几种不确定性优化方法在液压污染控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制液压系统污染的关键问题之一是合理地设计和维护过滤系统,将各关键点的污染物浓度控制在一定范围内。不必要的过滤器的安装及过分地维护势必会增加系统成本。本研究引入系统优化的思想,寻求系统性能和成本之间的折衷,通过Lingo求解出最优决策。由于在优化建模中存在许多随机、模糊、区间等不确定性的参数,采用多种优化方法结合的不确定性优化理论和方法对过滤器进行优化配置研究具有十分重要的意义。
     本文首先总结了国内外液压系统污染控制和两阶段随机、机会约束以及模糊优化方法方面的研究成果,阐述了采用优化思想和多种优化方法对过滤器进行配置的必要性。其次,在典型单回路液压系统的基础上,发展出带旁路的过滤系统。在考虑各种不确定性参数的情况下,建立了基于多种优化参数相结合的区间两阶段随机非线性规划(Interval Two-Stage Stochastic Nonlinear Programming缩写为ITSNP)、区间机会约束非线性规划(Interval Chance-Constrained Nonlinear Programming缩写为ICNP)以及区间模糊机会约束非线性规划(Interval Fuzzy chance-Constrained Nonlinear Programming缩写为IFCNP)等三种非线性规划方法的液压系统过滤器配置决策模型。
     本文将ITSNP、ICNP和IFCNP方法分别求得的最优解从理论上进行了对比和分析研究。研究结果表明:(1)改进的模型真实的模拟了污染物侵入产生规律的动态特性;(2)在污染物侵入产生率重度水平下,过滤器的纳垢容量和液压元件的污染敏感度的膨胀(即在一定的概率水平下,过滤器的纳垢容量和元件能够忍受的污染物浓度比标定的浓度偏大。)对最终的优化结果有着显著的影响;(3)IFCNP方法成功的得到了系统最优成本,但区间模糊因子为1,即各过滤器的纳垢容量约束为紧约束,故IFCNP方法的经济性是以牺牲设计风险为代价的;该方法在实际生产中可作为一种参考手段。
One of the key problems of hydraulic contamination control is to design and maintain filtration system reasonably reducing the contamination level of key positions as low as possible. However, unnecessary allocations for filters and excessive maintenance for filtration system will definitely increase the system cost at the same time. This research focuses on the compromise between the quality of system performance and cost by introducing optimization theories, and finally obtaining the optimal results with the aid of Lingo. In optimization model, many parameters can be expressed as stochastic, fuzzy and interval numbers which are all uncertain forms. It is meaningful that planning research would be conducted on the allocation of system filters by combinating several advanced uncertain optimization methods.
     Firstly, the latest researches on contamination control for hydraulic system and some optimization methods like two-stage stochastic, chance-constrained and fuzzy optimization are concluded and the necessity of adopting optimum ideas and multi-optimization theories to allocate filters. Secondly, on the basis of typical single circuit hydraulic system, the research developed a filtetration system with bypass filters. With consideration of some uncertain parameters, three optimum decision-making models, including interval two-stage stochastic nonlinear programming (ITSNP)、interval chance-constrained nonlinear programming (ICNP)、interval fuzzy chance-constrained nonlinear programming (IFCNP), for allocation of the filters, were established based on combinations of multi-optimization parameters.
     Those optimal results of the three models were compared with each other. Analysis and study were made at the same time. The results demenstrat that: (1) the developed model truly mimic the dynamic characteristic of the generation/ingression principles for contaminants; (2) at high contaminant generation/ingression rates, the expansion of the contaminant contain capacity and contamination sensitivity (The contaminant retaining capacity and the sensitivity of the hydraulic components will be expanded at some probability level.) has great influence on the optimized results; (3) IFCNP successfully achieved some optimized results withλbeing 1, which means the constraints are tight ones and some risk exists. This method can be adopted as a referrence during the evaluation of the system.
