一定保温性能,当厚度为6 mm,材料压缩强度达到140 MPa以上,弯曲强度超过120 MPa。以聚乙烯泡沫保温板为保温材料的沼气池池壁导热系数为0.099 W/(m·K ),能够有效降低沼气池壁的导热性能,保证低温下的连续产气,提高沼气利用效率。同时该有机玻璃钢材料具有较好耐酸性,但耐碱性较差。
     2.自行研制的抗结壳装置能有效地阻挡原料中固体物的上浮,具有显著的抗原料结壳性能,使发酵反应更充分,提高了基质利用率,增强了反应器的产气能力。同时该装置还增强了沼液中的气液分离效果,改善了沼液的酸碱平衡能力,促进了产甲烷菌群的代谢活动,从而显著提高反应器的产气能力和产甲烷能力。
     3.固体物浓度对抗结壳沼气反应器产气影响较大,在以马铃薯皮为发酵原料,控制沼液温度为27(±3)℃,当固体物(TS)浓度为4%时,抗结壳沼气反应器对原料的利用更充分,产甲烷菌群活性强,有利于甲烷的产生,得到的最大日产气量为11.2 L,原料产气率为600.0 L/(kg·TS),COD去除率为69.7%,产气中甲烷浓度较高,长期地稳定在62%左右,而较低或较高的TS浓度均不利于抗结壳沼气反应器的发酵和产气。
     4.实验研究了尿素、复合磷酸盐、复合维生素等外源添加物及添加量对抗结壳沼气反应器发酵产气特性的影响,结果表明:添加一定浓度的外源添加物能显著提高沼气反应器的发酵产气性能,加快发酵启动,增强了产甲烷菌群的活性和代谢产热,促进了甲烷的生成和日产气量的提高。实验得到尿素、复合磷酸盐、复合维生素的添加量为1.0、1.20、0.015 g/L时,其最大的池容产气率分别为0.869、0.732、0.843 m~3/(m~3·d),总产气量分别比未添加时提高了52.9%、28.9%、48.4%,产气中甲烷浓度最高达到72.4%。
     5.一定浓度的镁离子缩短了抗结壳沼气反应器的发酵启动时间,增强厌氧微生物对底物的利用效率,促进了甲烷合成,显著提高了反应器日产气量。其中以莴笋皮为发酵原料,镁盐最佳添加量为0.30 g/L,总产气量提高了71.4%,池容产气率为0.398 m~3/(m~3·d);以马铃薯皮为发酵原料,镁盐最佳添加量为0.10 g/L,总产气量提高了41.6%,池容产气率为0.804 m~3/(m~3·d)。
     6.具有保温性能的抗结壳沼气反应器(8 m~3)中试试验结果表明:在平均气温为8℃左右的冬季,反应器连续运行15天产气仍然稳定,最大日产气量为2.688 m~3/天,平均池容产气率为0.215 m~3/(m~3·d);产气气压最高达12 kPa,沼液表面无结壳现象;同时反应器保温性较好,充分利用了发酵的代谢产热,沼液温度比常规沼气池高3-4℃,有利于冬季低温条件下的沼气生产。
Biogas is a clean renewable biological energy produced by anaerobic methanogenic bacteria decomposing organic matter and one of the renewable energy sources extensively used in our countryside. It does not only convert organic waste to resource and protect our natural environment, but also remain low-production cost and high yield to substrate. However, scums produced can be attached by many bubbles and float up to the liquid level,then surface crusting will be formed due to evaporation of water. It will affect the complete decomposition of substrate,gas-liquid diffusion separation of biogas produced and decrease the fermentation rate, low production rate and content of methane also combustion calorific value. Inaddition, these problems such as bad heat insulation performance, and low fermentation temperature and lack of nutrients in the household-digester can result in extended start-up time of anaerobic fermentation, low utilization rate of substrate and low gas production rate during biogas production. Therefore, the wide application of biogas technology will be affected.
     According to the principles of surface crusting, a device with the performance of anti-crusting and gas-collecting was designed. The performance of anti-crusting and biogas production, as well as the effect of total solids substrate concentration and exogenous supplements performance of biogas fermentation were respectively investigated. In this thesis, the characteristicses of machinery and heat transfer of glass fiber reinforced plastics were also investigated and the fermentation performance of biodigester made of glass fiber reinforced plastics with anti-scrusting and temperature-holding was tested in pilot scale. The following conclusions are obtained in the thesis:
     1. The research result indicates that the prepared glass fiber reinforced plastics had high mechanical strength and heat insulation. When the thickness of glass fiber reinforced plastics was 6 mm, the compression strength and bending strength were respectively achieved above 140 MPa and 120 MPa. The thermal conductivity coefficient of biodigester wall covered with polyethylene foamed insulation board was decreased to 0.099 W/(m·K ), which can be beneficial to maintain the fermentation temperature and improve the utilization rate of substrate. Moreover, the prepared digester wall made from glass fiber material could anti acid rather than alkali.
