常温厌氧消化技术处理柑橘皮渣的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆市地处我国沿长江带柑橘优势产业区,橙汁加工能力达25万吨,位居亚洲第一,每年产生约25万吨的柑橘皮渣。大量的橘渣至今仍采用填埋的方式处理,不但占用了大量宝贵的土地资源,同时对三峡库区的生态环境造成巨大的威胁。柑橘皮渣处理的问题已经迫在眉睫,产业化处理新技术亟待开发。厌氧消化技术是处理有机废物理想的方法,国外有过利用柑橘皮渣进行厌氧消化的报道,但研究不多,而国内则并未开展相关工作。本研究的目的是探讨柑橘皮渣厌氧消化处理的可行性,并对主要工艺参数进行优选,以期为柑橘加工废料的高效厌氧消化工艺的建立提供参考。研究的主要结果如下:
     1.对柑橘皮渣的含水量、挥发性固体(VS)含量、C/N比、微量元素等特性进行了详尽分析,对照猪粪等常见物料的特性后,确定在以后的试验中均采用猪粪作为配料以促进柑橘皮渣的厌氧消化,并以尿素调节料液C/N比至25:1;对柑橘皮渣进行40 d的酸化试验,期间不调节pH值,每3d检测料液中有机挥发酸(VFA)含量,结果表明柑橘皮渣具有酸化过程快、周期短、产酸量大、料液pH过低的特点,提出以碱液调节料液pH和适当降低料液浓度两个方面来解决上述问题;
     2.采用以猪粪为发酵原料稳定产气的沼气池污泥为接种物,每10d加入一定量的柑橘渣浸出液进行驯化,周期40d。结果表明,驯化后污泥的形态和其中的微生物优势菌群均发生了变化,说明驯化起到了很好的作用,污泥因物料性质的改变而逐渐适应;
     3.设置柑橘皮渣:猪粪为8:2、7:3、6:4、5:5四个处理,研究猪粪不同添加量对发酵的影响。结果表明在料液浓度为6%、pH值在7.0左右、接种物的接种量为原料干物质重量的20%、发酵周期为30 d时,除8:2的处理较差外,其余各处理的产气与沼气质量并无显著差异,而从各处理COD的去除情况来看,8:2、7:3两处理最好。综合比较,7:3的处理既保证了沼气产量与质量,又有较高的橘渣比例,此时总产气量、日均产气量、TS产气率、VS产气率、池容产气率等分别为11918.67 ml、397.29 ml、49.60 ml·g~(-1)、58.56 ml·g~(-1)、0.10ml·ml~(-1)d~(-1),甲烷含量53.23%,达到沼气甲烷含量正常范围(50-70%),COD去除率40.93%(44788.80 mg·L~(-1),初始浓度,下同)。因此以后试验均采用橘渣:猪粪为7:3的比例;
     4.对料液浓度分别为2%、3%、4%、6%、8%的物料进行为期30 d的室温发酵试验,橘渣:猪粪为7:3,其余条件同前。结果表明,当浓度达到8%时,由于负荷过高而使发酵受阻。料液浓度过低,也将影响发酵产气、沼气质量以及有机质去除。试验中6%的处理最好,其总产气量、日均产气量、TS产气率、VS产气率、池容产气率等分别为10481.44 ml、349.38ml、42.96 ml·g~(-1)、49.34 ml·g~(-1)、0.09 ml·ml~(-1)d~(-1),甲烷含量51.94%,COD去除率44.12%(45145.58 mg·L~(-1))。故以6%的料液浓度作为以后试验的投料标准;
     5.设计了堆沤预处理试验。结果表明,当对原料堆沤5 d时,总产气量、日均产气量、TS产气率、VS产气率、池容产气率等分别达到:12058.21 ml、401.94 ml、50.16ml·g~(-1)、57.61 ml·g~(-1)、0.10 ml·ml~(-1)d~(-1),比不堆沤均有显著(P<0.05)提高,甲烷含量也较高,达到54.91%,COD去除率为47.79%(44419.33 mg·L~(-1))。当堆沤时间达到10 d时,产气出现了下降的趋势,而气体CH_4含量、COD去除率等也没有明显的提高。说明,适当的堆沤,能促进柑橘皮渣的厌氧消化,但堆沤时间过长,也不利于发酵的进行;
     6.探讨了柑橘皮渣厌氧消化的有机负荷。结果表明,比较适合的有机负荷率大约在1.0 g VS·L~(-1)·d~(-1)左右,此时总产气量、日均产气量、TS产气率、VS产气率、池容产气率等分别达到:13773.32 ml、459.11 ml、69.07 ml·g~(-1)、79.68 ml·g~(-1)、0.11 ml·ml~(-1)d~(-1),CH_4含量63.10%,明显好于0.5 g VS·L~(-1)·d~(-1)的处理。提高负荷率至1.5 g VS·L~(-1)·d~(-1)时,表现出有机负荷过大的迹象,此时产气量和气体质量反而都有一定程度的降低:
     7.探讨了不同pH调节剂对发酵产气及沼气质量的影响。结果表明,在不同的有机负荷下,以NaHCO_3溶液调节能够获得相对较高的产气量,但其气体中的CH_4含量却最低;NaOH、NaHCO_3两种溶液调节效果近似,但前者气体中的CH_4含量要明显高于后者。经比较,认为以NaOH调节维持料液pH为最佳选择;
     8.选择半连续发酵工艺,采用正交试验方法,研究了原料堆沤时间、补料时间、补料量3个发酵影响因子对新鲜榨汁柑橘渣厌氧消化的影响。结果表明,在柑橘皮渣常温连续单相厌氧消化过程中,补料量是影响产气率的最关键因素,在补料量为2.5-7.5%的范围内,日均产气量随补料量的增大而增加;原料堆沤是影响发酵产气的又一重要因素,堆沤5 d可显著(P<0.05)提高日均产气量;补料时间的影响最小,8-12 d补料对日均产气量没有显著的影响。各处理气体中CH_4含量无显著差异。试验的实际最佳组合为原料堆沤5 d、10 d补料、补料量为总有效容积的7.5%。此时总产气量、日均产气量、TS产气率、VS产气率、池容产气率等分别达到:18140.18 ml、604.67 ml、71.79 ml·g~(-1)、78.95 ml·g~(-1)、0.15 ml·ml~(-1)d~(-1),CH_4含量57.22%,COD去除率为46.77%(46010.00 mg·L~(-1));
     9.在上述试验的基础上研究了温度对发酵产气的影响。经统计分析表明,温度变化对沼气产量的影响显著,二者之间具有较好的线性关系,揭示出稳定、较高的温度有利于发酵的顺利进行。因此,在综合衡量处理成本的基础上,可以考虑通过控制温度来提高处理效率;