引文
[1]夏志新,张虎.液压系统污染控制技术现状与发展.液压气动与密封,2000,(1): 32~39
    [2]贾瑞清,王炉平.液压污染控制技术的研究现状及重点展望.液压气动与密封,2004,(1): 15~17
    [3]李越.液压系统污染问题的探讨.机床与液压,2004,(1): 153~154
    [4]张剑慈.液压系统工作介质的污染分析与控制污染的措施.工业安全与防尘,2000,(7): 14~17
    [5] E. C. Fitch. A new theory for the contaminant sensitivity of fluid power pumps. The BFPR Journal, 1976
    [6] R. K. Tessmann, E. C. Fitch. Field contaminants ingression rates– how much? Proc. of 7th Annual Fluid Power Research Conference, 1974: 187~193
    [7] Hong I. T., Fitch E. C. Evaluation of hydraulic cylinder contaminant sensitivity. Proc. of the National Conference on Fluid Power, 1984, 38: 393
    [8] Bensch L.E., Tessmann R.K. (1976). Field service considerations in contamination control, Contamination in Fluid Power Systems, Conf. Publ. University of Bath, April 13-15, 107-113
    [9] Foord B.A. Specifying fluid filtration through computer simulation, Proc. of 34th Natl. Conf. on Fluid Power 1978, Nov. 7-9, 197-204
    [10] Liu C. A system approach to monitoring and controlling of contamination / wear in hydraulic control system, PhD thesis 1995, Monash University, Australia
    [11] Liu C., Stecki J.S. and Dransfield P. Dynamic contamination control model for fluid contamination, Proc. of Intl. Conf. on Fluid Power Control and Robotics 1990, Chengdu, China, 342-347
    [12] Jensen J.P. The distribution of contaminations through a hydraulic circuit, MSc Thesis 1996, University of Science and Technology, Trondheim, Norway
    [13] Wu Y. Equation for controlling contamination of hydraulic fluid in the hydraulic system, Journal of China Coal Society 1995, v20 (6): 647-652
    [14] Day M.J. Condition monitoring of fluid systems - the complete approach, Insight: Non-Destructive Testing and Condition Monitoring 1997, v39 (8): 540-547
    [15] Tu Q.Z., Gong L.H. and Wang Q. Modeling for the hydraulic contamination control system, China Mechanical Engineering 2001, v12 (6): 629-631
    [16] Poeth B. Proactive maintenance, Fluid Power Journal 2005, v12 (1): 28-30
    [17]夏志新.液压系统污染控制.北京:机械工业出版社,1992
    [18]赵大庆.液压泵污染磨损与控制.北京:煤炭工业出版社,1993
    [19]吴勇.液压系统中油液污染控制方程的研究.煤炭学报,1995, 20(6):647~652
    [20]夏志新.液压和润滑系统的主动预防性维护.液压与气动,1993, (6):7~13
    [21]贾瑞清,郭建曾,吴雪平.液压系统颗粒污染和过滤状态的关系.机床与液压,2000(1): 72~74
    [22]赵大庆,周士瑜.液压系统固体污染物尺寸特性的定量分析.机床与液压,1991(2): 26~29
    [23]周士瑜,赵大庆,乔石.斜轴式轴向柱塞泵污染磨损与控制的研究.全国流体传动与控制学术年会,1987
    [24]宋雪丽,吴勇,卢敬东等.数字信号处理器TMS320LF2407在油液污染检测中的应用.液压与气动,2004(9):40~42
    [25]赵连利,罗富生,姚贵友.污染传递框图及其应用.东北大学学报(自然科学版)1997, 18(5): 528~531
    [26]佟浩.油液污染在线监测系统的研究与软件平台的开发;[燕山大学硕士论文],2004
    [27]吴小霞.航空液压阀污染敏感度测试系统研制:[北京化工大学硕士论文],2007
    [28]刘金国.煤矿机械液压系统油液污染控制模型的研究.煤炭学报,1999,24(1):89~93
    [29]员创治,陈彩萍,赵彤涌.小油箱和零油箱洁净液压系统及其净化性能分析.煤炭学报,2002,27(2): 216~219
    [30]刘混举,曹惠斌.油箱容积对液压系统油液污染度影响的分析研究.佳木斯大学学报(自然科学版),1999, 17(4): 412~416
    [31]童伟,刘树道.油液污染对节流调速回路速度刚度的影响.华南理工大学学报(自然科学版),2000, 28(6): 95~99
    [32]张奕.中俄典型液压系统污染度等级标准研究.航空标准化与质量,2002(1): 21~24
    [33]彭有云.液压污染控制领域内的国际标准和国内标准简介.昌河科技,2002 (2): 15~18
    [34]战兴群,吴盛林,赵克定等.基于人工智能的液压系统故障诊断方法的研究.机床与液压,1997 (6): 6~8
    [35]王益群,高英杰.液压传动及控制系统故障诊断技术的新进展.燕山大学学报(自然科学版),1998, 22(1): 1~3
    [36]黄志坚,裘丽华.液压故障模糊神经网络诊断模型探讨.冶金设备,2001 (4): 33~36
    [37]陈章位,路甬祥,傅周东.液压设备状态监测与故障诊断技术.液压与气动,1995 (2):3~7
    [38]黄安雅,陈兆能,朱继梅.模糊信息处理技术在故障诊断中的应用.传动技术,1999 (1): 10~17
    [39]周新聪,刘东风,程海明等.主动维修策略与油液分析技术.液压与气动,2004 (6):78~80
    [40]晏小伟,杨曙东等.海水泵污染磨损机理的初步研究.液压与气动,2004(5):62~64
    [41]石学园.区间参数优化在液压系统污染控制中的应用研究:[华中科技大学硕士论文],2007
    [42]聂松林,石学园,李永平,朱玉泉.液压系统污染状态模拟与过滤器优化配置.华中科技大学学报(自然科学版).2008, 36 (1): 71~74 (EI源刊)
