农村沼气发酵及其残余物的主要化学成分评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农村沼气建设项目对建设社会主义新农村、提高农民生活质量、改善农村生产、优化农村能源结构、保护农村生态环境,必将起到积极的推动作用。沼气发酵的工艺参数对沼气产气量影响很大,采用合适的发酵工艺参数是高效生产沼气的关键。另外,沼液和沼渣是一种优质的有机肥料,能显著改善土壤生态系统和结构,增加土壤肥力,有效调节土壤中的水、肥、气、热,促进土壤生态环境良性循环。
     本试验模拟农村水压式沼气池的工作原理,通过自制沼气发酵装置,从实际需要出发,研究了不同粪草比、接种物的接种量、堆沤处理方式这3个影响沼气发酵的重要因素对产气效果的影响。另外,通过综合工艺试验,得到了堆沤处理方式、不同粪草比、不同原料配比和接种物的接种量4个因素的最佳组合。
     通过设置4个不同粪草比处理,研究粪草比对产气效果的影响。结果表明,在碳氮比不定的情况下,原料的总固体浓度为8%、pH值介于6.8~7.4、接种沼气池污泥量为原料干物质重量的20%、发酵周期为30d时,纯猪粪的效果最好,其在总产气量、日均产气量、池容产气率、料容产气率和原料产气率分别达到了88851.84mL、2961.73mL、0.4527m~3/m~3·d、0.5328m~3/m~3·d和0.1999m~3/kg·TS,比粪草比为2:1的处理有很大提高,分别提高了41.61%、41.61%、41.56%、41.63%和41.67%。
     在碳氮比一定的情况下设置3个不同粪草比处理,研究其对产气效果的影响。结果表明,在碳氮比一定的情况下,原料的总固体浓度为8%、pH值介于6.8~7.4、接种沼气池污泥量为原料干物质重量的20%、发酵周期为30d时,碳氮比为2:1的处理效果最好,其在总产气量、日均产气量、池容产气率、料容产气率和原料产气率分别达到了56662.28mL、1888.74 mL、0.2888m~3/m~3·d、0.3398m~3/m~3·d和0.1274m~3/kg·TS,比粪草比为3:1的处理有很大提高,分别提高了30.29%、30.29%、30.27%、30.29%和30.27%。
     通过对沼气池污泥的接种量设置不同的梯度,研究接种量对产气效果的影响。试验的其它条件为:原料总固体浓度为8%、换料时间间隔为7d、pH值在6.8~7.4之间、发酵周期为30d,沼气池污泥的接种量分别为10%、20%和30%。结果表明,在本试验的试验条件下,对发酵原料接种30%的沼气池污泥效果最好,其沼气的总产气量、日均产气量、池容产气率、料容产气率和原料产气率分别达到了37873.60mL、1262.45 mL、0.1930 m~3/m~3·d、0.2271m~3/m~3·d、0.0852m~3/kg·TS,比接种20%和10%的沼气池污泥的处理的总产气量分别提高了44.81%和174.49%,池容产气率提高了44.81%和174.49%,料容产气率提高了44.79%和174.54%,原料产气率分别提高了44.90%和174.84%。
     不同的堆沤方式也影响沼气发酵的效率。本试验在发酵原料总固体浓度为8%、换料时间间隔为7d,pH值在6.8~7.4之间、发酵周期为30d时,对原料分别采用池外堆沤,池内堆沤和不堆沤三种处理方式。结果表明,池内堆沤处理方式的效果最佳,其沼气的总产气量、日均产气量、池容产气率、料容产气率和原料产气率分别达到了56662.28mL、1888.24mL、0.2887m~3/m~3·d、0.3397 m~3/m~3·d和0.1274 m~3/kg·TS,比不堆沤的处理提高31.63%、31.63%、31.11%、31.11%和31.20%。
     另外,本论文还进行了包括发酵原料的堆沤处理、接种物的接种量、粪草比及原料配比这4个对农村家刚沼气发酵影响较大的因子的综合工艺试验,每个因子设置3个水平:堆沤处理方式包括池外堆沤处理、池内堆沤处理和不堆沤,粪草比为2:1、2.5:1和3:1,原料配比为猪粪+稻草、猪粪+玉米秸秆和猪粪+青草,接种物的接种量为10%、20%和30%,采用L_9(3~4)正交设计,原料总固体浓度为8%,料液pH值为6.8~7.4之间,发酵周期为30d。结果表明,本试验中的4个因子对沼气产量的影响火小依次为:原料配比>粪草比>接种物的接种量>堆沤方式。得出最佳理论组合是:不堆沤、接种量为30%、粪草比3:1、鲜猪粪+青草,实际最佳组合是:池内堆沤、接种量为30%、粪草比3:1、鲜猪粪+青草。在生产实践中可根据具体的发酵条件和要求来选择应用哪种组合。
     此外,本实验通过在沙坪坝区、合川区、涪陵区采集的11个户用沼气发酵残液和沼气残渣样本,对其进行营养性能分析和安全性能分析发现,沼液和沼渣除了含有丰富的有机质外,还含有氮、磷、钾、、钠、钙、铜、铁、镁、锰和锌等微量元素,对促进作物生长,提高农产品质量起着重要作用。
     论文最后指出,发酵原料的堆沤时间也是影响沼气发酵的重要因子,建议在以后的试验中对此条件进行进一步的筛选;并且建议采用多种评价方法对沼气发酵残余物进行主要化学成分评价。
The village Biogas construction is conducive to constructing the socialism new village, raising the living standards of people, improving village productivity, excellenting village energy struction and protecting the village ecosystem environment. The processing parameters impact biogas production rate and quality seriously.it is high efficiency to produce biogas that choice appropriate processing parameters. Moreover, Biogas Residual Products are a kind of superior organic fertilizers, they could improving soil eco-system and struction, soil fatty dint, effectively regulating the water, fatty, spirit, hot in the soil, promoting the environment virtuous cycle of the soil ecosystem.
     The experimental simulated the principle of operation of hydraulic pressure methane tank, proceeded from effective demand, through the medium of self-command methane fermentation plant, we looked into know clearly that these three factors including ratio of muck and grass, the ratio of materials, inoculum impacted to biogas production. In addition, through Orthogonal Cross, we got know clearly stack retting processing mode, ratio of muck and grass, the ratio of materials and inoculum.