     10.最后,根据上述试验结果提出柑橘皮渣常温厌氧消化的最佳工艺路线:鲜料中添加30%猪粪,堆沤5 d投料,发酵料液浓度6%,接种20%(接种物占发酵原料干物质重的百分比)经柑橘皮渣浸出液驯化的沼气池污泥,每10 d补料,补料量为总有效容积的7.5%。
Chongqing locates in citrus advantage industry park along Yangtze River strip, which possesses the ability to process orange juice 250 thousands tons, firstly of Asia, and also 250 thousands tons citrus pulp may be produced every year. Plenty of citrus pulp were still treated as the mode of landfill up to the present, this mode occupied mass soil resources, and threatened the entironment of Three Gorges Region. How to deal with so many citrus pulp comes being an urgency problem to our country, explore new technology to dispose all these residues become necessary. Anaerobic digestion is an ideal technique to deal with organic wastes. It was reported that anaerobic digestion technique had applied in treatments of citrus pulp abroad, but only a few research had developed, analogous work still hasn't developed in China. This research explore to seek for the feasibility of citrus pulp anaerobic digestion, select main technics parameters, and provide foundation of building high effective anaerobic digestion technics citrus wastes process. The main results list as follows:
     1. Water content, volatility solid content, C/N compare and trace element were analyzed, contrast to materiel characteristics of swine feces, it was determined to apply swine feces to promote anaerobic digestion of citrus pulp, and adjust fluid C/N compare to 25: 1. Acidification experiment of citrus pulp was developed in 40 d, pH value hadn't been modulated during the period, VFA content were examined every 3 days. The results showed that citrus pulp was acidified with high speed, short cycle, high acid production and much low pH value. So, proposals were put forward that applied lye to modulate pH value and reduced fluid concentration to resolve the problems mentioned above;
     2. Sludge, collected from biogas digester that fermented with swine feces and producing gas stably, inoculated citrus pulp, domesticated with lixivium of citrus pulp every 10 days, the cycle was 40 days. Results indicated that after domestication, sludge configuration and predominant microbes were changed, revealed domestication gave positive effects, made sludge adapt to materiel characteristics;