    [43] Nie Songlin, Shi Xueyuan, Hu Bin, et al. Simulation on status of hydraulic contamination and optimum collocation of hydraulic filters in hydraulic system, Proc. of the 5th Intl. Symp. on Fluid Power Transmission and Control. Beidaihe, 2007, June (6-8), 1053~1056
    [44] Abrishamchi A, Marino MA, Afshar A. Reservoir planning forirrigation district. J Water Resour Plan Manage 1991;117:74–85
    [45] Ferrero RW, Rivera JF, Shahidehpour SM. A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multireservoir systems. IEEE Trans Power Syst 1998; 13:1534–40
    [46] Kelman J, Stedinger JR, Cooper LA, et al. Sampling stochastic dynamic programming applied to reservoir operation. Water Resour Res 1990;26(3):447–54
    [47] Haurie A, Moresino F. A stochastic programming approach to manufacturing flow control. IIE Trans 2000;32:907–20
    [48] Huang GH. A hybrid inexact-stochastic water management model. Eur J Oper Res 1998;107:137–58
    [49] Huang GH, Loucks DP. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Eng Environ Syst 2000;17:95–118
    [50] Loucks DP, Stedinger JR, Haith DA. Water resource systems planning and analysis. Englewood Cliffs, NJ: Prentice-Hall; 1981
    [51] Maqsood I, Huang GH, Yeomans JS. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. Eur J Oper Res 2005;167:208–25
    [52] Pereira MVF, Pinto LMVG. Stochastic optimization of a multireservoir hydroelectric system: a decomposition approach. Water Resour Res 1985;6:779–92
    [53] Seifi A, Hipel KW. Interior-point method for reservoir operation with stochastic inflows. J Water Resour Plan Manage 2001;127(1): 48–57
    [54] Trezos T, Yeh WW-G. Use of stochastic dynamic programming for reservoir management. Water Resour Res 1987;23: 983–996
    [55] Wang LZ, Fang L, Hipel KW. Water resources allocation: A cooperative game theoretic approach. J Environ Inform 2003;2: 11–22
    [56] Birge JR, Louveaux FV. A multicut algorithm for two-stage stochastic linear programs. Eur J Oper Res 1988;34:384–92
    [57] Ahmed S, Tawarmalani M, Sahinidis NV. A finite branch-andbound algorithm for two-stage stochastic integer programs. Math Program Ser A 2004;100:355–77
    [58] Dai L, Chen CH, Birge JR. Convergence properties of two-stage stochastic programming. J Optim Theory Appl 2000;106:489–509
    [59] Kovacs L, Boros E, Inotay F. A two-stage approach for largescale sewer systems design with application to the Lake Balaton resort area. Eur J Oper Res 1986;23(2):169–78
    [60] Luo B, Maqsood I, Yin YY, et al. Adaption to climate change through water trading under uncertainty-An inexact two-stage nonlinear programming approach. J Environ Inform 2003;2:58–68
    [61] Maqsood I, Huang GH. A two-stage interval-stochastic programming model for waste management under uncertainty. J Air Waste Manage Assoc 2003;53(5):540–52
    [62] Pereira MVF, Pinto LMVG. Multi-stage stochastic optimization applied to energy planning. Math Program 1991;52(2):359–75
    [63] Ruszczynski A. Parallel decomposition of multistage stochastic programming problems. Math Program 1993;58:201–28
    [64] Ruszczynski A, Swietanowski A. Accelerating the regularized decomposition method for two-stage stochastic linear problems. Eur J Oper Res 1997;101:328–42
    [65] Schultz R, Stougie L, van der Vlerk MH. Two-stage stochastic integer programming: a survey. Statistica Neerlandica 1996;50(3): 404–16
    [66] Birge JR. Decomposition and partitioning methods for multistage stochastic programs. Oper Res 1985;33:989–1007