     Through four different ratio of muck and grass, we looked into the effect of lowering of charge interval on aerogenesis. The results showed that under 8% of raw total solids concentration, 6.8~7.4 of pH, the methane tank sludge, 20% of them inoculated, after 30 days of fermentation, it was pure pig muck that the effect was execellent. The total aerogenesis tolerance was 88851.84 mL, the day aerogenesis tolerance was 2961.73 mL, the pit held aerogenesis rate was 0.4527 m~3/m~3·d , the stuff held aerogenesis rate was 0.5328 m~3/m~3·d, the raw material aerogenesis rate was 0.1999 m~3/kg·TS. All of them were raised 41.61%, 41.61%, 41.56%, 41.63% and 41.67% in comparison.
     on carbon-nitrogen ratio definite occasions, through three different ratio of muck and grass, we looked into the effect of lowering of charge interval on aerogenesis. The results showed that under 8% of raw total solids concentration, 6.8~7.4 of pH, the methane tank sludge, 20% of them inoculated, after 30 days of fermentation, it was carbon-nitrogen ratio for 2:1 that the effect was execellent. The total aerogenesis tolerance was 56662.28 mL, the day aerogenesis tolerance was 1888.74 mL, the pit held aerogenesis rate was 0.2888m~3/m~3·d , the stuff held aerogenesis rate was 0.3398 m~3/m~3·d, the raw material aerogenesis rate was 0.1274m~3/kg·TS. All of them were raised 30.29%, 30.29%, 30.27%, 30.29% and 30.27% in carbon-nitrogen ratio for 3:1.
     Though different inoculum of the methane tank sludge, we studied that the inoculum effected on the biogas production. The condition was the same to the former, but the inoculum were 10%, 20% and 30% separately. The result showed that 30% of inoculum was execellent, with 37873.60 mL of the total aerogenesis tolerance, 1262.45 mL of the day aerogenesis tolerance, 0.1930 m~3/m~3·d of the pit held aerogenesis rate, 0.2271 m~3/m~3·d of stuff held aerogenesis rate, 0.0852m~3/ kg·TS of the raw material aerogenesis rate. These results indicated that the total aerogenesis tolerance were raised 44.815% and 174.49% in comparison to 20% and 10% separately, 44.81% and 174.49% at pit held aerogenesis rate in comparison to 20% and 10% separately, 44.79% and 174.54% at the stuff held aerogenesis rate in comparison to 20% and 10% separately , 44.90% and 174.84% at the raw material aerogenesis rate in comparison to 20% and 10% separately.
     different stack retting processing mode also impacting biogas fermentative efficency. The experimentation condition was the same to the former, but materials were putted in practice respectively to three processing modes including the outside stack tetting, pool inside stack retting and not stack retting. The result showed that pool inside stack retting was execellent, The total aerogenesis tolerance was 56662.28 mL, the day aerogenesis tolerance was 1888.74 mL, the pit held aerogenesis rate was 0.2888m~3/m~3·d , the stuff held aerogenesis rate was 0.3398 m~3/m~3·d, the raw material aerogenesis rate was 0.1274m~3/kg·TS. All of them were raised 31.63%、31.63%、31.11%、31.11% and 31.20% in no stack retting.