     2. The designed anti-crusting device could effectively prevent scum floating up. It resulted in more completely fermentative process and high substrate utilization rate, and improved the capacity of biogas production by the degister with the anti-scrusting device. In addition, the anti-scrusting device in the degister was beneficial to maintain the netral liquid environment by the effective gas-liquid separation and the high metabolic activities of methanogenic bacteria. Therefore, the production rate of methan was significantly increased in the biodegister.
     3. The biogas production of the degister with the anti-scrusting device was obviously effected by total solid substrate concentration. Especially, when the total solid substrate concentration of potato peeling was set at 4%, the fermentation material was fully utilized and the more menthan was produced in the biodegister with 27(±3)℃fermentation temperature. As a result, the maximal daily gas yield of 11.2 L, biogas production rate of 600.0 L/(kg·TS) and COD remocal rate of 69.7% were achieved, respectively. And the obtained methane concentration in biogas was kept about 62%. However, too low or too high total solid substrate concentration could decrease the abilities of biogas prpduction and anaerobic fermentation.
     4. In the present study urea, compound phosphates and multivitamins were chosen as the supplements. The results indicate that the supplements shortened the startup time and significantly improved the daily biogas production and methane concentration of the anaerobic digester. The optimal supplement amounts of urea, compound phosphates and multivitamins were 1.0, 1.20, 0.015 g/L, respectively. Correspondingly, the highest volumetric production rate of biogas reached to 0.869, 0.659, 0.843 m~3/(m~3·d), and the methane concentration in biogas maintained at about 65%, 68%, 70% at the end of the biogas fermentation, respectively. Compared to the control, the cumulative total amounts of biogas were enhanced by 52.9%, 28.9%,48.4%.
     5. The effects of magnesium sulfate on biogas production performances were conducted in an anaerobic digester with anti-crusting device using asparagus lettuce peelings and potato peelings. The results reveal that the magnesium ions shortened the startup time and significantly improved the daily biogas production and methane concentration of the anaerobic digester. The optimal magnesium ions concentration for the asparagus lettuce peelings and potato peelings were 0.30, 0.10 g/L, respectively. Correspondingly, the highest volumetric production rate of biogas reached to 0.398, 0.804 m~3/(m~3·d), and the methane concentration in biogas maintained at about 70%, 68% at the end of the biogas fermentation, respectively. The cumulative total amounts of biogas were enhanced by 71.4%, 41.6%, compared to the control.
     6. The results of pilot test of digerter with anti-crusting device (8 m~3) indicate that the degister kept a stable biogas production after 15-day anaerobic fermentation period, and the maximal daily production rate and the average volumetric production rate of biogas in the digester reach to 2.688 m~3, 0.215 m~3/ (m~3·d) in the winter with arverage atmosphere temperature 8℃, and the highest pressure of biogas achieved 12 kPa, no scum crusting was observed on the liquid surface. Moreover, the liquid temperature in the biodegister covered with heat preservation material was higher 3-4℃than that in the traditional degister in the winter. It demonstrates that the heat insulation performance of the designed biodegister wall met the requirement of anaerobic fermentation for biogas production in low atmosphere temperature. Therefore, the metabolic heat produced by anaerobic fermentation could be utilized to maintain the relatively high fermentation temperature of liquid and improve the biogas production in the degister.
引文
[1]全国人大常委会办公厅.中华人民共和国可再生能源法[M].北京:中国民主法制出版社, 2005.
    [2]刘继芬.德国农村再生能源—沼气开发利用的经验和启示[J].中国资源综合利用, 2004, (11): 14?20.
    [3]张兰英.世界首列“沼气火车”启程[J].太阳能.2005, (6): 62.
    [4]幽景元,肖波,杨家宽,王秀萍.生活垃圾厌氧发酵条件正交实验[J].新能源及工艺2003, 28-30
    [5]刘翔波,李强,张敏.农村生活废弃物沼气发酵的潜力研究[J].中国沼气. 2009, 27(2):24-28.