     3. Four treatments of citrus pulp: swine feces (8:2, 7:3, 6:4, 5:5) were set to investigate effects of different proportion of swine feces on fermentation process. The results indicated that when fluid concentration was 6%, pH value was about 7.0, and inoculum size was 20% of dry material weight, the biogas production and quality in every treatment except pulp: swine feces 8:2 showed no significance. The treatments of pulp: swine feces 8:2, 7:3 utilized organic matter best. Totally, the treatment of pulp: swine feces 7:3 ensured production and quality of biogas, and owned high proportion of citrus pulp, which gained total gas production, daily average gas production, TS gas generation, VS gas generation and tank volume gas generation were 11918.67 ml、397.29 ml、49.60 ml·g~(-1)、58.56 ml·g~(-1)、0.10 ml·ml·d~(-1) separately, methane content was 53.23%, (in the normal range of methane content 50-70%), removal of COD was 40.93%, (44788.80 mg·L~(-1), the beginning concentration, the same below). So the treatment of pulp: swine feces 7:3 was chosen for later experiments;
     4. A fermentation experiment under room temperature was carried out for about 30d, which set the fluid concentration 2%, 3%, 4%, 6%, 8%, pulp: swine feces 7:3, and other condition same the study before. Results showed that if fluid concentration was 8%, the fermentation process. blocked because of high organic loading, while too low concentration exhibited negative effects on gas production, gas quality and utilization of microbes. Treatment of fluid concentration 6% was best, its total gas production, daily average gas production, TS gas generation, VS gas generation and tank volume gas generation were 10481.44 ml、349.38 ml、49.96 ml·g~(-1)、49.34 ml·g~(-1), 0.09 ml-ml~(-1)d~(-1) separately, methane content was 51.94%, removal of COD was 44.12%(45145.58 mg·L~(-1)). So 6% of fluid concentration was chosen for later experiments;
     5. In pre-process of pile fermentation, when pile fermented 5 d, the total gas production, daily average gas production, TS gas generation, VS gas generation and tank volume gas generation were promoted significantly, which reached 12058.21 ml, 401.94 ml, 50.16 ml·g~(-1), 57.61 ml·g~(-1); 0.10 ml·ml~(-1)d~(-1) differently, and methane content reached 54.91%, removal of COD was 47.79%(44419.33 mg·L~(-1)). Once the pile fermentation time was beyond 10d, gas production declined, and methane content and COD removal rate didn't increased. It can be concluded that a timing pile fermentation can boost anaerobic digestion of citrus pulp;
     6. Organic loading of citrus pulp was examined, and the adaptive one was about 1.0 g VS·L~(-1)·d~(-1) , the total gas production, daily average gas production, TS gas generation, VS gas generation and tank volume gas generation were reached 13773.32 ml, 459.11 ml, 69.07 ml·g~(-1), 79.68 ml·g~(-1), 0.11 ml·ml~(-1)·d~(-1) differently, methane content was 54.91%, much higher than in treatment of 0.5 g VS·L~(-1)·d~(-1) If feed-adding quantity reached, appeared organic loading too high, gas production and quality decreased on the contrary;