     L_9 (3~4) Orthogonal Cross was used in the study for the best control condition of biogas fermentation, the factors concluded stack retting processing mode, ratio of muck and grass, the ratio of materials and inoculum. Every factor had three levels, stack retting processing mode concluded stack retting in the pool, out of the pool and no stack retting, ratio of muck and grass concluded 2:1, 2.5:1 and 3:1, the ratio of materials concluded pig muck+straw, pig muck+green grass and pig muck+com , inoculum concluded 10%,20% and 30%.Other condition was the same as the former. From the study, we can know that the four factors' effect was the ratio of materials > ratio of muck and grass > inoculum > stack retting processing mode. The best condition theoretical was no stack retting, 30% of inoculum, 3:1 of ratio of muck and grass, pig muck+green grass. The best condition in the study was stack retting inside, 30% of inoculum, 9 days of period of employing materials, the methane tank sludge. we can choice one of them according to the reality condition.
     Furthermore, the experiment sampling 11 the swatch of Biogas fermentation raffinate and Biogas fermentation leabvings in Sha Ping Ba, He Chuan, Fu Ling erea. We found that the inclusions were not only abundant organic matter, but also many microelements such as nitrogen, phosphor, Potassium, natrium, calcium, cuprum, iron, magnesium, Manganese and zincum. These were importance to promoting plant growth and advancing agricultural production quality.
     Finally, some further researches were suggested on the following derections such as stack retting time ; multi-evaluation to biogas fermentation relict.
引文
[1] Anna Fernandez, Antoni Sanchez, Xavier Font. Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin [J]. Biochemical Engineering Journal, 2005, 26: 22~28
    [2] Anaerobic fermentation of Ageratum for biogas production. Biological Wastes, Volume 32, Issue 2, 1990, Pages 155-158
    [3] Angelidaki I., Ellegaard L., Ahring B, A comprehensive model of bioconversion of complex substrates to biogas[J]. Biotechnologyand Bioengineering, 1999, 63(3): 363~372
    [4] Balancing of greenhouse gas emissions and economic efficiency for biogas-production through anaerobic co-fermentation of slurry with organic waste. Agriculture, Ecosystems & Environment, Volume 112, Issues 2-3, February 2006, Pages 178-185
    [5] Bryant M. P. Microbial methane production-theo-retical aspects[J]. Animal science, 1979, 48(1): 193~201
    [6] Biogas production with horse dung in solid-phase digestion systems. Bioresource Technology, In Press, Corrected Proof, Available online 26 March 2007,
    [7] Bames SP, Keller J. Cellulosic waste degradation by rumen-enhanced anaerobic digestion [J]. Water Sci Technol, 2003, 48(4): 155~62
    [8] Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresource Technology, Volume 98, Issue 8, May 2007, Pages 1664-1669
    [9] Douglas W Williams, Diana Gould-Wells. Biogas Production [J]. ProQuest Biology Journals. 2004, 11(3): 11~12
    [10] Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Conversion and Management, Volume 48, Issue 4, April 2007, Pages 1255-1265
    [11] Energy analysis of anaerobic biogas fermentation of agricultural effluents. FEMS Microbiology Letters, Volume 1, Issue 3, March 1977, Pages 153-155