    [6] Industrial Development Plan of Agricultural Biomass Energy, http://www.bioenergy.cn
    [7] LI Dong, ect. Current status quo of biogas resources and their perspective future of utilization in China[J]. Modern Chemical Industry, 2009 ,(04 ): 01– 05.
    [8] LI Yi bing, etc. Estimation of Resource Extent of Dominant Feedstock for Household Biogas in Rural Areas of China[J]. Resources Science ,2009 :02-0231-07
    [9]颜卫卫,曹凑贵,李峰.我国农村沼气C D M项目开发的潜力分析[J].中国能源, 2007,29(9):32-34.
    [10]张培栋,杨艳丽,李新容.中国沼气综合利用潜力[J].中国沼气,2007,27(5):32-35.
    [11]吴创之,庄新姝,周肇秋.生物质能利用技术发展现状分析[J].可再生能源,2007,29(9):35-42.
    [12]王欧.中国生物质能资源开发利用现状及发展政策与未来趋势[J].中国农村经济,2007,(7):10-15.
    [13]杨戈.我国农村沼气的开发与管理[J].农业科技与装备,2009,(01):73-75
    [14]汤云川,张卫峰,马林,张福锁.户用沼气产气量估算及能源经济效益[J].农业工程学报2010,2(3): 281—288.
    [15] Yadvika, sh,Santo T. R. Sreek rishnan, et al. Enhance2ment of biogas p roduct ion from so lid subst rates using different techniques——a review [J]. Bioresource Technology, 2004, 95: 1- 10
    [16]陈广银,郑正,邹星星,杨世关,方彩霞,冯景伟.牛粪与互花米草混合厌氧消化产沼气的试验[J].农业工程学报2009, 25(3): 179-183
    [17]李继红,杨世关,郑正.玉米秸秆与土豆混合发酵厌氧发酵实验研究[J].太阳能学,2008, (10):1308-1312
    [18] H Hartmann, B K Ahring. Anaerobic Digestion of the Organic Fraction of Municipal SolidWaste: Influence of Co-digestion with Manure [J]. Water Res, 2005, 39(8): 1543?1552.
    [19] Chuanping Feng , Sadoru Shimada , Zhenya Zhang , Takaaki Maekawa. A pilot plant two-phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage[J].2008
    [20] G Lettinga. L aboratory work manual [A ]. In: 1st Int.Course on A naerobic and Low Cost T reatment of W astes and W astew aters [ C ]. The N etherlands: IAC and WAU , 1994.
    [21]韩天喜.加快以秸秆为主要原料的沼气发酵启动的研究[J].江苏沼气, 1990, 2: 16- 18.
    [22]赵立欣,董保成,田宜水著.大中型沼气工程技术[M].北京:化学工业出版社,2008.
    [23]刘厚荣,郝元元,武丽娟.温度条件对猪粪厌氧发酵沼气产气特性的影响[J].研究与试验, 2006, 5 :32-35
    [24]何荣玉,闫志英,刘晓风,袁月祥,廖银章,王佳婧,贺荣娜,李旭东.秸秆干发酵沼气增产研究[J]应用与环境生物学报. 2007,13(4):583-585
    [25]王丽丽.牛粪常温厌氧发酵特性的试验研究[D].哈尔滨:东北农业大学学位论文,2005
    [26]何荣玉,刘晓风,袁月祥等.沼气发酵外源添加物的研究进展[J].中国沼气, 2007, 25 (5):8-11
    [27]李杰,李文哲,王永成.不同载体对牛粪30℃厌氧处理性能的影响[J].农村环境科学学报,2006,25:613-616
    [28] Kaan Yetilmezsoy, Fatih Ilhan, Zehra Sapci-Zengin, Suleyman Sakar, M. Talha Gonullu Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study.J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.2008.05.015
    [29]夏吉庆,李文哲.固体有机废弃物厌氧发酵装置研究进展[J] .东北农业大学学报.2007,38(5)
    [30]左剑恶,王妍春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展[J] .中国沼气.2000
    [31]程备久主编.生物质能学[M].北京:化学工业出版社,2008.
    [32] H. Bouallagui, M. Torrijos, J.J. Godon, et al. Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance.[J]. Biochemical Engineering Journal, 2004,21:193-197.