     7. Effects of different pH modulator on gas production and quality were examined. The results revealed under different organic loading, high gas production and low methane content were gained when using NaHCO_3, impacts of NaOH was similar to NaHCO_3, but the methane content was much higher than the latter. So, NaOH was chosen as the best modulator;
     8. Orthogonal test was used to check the effects of pile fermentation time, feed-adding time and feed adding quantity on anaerobic digestion on fresh citrus pulp. The results showed that at the process of citrus pulp anaerobic digested continuously in single-phase system at ambient temperature, feed-adding quantity was the key factor to influence the ratio of gas production, at the range of 2.5-7.5% feed-adding quantity, the daily average gas production promoted as feed-adding quantity increased. In addition, pile fermentation was another important factor affecting gas production, the daily average gas production was enhanced significantly (P<0.05) when pile fermented 5 d. Feed-adding impacted least, which had no significant effects on daily average gas production when feed-adding 8-12 d, CH_4 content in every treatments exhibited no significance. The best resultant lead to highest daily average gas production was pile fermentation 5 d, feed-adding 10 d, and feed-adding quantity 7.5% of total efficiency capacity,which possessed the total gas production, daily average gas production, TS gas generation, VS gas generation and tank volume gas generation were 18140.18 ml、604.67 ml、71.79 ml·g~(-1): 78.95 ml·g~(-1)、0.15 ml·ml·(-1)d~(-1), CH_4 content 57.22%, removal of COD was 46.77%(46010.00 mg·L~(-1));
     9. On the foundation of experiments former, effect of temperature on gas production was studied. Results revealed that temperature change affected gas production significantly, they had fine linear relation between each other, indicated stable and high temperature benefit fo'r fermentation process. Considering the cost, it was suggested that control temperature to improve fermentation efficiency;
     10. Above all, the best technics can be advanced: adding swine feces 30% in fresh materiel, pile fermentation 5 d, with fluid concentration 6%, inoculating sludge domesticated by citrus pulp lixivium 20% (the percentage of inoculant in dry fermenting material) , feed-adding every 10d, and the quantity is 7.5% of total efficiency capacity.
引文
1 资料来源:农业部农业信息网,数据由中华人民共和国农业部市场与经济信息司提供
    [1]邓烈,吴厚玖,周常勇,等.世界柑桔产销现状与趋势.柑桔与亚热带果树信息,2005,21(1):1-4