    [12] Fetzer Silke, Conrad Ralf. Effect of redox potential on methanogenesis by Methanosarcina Barkeri [J]. Arch. Microbiol, 1993, 160: 108~113
    [13] Factors influencing biogas production during full-scale anaerobic fermentation of farmyard manure. Bioresource Technology, Volume 49, Issue 1, 1994, Pages 17-23
    [14] Gamze Gungor-Demirci, Goksel N. Demirer. Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatabilityof broiler and cattle manure[J]. Bioresource Technology, 2004, 93: 109~117
    [15] Herbert H. P. Fang, Hong Liu. Effect of pH hydrogen production from glucose by a mixed culture[J]. Bioresource Technology, 2002,82:87~93
    [16] Hungate R. E. Aroll tube method for cultivation of strict anacrobes [J]. Method in Microbial, 1969,38:117~132
    [17] Inanc, B.,Matsui, S., Ide, S., Propionic acid accumulation in anaerobic digestion of carbohydrates:an investigation on the role of hydrogen gas[J]. Water Sci. Technol, 1999,40(1): 93~100
    [18] Jansen J I C, Spliid H, Hansen T. L. et al. Assessment of sampling and chemical analysis of source—separated organic household waste[J].Waste Management, 2004,24:393~400
    [19] Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation. Renewable Energy, Volume 23, Issues 3-4, July 2001, Pages 673-684
    [20] Lissens G, Vandevive re P, De Baere L, et al. Solid waste digester: process performance and practice for municipal solid wastedigestion [J]. Water Sci Tech, 2001,44(8):91~102
    [21] Macias-Corral M, Samani Z., Hanson A. et al. Producing Compost and Biogas from Cattle Manure [J]. ProQuest Agriculture Journals, 2004,45(3): 55~56
    [22] Proceedings of the 8th International Conference on Anaerobic Digestion.Sendai Japan.1997, (5): 25~29
    [23] Sosnowski P., Wieezorek A., Ledakowicz S. Anaerobic co-digesdtion of sewage sludge and organic fraction of municipal solid wastes [J]. Advances in Envionmental Research, 2003,7:609~4516
    [24] The potential for hydrogen-enriched biogas production from crops: Scenarios in the UK. Biomass and Bioenergy, Volume 31, Issues 2-3, February-March 2007, Pages 95-104
    [25] The influence of using biogas digesters on family energy consumption and its economic benefit in rural areas—comparative study between Lianshui and Guichi in China. Renewable and Sustainable Energy Reviews, Volume 11, Issue 5, June 2007, Pages 1018-1024
    [26] 包武,卢济事,包巍,林代炎.利用沼液进行无土栽培生产无公害蔬菜.福建能源开发与节约,2003,(02)
    [27] 陈蓓,程川,任绍光重庆农村能源消费结构及现状调查[J]能源研究与利用,2004,6:47~50
    [28] 陈锋,张顺仁,陈承福.沼肥在葡萄上应用效果初报.中国沼气,2003,(02)
    [29] 陈新.推广沼液浸种提高粮食产量[J]中国沼气,1999,(03)
    [30] 陈玉成,吕宗清,李章平.环境数学分析[M]重庆:西南师范大学出版社,1998
    [31] 程莉,杨海真.推广厌氧消化工艺是减少病原体的措施之一[J]中国环保产业,2003,6:22~23
    [32] 邓立平,.沼肥种菜好.长江蔬菜,2006,(01)
    [33] 邓立平,.沼肥种菜好.当代蔬菜,2005,(12)
    [34] 丁保文.果树施用沼肥技术[J]现代农业科技,2005,(03)
    [35] 方德华,奶牛粪沼气发酵条件的初步研究[J].中国沼气,1994,12(4):13~16
    [36] 方德华,庞江春,刘邦芳,等农村家用沼气发酵条件研究[J]西南农业大学学报, 1997,19(6):298~303
    [37] 方仁声.对当前几个沼气技术问题的探讨[J].江西能源,2002(3):42~44
    [38] 方仁声.沼气发酵如何正确使用搅拌[J].中国沼气,2003,21(3):46
    [39] 龚亦.化学耗氧量(COD)测定中应注意的几个问题[J]江西农业科技,2003,2:8~9
    [40] 胡永军.沼肥对促进脐橙生长及提高产量与品质的效果研究.林业调查规划,2004,(02)
    [41] 胡丽华,王肖鲸,方仁声,黎建华.棉花施用沼肥技术的研究.中国沼气,1999,(03)
    [42] 何顺民,吴礼友,叶北朝,蒋尚云.沼肥在水稻生产中的应用研究[J]安徽农学通报,2005,(01).