    [33]宋波,王奕阳.解决牛粪厌氧发酵中浮渣结壳的几种方法[J].可再生能源, 2009,(27):110-112
    [34]鲍安红.水压式沼气产生器的破壳装置[J].农机化研究,2009, (4):212-213
    [35]刘德源.农村户用沼气池破壳技术改进[J].贵州农业科学2010,38(7):240-243
    [36] K.Madhukara, H.R.Srilatha, K.Srinath,et al. Production of methane from green pea shells in floating dome digesters[J]. Process Biochemistry,1997,( 32):509-513
    [37]王敦球,蒙杰,张琴,张爱莉.利用微生物菌群低温下提高沼气产气量试验研究[J].环境科学与技术, 2009 ,32,(1):31-34 .
    [38] D.T Hill,J.P Bolte.Methane production from low solid concentration liquid swine waste conventional anaerobic fermentation [J]. Bioresource technology,74,241-247.
    [39] M.S Rao, S.P Singh. Bioenergy conversion studies of organic fraction of MSW:kinetic studies and gas yield-organic loading relationships foe process optimization[J]. Bioresource Technology, 2004 ,95:173-185.
    [40] P Kaparaju. I Angelidaki. Effect of temperature and active biogas process on passive separation of digested manure [J]. Bioresource Technology, 2008,(99) :1345-1352.
    [41] H.N. Chanakya, Isha Sharma, T.V Ramachandra. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste[J]. Waste Management, 2009,(29):1306–1312.
    [42]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [43]高志坚,李秀金,杨懂艳,江洪银.玉米秸中温与常温厌氧生物气化的比较研究[J].农业工程学报,2003,19(5):214-217.
    [44]陈小华,朱洪光.农作物秸秆产沼气研究进展与展望[J].农业工程学报, 2007, 23 (3) : 279- 283.
    [45]秦川.玻璃钢的主要基体材料一不饱和聚酷树脂[J].玻璃钢/复合材料,2002.
    [46]邹宁宇.玻璃钢制品手工成型工艺[M].化学工业出版社,2002.
    [47]国家质量技术监督计量司.测量不确定度评定[M],北京:中国计量出版社,2000:19-24
    [48] A Giovanni. A Longo Steady-State Apparatus to Measure the Thermal Conductivity of Solids[J].Int J Thermophys 2008, 29:664–677.
    [49]丁乔,尹大庆,王会英.心轴为圆锥的锥形螺旋搅龙叶片近似展开方法[J].农机化研究, 2003,1 :72-73.
    [50] K.Madhukara, H.R.Srilatha, K.Srinath,et al. Production of methane from green pea shells in floating dome digesters[J]. Process Biochemistry, 1997,( 32):509-513.
    [51] J. Fernández, M. Pérez L.I. Romero. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW) [J].Bioresource Technology, 2008 ,(99) :6075–6080.
    [52] Guangxue Wu, Mark Gerard Healy, Xinmin Zhan Effect of the solid content on anaerobic digestion of meat and bone meal [J].Bioresource Technology, 2009,(100):4326–4331.
    [53] G Lissens, P Vandevivere, de Baere. Solid waste digesters: process performance and practice for municipal solid waste digestion[J].Water Science Technology ,2001,44(8):91–102.
    [54] W.Parawira, M.Murto, R.Zvauya et al Anaerobic batch digestion of solid potato waste aloneand in combination with sugar beet leaves[J].Renewable Energy, 2004 ,(29):1811–1823.
    [55] Prasad Kaparaju, Jukka Rintala Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure[J]. Resources, Conservation and Recycling ,2005, (43) :175–188.
    [56]孙传伯,李云,廖梓良,刘士清.马铃薯皮渣沼气发酵潜力的研究[J].现代农业科技, 2008,2.
    [57]蒙杰,王敦球.沼气发酵微生物菌群的研究现状[J].广西农学报,2007,22(4):46-49.
    [58] B. Rincón, F. Raposo, R. Borja, J.M. Gonzalez, et al. Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phases olive mill solid wastes at low organic loading rates[J]. Journal of Biotechnology, 2006,121(4):534-543.
    [59] Pingjiu Zhang, Jufeng Zheng, Genxing Pan, et al. Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids and Surfaces [J]. Biointerfaces, 2008,58(2):264-270.
    [60] Gurdeep Rastogi, Dilip R. Ranade, Tulshiram Y. Yeole, et al. Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes[J]. Bioresource Technology, 2008,99(13): 5317-5326.
    [61] Seán Pender, Margaret Toomey, Micheál Carton, et al. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors[J]. Water Research, 2004,38(3): 619-630.
    [62] M.J. Wolin, T.L. Miller. Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors[J]. International Congress Series, 2006,12(93):131-137.