    [2]金靖,唐贺统.2004年我国水果生产现状及今后展望.北方园艺,2005,(4):7-8
    [3]洪棋斌,龚桂芝.世界柑桔汁消费变化趋势及影响因素.中国南方果树,2004,34(3):10-12
    [4]陈功,余文华,康建平,等.论我国柑桔深加工技术研究与开发的必要性.四川省食品与发酵,2001,36(3):1-5
    [5]中国南方果树杂志社.中国柑橘实用技术精编.重庆:中国南方果树杂志社,1997:538-540
    [6]乔海鸥,丁晓雯,张庆祝.柑橘皮的综合利用.浙江农业科学,2003,3:147-149
    [7]Braddock R J. By-products of citrus fruit. Food Technology, 1996, (6): 74-77
    [8]石桂凤,朱玉昌.柑桔皮综合利用的实用技术.食品工业科技,1989,(5):41-45
    [9]单杨,柑桔加工技术研究与产业化开发.中国食品学报,2006,6(1):423-428
    [10]何坚,孙宝国等.香料化学与工艺学—天然、合成调和香料.北京:化学工业出版社,1995
    [11]Redd J B, Hendrix C M. Processing of natural citrus oils and flavors, in: Nagy S, Chen C S, Shaw P E(Eds.), Fruit Juice Processing Technology. Florida: Ag. Science, 1993:83
    [12]赵丽,韩晓妍,景磊,等.柑桔精油的制取与应用.天津化工,2006,20(3):41-43
    [13]谢练武,郭亚平,周春山,等.压榨法与蒸馏法提取柑橘香精油的比较研究.化学与生物工程,2005,(5):15-17
    [14]Mira B, Blasco M, Berna A, et al. Supercritical CO_2 extraction of essential oil from orange peel. Journal of Supercritical Fluids, 1999, 14(2): 95-104
    [15]孙爱东等.CO_2超临界流体萃取技术提取甜橙皮精油的研究.食品工业科技,1999,20(3):7-8
    [16]Rosenberg M, Mannheim C H. Carotenoid base food colorant extracted from orange peel by d-limonene extraction process and use. Lebensmittel-Wissenschaft & Technology, 1983, 17(5): 270-275
    [17]李佑稷等.橘皮黄色素提取工艺研究.食品与发酵工业,2002,(11):28-32
    [18]Benavente-Garcia O, Castillo J, Marin F R, et al. Uses and properties of citrus flavonoids. Journal of Agricultural and Food Chemistry, 1997, 45:4505-4515
    [19]Bocco A, Cuvelier M.E, Richard H, et al. Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry, 1998, 46: 2123-2129
    [20]田维平,塔娜,李蜀眉,等.桔皮黄酮类化合物提取方法的研究.内蒙古农业大学学报,2002,23(3):66-68
    [21]Tsen H Y, Yu G K. Limonin and narigine removal from grapefruit juice with nariginase entrappes in cellulose triacetate fibers. Food Science, 1991, 56(4): 31-35
    [22]周小华等.从柑桔加工废水中吸附回收橙皮苷.离子交换与吸附,1994,(5):434-437
    [23]李安平,谢碧霞.桔黄色素微波萃取的研究.中国食品添加剂,2004,(1):16-19
    [24]周应浩.从柑桔皮中提取果胶的工艺的研究.广州食品工业科技,2004,20(3):77-79
    [25]臧玉红.柑橘皮的综合利用.食品与发酵工业,2005,31(7):145-146
    [26]李兆龙,等.柑桔综合利用.上海:上海科学技术文献出版社,1987
    [27]黄秀山,高凤芹.从柑桔皮中提取果胶的研究——优化工艺条件探讨.渝西学院学报(自然科学版),2004,3(4):38-42
    [28]赵伟良.混合盐析法从柑桔皮中提取果胶.广西化工,1994,(4):27
    [29]汪秋安,单扬.柑橘类果皮资源的综合利用研究.再生资源研究,1999,(5):28-30
    [30]赵雪梅,朱大元,叶兴乾,等.柑橘属中类黄酮的研究进展.天然产物研究与开发,2002,4(1):89-92
    [31]汪秋安,周冰,单杨,等.柑桔加工下脚料提取类胡萝卜素、橙皮苷、果胶和柠檬苦素.林产化工通讯,2004,38(3):33-37
    [32]饶志明,李文琦,杨天隆.柑橘果实加工废料资源化新技术研究.亚热带植物科学,2001,30(2):6-10
    [33]严赞开,侯明波.综合利用柑橘皮的优化工艺.中国物资再生,1999,(10):5-6
    [34]杨爱芩.橙皮苷及系列产品的提取工艺.精细化工,2002,19(5):259-261
    [35]汤建国,汪秋安,单杨.从柑桔果皮中超声提取橙皮苷的工艺研究.精细化工,2004,21(3):171-173
    [36]Braddock R J. Utilization of citrus juice vesicle and peel fiber. Food Technology, 1983, 37(12): 85-87