    [43] 洪文思,林丽娟.沼肥对苦瓜增产效应初探[J]中国沼气,1997,(03)
    [44] 蒋楠.沼气发酵处理城市生活垃圾试验[J] 四川职业技术学院学报,2003,13(3):61-63
    [45] 吉顺,沈应柏,李忠秋,蔡斌,曹威,汤飞燕,赵晓敏.施用沼液对桃树光合作用及生长量的影响.中国沼气,2003,(03)
    [46] 聂永敏,周祥.沼肥在番茄上的应用效果研究.吉林蔬菜,1998,(02)
    [47] 李俊,沼气与重庆农业可持续发展[J].重庆市首届工程师大会论文集(农业科学篇),2004:52~56
    [48] 李泉临.我国人工沼气业的发展历程与可持续性研究[J] 中国沼气,2004,22(2):53~55
    [49] 李兴杰.沼气发酵技术的研究[J]农业与技术,1998,18(3):20~21
    [50] 刘德江,高桂丽,朱妍梅,等.猪粪、牛粪、羊粪沼气发酵比较试验[J] 塔里木大学学报,2005,17(2):10~12
    [51] 刘英,陈彦宾,王革华.德国沼气技术考察报告[J]中国沼气,2001,19(4):41~43
    [52] 刘勇,张宁珍,刘善军,张建安,胡俊林.沼肥在农业生态模式中转化应用研究.江西农业大学学报,1999,(02)
    [53] 刘继芬.德国农村沼气利用概况[J].世界农业,2005,309(1):36~38
    [54] 马洪儒.家用沼气池稳定产气的技术要点[J],可再生能源,2003,2:29~30
    [55] 莫荣兴.气液分室沼气池简介[J].中国沼气,2004,22(1):38-39
    [56] 农村家用水压式沼气池标准图集 GB/T4750—984
    [57] 南香菊,李蕊林.沼液沼渣在蔬菜生产中的应用[J]山西农业,2004,(08)
    [58] 倪晓燕.沼液浸种技术.农家参谋,2005,(08)
    [59] 宁晓峰.沼液浸种.河南农业,1996,(07)
    [60] 潘立章,蔡建平.粪草混合沼气发酵工艺研究[J]中国沼气,1992,10(3):23~24
    [61] 潘丽娜,陈劫.沼肥与其它肥料用于草莓生产的试验对比[J]中国沼气,2004,(02).
    [62] 潘云霞,潘云锋,李文哲.不同阶段沼液作发酵接种物对牛粪产气的影响[J]农机化研究,2005,(01)
    [63] 皮广洁,唐书源编.农业环境监测原理与应用[M].成都成都科技大学出版社,1998
    [64] 邱凌,王兰英,杨鹏.农村沼气工程动态发酵工艺的调控[J]可再生能源,2005,119(1):47~49
    [65] 邱凌,杨改河,毕于运.中国西部发展农村沼气的条件与对策研究[J] 干旱地区农业研究,2005, 23(3):201~204.
    [66] 邱贵有.沼气在农业生产中的应用[J]河南农业,2004,(11)
    [67] 史雅娟,刘敏超,吴成.施用沼肥对油菜硝酸盐含量及土壤速效氮的影响[J]农业现代化研究,2001,(04).
    [68] 史纪安,杨改河,郭永新,等中国户用沼气技术转化制约因素分析及对策[J]中国农学通报,2005,21(6):433~436,469
    [69] 帅兴锋,王翔.家用沼气池稳定产气的技术要点[J] 甘肃农村科技,2003,5:47
    [70] 孙进杰,赵丽兰.沼气正常发酵的工艺条件[J]农村能源,2000,92(4):20~21
    [71] 孙孝政,夏吉庆,田晓峰.厌氧发酵技术工厂化生产沼气的现状及展望[J].东北农业大学学报,2005,36(1):109~112
    [72] 陶世洪.沼肥对早熟蜜柑土壤肥力及产量品质的影响.广西农业科学,2005,(04)
    [73] 田晓东,张键,张典,等.环境温度影响沼气发酵装置平稳产气因素分析[J]中国沼气,2003,21(Suppl):172~17
    [74] 汪家铭.农作物秸秆综合利用潜力巨大[J].中国资源综合利用,2000,3:39~40
    [75] 王家城,赵志林.中国能源发展报告[M].北京:中国计量出版社,2001
    [76] 王志伟,董颜防.沼液浸种的好处及注意事项.农民科技培训,2005,(04)
    [77] 武辉明.浅谈农村户用沼气池的快速启动[J]山西农业,2005,(01)
    [78] 徐秋英.沼气、沼液、沼渣综合利用技术[J]吉林农业,2004,(12)
    [79] 杨鸿雁.利用沼液生产无公害蔬菜的试验初报[J]中国沼气,2005,(03)
    [80] 曾晶,张卫兵.我国农村能源问题研究[J].贵州大学学报(社会科学版),2005,23(3):105~108
    [81] 赵丽,周林爱,邱江平.沼渣基质理化性质及对无公害蔬菜营养成分的影响[J]浙江农业科学,2005,(02)
    [82] 张水龙.户用沼气池技术发展中存在的问题及对策[J]农村能源,2003,5:18~20
    [83] 赵恒斗.发展沼气对促进土壤生态环境的研究与应用[J]中国沼气,2003,21(Suppl):197~200
    [84] 郑时选,章力健.沼气技术在农业立体污染防治中的作用[J]中国沼气,2005,23(1):52~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700