    [67] Consigli G. Dempster MAH. Dynamic stochastic programming for asset-liability management. Ann Oper Res 1998;81:131–61
    [68] Golub B, Holmer M, McKendall R, et al. A stochastic programming model for money management. Eur J Oper Res 1995;85:282–96
    [69] Gulpinar N, Rustem B, Settergren R. Multistage stochastic programming in computational finance. Computational Methods in Decision Making, Economics and Finance: Optimization Models. Dordrecht: Kluwer Academic Publishers; 2002. p. 33–45
    [70] Gulpinar N, Rustem B, Settergren R. Multistage stochastic meanvariance portfolio analysis with transaction cost. Innov Financ Econ Networks 2003;3
    [71] Kouwenberg R. Scenario generation and stochastic programming models for asset liability management. Eur J Oper Res 2001; 134(2):279–93
    [72] Ellis JH, McBean EA, Farquhar GJ. Chance-constrained stochastic linear programming model for acid rain abatement-I. Complete and noncolinearity. Atmos Environ1985;19:925–37
    [73] Ellis JH, McBean EA, Farquhar GJ. Chance-constrained stochastic linear programming model for acid rain abatement-II. Limited colinearity. Atmos Environ 1986;20:501–11
    [74] Morgan DR, EheartJW, Valocchi AJ. Aquifer remediation design under uncertainty using a newchance constrained programming technique. Water Resources Res 1993;29:551–68
    [75] Huang GH, Sae-Lim N, Liu L, et al. An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning. Environ Model Assess 2001;6:271–83
    [76] Liu L, Huang GH, Liu Y, Fuller GA. A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Eng Optim 2003;35(2):177–99
    [77] Huang GH, BaetzBW, Patry GG. An interval linear programming approach for municipal solidwaste management planning under uncertainty. Civil Eng Syst 1992;9:319–35
    [78] Yeomans JS, Huang GH. An evolutionary grey, hop, skip, and jump approach: generating alternative policies for the expansion of waste management. J Environ Informatics 2003;1:37-51
    [79] Nie S.L, Shi X.Y., Li Y.P., et al. Simulation on status of hydraulic contamination and optimum collocation of hydraulic filters in hydraulic system, Journal of Huazhong University of Science and Technology (Nature Science Edition), 2008, v36 (1): 71-74
    [80] Tessmann R.K. and Fitch E.C. Field contaminants ingression rates– how much? Proc. of 7th Annual Fluid Power Research Conference 1974, 187-193
    [81] Hong I.T., Fitch E.C. Evaluation of hydraulic cylinder contaminant sensitivity, Proc. of the Natl. Conf. on Fluid Power 1984, Annual Meeting, 380-393
    [82] Nie S.L., Li Y.P., Shi X.Y., et al, IPINP Model for Assessment of Filter Allocation and Replacement Strategies in Hydraulic Contamination Control System under Uncertainty. Proc. Instn. Mech. Engrs., Part C, Journal of Mechanical Engineering Science (Institution of Mechanical Engineers, UK), 2009, v223 (4): 999-1015.
    [83] Park R.W. Contamination Control - A Hydraulic OEM Perspective, Workshop on Total Contamination Control Centre for Machine Condition Monitoring, Monash University, August 1997, 1-18
    [84] Norvelle D. Cleaning up Clutter in Fluid Analysis. Machine Design 1997, June 19: 48-52
    [85] Edirisinghe, N. C. P., Patterson, et al. (2000). Capacity planning model for a multipurpose water reservoir with target-priority operation. Annals of Operations Research, 2000, 100, 273-303
    [86] ReVelle, C.. Optimizing reservoir resources. New York: Wiley, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700