    [37]Braddock R J, Cadwallader K R. Citrus by-products manufacture for food use. Food Technology, 1992, 46(2): 105-110
    [38]祝渊.柑橘果实膳食纤维的研究.果树学报,2003,20(4):256-260
    [39]潘明,王世宽.锦橙皮渣膳食纤维提取研究.四川轻化工学院学报,1999,12(4):54-58
    [40]李应彪,童军茂,胡孝勇,等.利用柑桔皮提取膳食纤维的研究.广州食品工业科技,2001,18(1):35-36
    [41]Ghimirea K N, Inoue K, Yamaguchi H, et al. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Research, 2003(37): 4945-4953
    [42]Namasivayam C, Muniasamy N, Gayatri K, et al. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 1996, 57(1): 37-43
    [43]Sivaraj R, Namasivayam C, Kadirvelu K. Orange peel us all adsorbent in the removal of Acid violet 17(acid dye) from aqueous solutions. Waste Management, 2001, 21(1): 105-110
    [44]Ajmal M, Rao K R A, Ahmad R, et al. Adsorption studies on Citrus reticulata(fruit peel of orange): removal and recovery of Ni Ⅱ from electroplating wastewater. Journal of Hazardous Materials, 2000, 79(1-2): 117-131
    [45]王文娟,汪水平.柑橘渣的综合利用.中国饲料,2004,(14):30-33
    [46]张登辉.亟待开发的饲料资源—果渣.饲料博览,1991(3):39-41
    [47]赵义斌,邓昭华,风雷,等.柑桔皮粉的制备及其营养成分测定和利用.青海畜牧兽医杂志,2004,34(3):3-6
    [48]孟昭聚.桔皮粉作蛋鸡饲料添加剂.中国畜牧杂志,1994,30(5):26-27
    [49]胡太文,陈益众,程树明.日粮中添加柑桔皮粉对育肥猪增重的影响.云南畜牧兽医,1995,(3):17
    [50]冯洪钱.柑桔副产品的饲用价值.饲料博览,1993(6):27
    [51]吴厚玖,焦必林,王华.柑桔皮渣发酵饲料中间试验研究.中国饲料,1997,17(3):37-39
    [52]Shojaosadati S A, Faraidouni R, Madadi-Nouei A, et al. Protein enrichment of lignocellulosic substrates by solid state fermentation using Neurospora sitophila. Resources, Conservation and Recycling, 1999, (27): 73-87
    [53]Vaccarino C, Lo Curto R, Tripodo M M, et al. SCP from orange peel by fermentation with fungi-Submerged and 'surface' fermentations. Biological Wastes, 1989, 29(4): 279-287
    [54]De Gregorio A, Mandalari G, Arena N, et al. SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresource Technology, 2002, (83): 89-94
    [55]程建华,王舜华,史海林.柑桔渣制猪饲料的开发研究.粮食储藏,1999,(1):48-51
    [56]潘润淑.微生物发酵柑桔渣提高粗蛋白含量的菌种筛选.河南职业技术师范学院学报,2001,29(3):32-34
    [57]李长海,梁蜀森.柑桔渣粉饲料喂蛋鸡试验报告.四川粮油科技,1992,(1):54-55
    [58]赵义斌,谢仲伦,田雨润.柑储皮粉作饲料添加剂对肉仔鸡生产性能影响的研究.畜禽业,1999,(11):18-19
    [59]吴华.柑桔皮粉饲料添加剂饲喂生长肥育猪的效果.黑龙江畜牧兽医,2004,(1):29-29
    [60]Correia Guerrero C, Carrasco de Brito J, Nuno Lapa, et al. Re-use of industrial oranges wastes as organic fertilizers. Bioresoure Technology, 1995(53): 43-51
    [61]饶志明.微生物发酵法从柑橘皮渣制取乙醇的研究.果树科学,2000,17(1):31-34
    [62]吴永娴,刘译汉.柑桔醋酸饮料的研制.农牧产品开发,1997,(4):16-17
    [63]王维香.芦柑醋生产工艺的研究.辽宁师范大学学报(自然科学版),2000,23(4):403-405
    [64]张迎君.利用微生物发酵柑桔皮渣生产柠檬酸.四川果树科技,1989,17(1):40-41
    [65]张迎君,曾顺德,眭顺照,等.柑桔皮发酵生产柠檬酸.新疆大学学报(自然科学版),2004,21(z1):96-99