    [63] Jeong Ok Kim, Yong Hwan Kim, Sung Ho Yeom, et al. Enhancing continuous hydrogen gas production by the addition of nitrate into an anaerobic reactor[J]. Process Biochemistry, 2006,41(5):1208-1212.
    [64] Peter H. Janssen. Selective enrichment and purification of cultures of Methanosaeta spp. [J]. Journal of Microbiological Methods, 2003,52(2):239-244.
    [65] Sulisti Holmes, Eric Senior, Irene A. Watson-Craik. Interactive effects of the electron acceptor sulphate and o-cresol on the methanogenic degradation of hexanoate[J]. Water Research, 2002,36(3): 561-576.
    [66] W Parawira, M Murto, R Zvauya . Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves[J]. Renewable Energy, 2004,(29):1811-1823.
    [67] Bouallagui H,Haouari O,Touhami Y et al. .Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste[J]. Process Biochemistry, 2004,(12):2143-2148.
    [68] Lise Appels, Jan Baeyens, Jan Degreva. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion science,2008,(34):755-781
    [69] E Sa′nchez, R Borja, P Weiland. Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate[J].Process Biochemistry,2001, (37):483-489.
    [70] Prasad Kaparaju, Jukka Rintala. Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure[J]. Resources, Conservation and Recycling, 2005,(43):175–188
    [71] Zhang Ruihong, Zhang Zh iqin. B iogasificat ion of rice st raw w ith ananaerobic2phased so lids digester system [J ].Bioresource Techno logy, 1999, 68: 235- 245.
    [72]张全国.沼气技术及其应用[M].北京:化学工业出版社, 2005.
    [73] Alastair J,.Ward , Phil J.,Hobbs, Peter J. Holliman et al. Optimisation of the anaerobicdigestion of agricultural resources[J]. Bioresource Technology (2008), doi:10.1016/j.biortech.2008.02.044.
    [74] Yadvika, Santosh , T.R. Sreekrishnan. Enhancement of biogas production from solid substratesusing different technique–a review [J]. Bioresource Technology, 2004,(95) :1–10.
    [75]何荣玉,袁月祥,闫志英,刘晓风,廖银章,李旭东,常影.提高沼气产量的外源添加物筛选研究[J].农业工程学报, 2008,24(10):181-185.
    [76] Fernando G. Fermoso , Jan Bartacek , Piet N.L. Lens Effect of vitamin B12 pulse addition on the performance of cobalt deprived anaerobic granular sludge bioreactors[J]. Bioresource Technology, 2010, (101): 5201–5205.
    [77] Yadvika, Santosh , T.R. Sreekrishnan et al. Enhancement of biogas production from solid substratesusing different techniques––a review [J]. Bioresource Technology, 2004,(95) :1–10.
    [78]张无敌,宋洪川,李建昌,韦小岿.水解酶提高猪粪沼气发酵产气率[J] .太阳能学报.2002,23(5):674-676.
    [79] Zhongfang Lei , Jiayi Chen, Zhenya Zhang et al. Methane production from rice straw with acclimated anaerobic sludge:Effectof phosphate supplementation[J].Bioresource Technology 2010, (101): 4343–4348.
    [80]马磊,王德汉,王梦男,文伟发,曾彩明,邱国伟,江成坤.矿物材料预处理对餐厨垃圾高温厌氧消化过程的影响[J].环境科学学报,2008,28(11):2277-2283.
    [81]李敏,李轶冰,杨改河.尿素和纤维素酶对厌氧发酵的影响[J].西北农林科技大学学报(自然科学版),2010,38(2):165-170.
    [82] L.Neves, R.Oliveira, M.M, Alves. Co-digestion of cow manure, food waste and intermittent input of fat.Bioresource Technology,2009, 100:1957-1962.
    [83]潘莉莉,武波,段思蒙.添加尿素对模拟发酵罐中沼气发酵的影响[J].基因组学与应用生物学, 2009 ,28(6):1106-1110.
    [84]白洁瑞,李轶冰,郭欧燕.不同温度条件粪秆结构配比及尿素、纤维素酶对沼气产量的影响[J].农业工程学报2009, 25(2):188-193.
    [85]陈佳一,雷中方.稻草秸秆厌氧发酵接种物的驯化初步研究[J].复旦学报, 2008,5(47):652-658.
    [86]武磊.太阳能加热的户用沼气发酵装置的设计与实验研究[D].兰州理工大学学位论文, 2009.
    [87]沈连峰,王谦,轩辗,马巧丽,赵秋义,张全国.户用沼气池建设的节能减排和农民增收效果[J].农业工程学报, 2009, 25(10): 220-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700