    [66]Lastella G, Testa C, Comacchia G, et al. Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy. Conversion&Management, 2002, 43:63-75
    [67]Anna Fernández, Antoni Sánchez, Xavier Font. Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochemical Engineering Journal, 2005(26):22-28
    [68]Ruihong Zhang, Hamed M. El-Mashad, Karl Hartman, et al. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 2006, 27 (4): 541-550
    [69]刘会友,王俊辉,赵定国.厌氧消化处理餐厨垃圾的工艺研究.能源技术,2005,26(4):150-154
    [70]胡觉,张无敌,尹芳等.紫茎泽兰连续发酵产沼气实验研究.农业与技术,2006,26(4):33-36
    [71]Hamzawi N, Kennedy K J, McLean D D. Technical feasibility of anaerobic co-digestion of sewage sludge and municipal solid waste. Environmental Technology, 1998, 19(10): 993-1003
    [72]任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社,2005
    [73]Parawira W, Murto M, Zvauya R. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy, 2004, 29(7): 1811-1823
    [74]Pavan P, Battistoni P, Mata-Alvarez J, et al. Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Science and Technology, 2000, 41(3): 75-81
    [75]Zakkour P D, Gaterell M R, Griffin P. Anaerobic treatment of domestic wastewater in temperate climates: treatment plant modeling with economic considerations. Water Research, 2001, 35(17): 4137-4149
    [76]Rajeshwari K V, Lata K, Pant D C, et al. A novel process using enhanced acidification and a UASB reactor for biomethanation of vegetable market waste. Waste Management & Research, 2001, 19(4): 292-300
    [77]张仁瑞.VFA作为厌氧生物学指标的可行性研究.青岛建筑工程学院学报,1997,18(2):51-55
    [78]Grossl P R, Inskeep W P. Characterization of the hydrophobic acid fraction isolated from a wheat straw extract. Soil Sci. Soc. Am. J, 1996, 60(2): 158-162
    [79]Sen S, Demirer G N. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Research, 2003, 37(8): 1868-1878
    [80]Bernal M P, Navarro A F, Sanchez-Monedero M A, et al. Infuence of sewage sludge compost stability and Maturity on carbon and nitrogen mineralization in soil. Soil Biol. Biochem, 1998, 30(3): 305-313
    [81]James H, Hartiey, Tony D, et al. Accelerated Hydrolysis of Boronic acid Imines. Tetrahedron Letters, 1999, 40(13): 2597-2600
    [82]Adrie Veeken, Sergey Kalyuzhnyi, Heijo Scharff, et al. Effect of pH and VIA on Hydrolysis of Organic Solid Waste. Journal Of environmental engineering, 2000, 12(6): 1076-1081
    [83]李建政,任南琪.产酸相最佳发酵类型工程控制对策.中国环境科学,1998,18(3):398-402
    [84]Para H T, Dinel M, Schnitzer S, et al. Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol Fertil Soils, 1998, 26(3): 173-178
    [85]张希衡.废水厌氧生物处理工程.北京:中国环境科学出版社,1996
    [86]聂永丰,三废处理工程技术手册-固体废卷.北京:化学工业出版社,2000:251-285
    [87]Kayhanian M, Tchobanoglous G. Innovative two-stage process for the recovery of energy and compost from the organic fraction of municipal solid waste(MSW). Water Science and Technology, 1993, 27(2): 133-143
    [88]Held Christof, Wellacher Martin, Robra Karl-Heinz. Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors. Bioresource Technology, 2002, 81(1): 19-24
    [89]Hobson P N. In.: Subba Rao NS(ed) Aduan. In Agricult. Microb. Landon, Buffer worth Scientific, 1982:523
    [90]Lane A G. Methane from anaerobic digestion of fruit and vegetable processing wastes. Food Technology in Australia. 1979, 31:201-207
    [91]Srilatha H R, Krishna Nand, Sudhakar Babu K, et al. Fungal Pretreatment of Orange Processing Waste by Solid-State Fermentation for Improved Production of Methane. Process Biochemistry, 1995, 30(4): 327-331
    [92]Lane A G. Removal of peel oil from citrus peel press liquors before anaerobic digestion. Environ. Technol. Lett, 1983, 4(2): 65-72
    [93]Lane, A G. Pretreatment of citrus peel press liquor before anaerobic digestion. Environmental Technology Letters, 1983, 4(2): 73-78
    [94]Akao T, Mizuki E, Saito H, et al. The methane fermentation of Citrus unshu peel pretreated with fungus enzymes. Bioresource technology, 1992, 41 (1): 35-39
    [95]李艳梅.户用沼气池的配料、投料、换料技术.农民科技培训,2005,(07):12-13
    [96]任南琪,王爱杰,等.厌氧生物技术原理与应用.北京:化学工业出版社,2004
    [97]中国科学院成都生物研究所编.沼气发酵常规分析.北京:北京科技出版社,1984
    [98]GB11914-1989,水质化学需氧量的测定—重铬酸盐法.
    [99]张波,蔡伟民,何品晶.pH调节方法对厨余垃圾两相厌氧消化中水解和酸化过程的影响.环境科学学报,2006,26(1):45-49
    [100]李俊涛.泔脚垃圾厌氧发酵产沼技术研究:[硕士学位论文].上海:同济大学,2003
    [101]赵一章,张辉.高活性厌氧颗粒污泥微生物特性和形成机理的研究.微生物学报,1994,34(1):45-54
    [102]苏玉民,范建.脉冲上流式厌氧污泥床反应器的应用.环境科学,1996,17(1):50-52
    [103]刘双江,胡纪萃.厌氧颗粒污泥形成过程的微生物学研究.中国环境科学,1992,12(6):405-409
    [104]Schmidt J E, Ahring B K. Granular sludge formation in up flow anaerobic sludge blanket (UASB)reactors. Biotechnology and Bioenginering, 1996,49(3): 229-246
    [105]郭养浩,孟春.UASB反应器中影响污泥颗粒化的工程因素.生物工程学报,1997,13(1):76-82
    [106]郭亚丽,何惠君,徐迪民.高效连续式常温地埋厌氧消化池池温的变化及其影响.中国沼气,2002,20(1):19-22
    [107]沼气池的使用及管理.网址:www.cquc.edu.cn,2006-5-22
    [108]张旭,王宝贞,朱宏.厌氧消化体系的酸碱性及其缓冲能力.中国环境科学,1997,17(6):492-496
    [109]Keshtkar A, Ghaforian H, Abolhand G. Dynamic simulation of cyclic batch anaerobic digestion of cattle manure. Bioresource Technology, 2001, 80:9-17
    [110]Siegrist H, Vogt D, Garcia-Heras J L, et al. Mathematical model for meso-and thermophilic anaerobic sewage sludge digestion. Environmental Science Technology, 2002, 36: 1113-1123
    [111]沈东升,周旭辉.废水生物处理中的毒物影响及其工程对策.中国沼气,2000,18(1):3-7
    [112]农村能源网.网址:http://www.zjagri.gov.cn/html/ncny/productView/2006012558269.html
    [113]王秀珍.沼气池装料启动操作技术和管理要点.青海农林科技,2005,(1):76-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700