固定化脱氮菌群处理含氮污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富营养化问题是当今世界面临的主要水污染问题之一,水体富营养化的发生及发展是多因素共同作用的结果,其中营养盐增加是发生富营养化的主要因素。本研究针对水体的氮污染,研究固定化脱氮菌群技术,以实现污水脱氮目的,从而减少富营养化发生的风险。本文首先从活性污泥、土壤等环境样品中筛选氨化菌、异养亚硝酸菌、硝酸菌和反硝化菌,通过观察菌株的菌落和菌体表观形态、测试生理生化特征和16S rDNA序列分析,综合以上特征对各菌株进行鉴定。取具有四种不同功能菌株各一株,构建脱氮菌群组合,筛选高效降低有机氮和氨氮浓度,且不积累亚硝态氮和硝态氮的菌群组合。研究制备固定化脱氮菌群颗粒,优化颗粒制备配方,同时对颗粒质量进行评价,并建立了评价方法。将固定化脱氮菌颗粒用于自行研制的污水处理反应器中,研究其处理效果。本文汇集了脱氮菌群、微生物固定化和污水处理反应器工艺,并将其有效结合,此技术具有高效净化氮污染型富营养化水或深度处理含氮污水的功能,为微生物处理含氮污水提供了理论依据和实际指导意义。本研究主要内容及结果如下:
     1.氨化菌、亚硝酸菌、硝酸菌和反硝化菌的筛选及菌种鉴定
     本文从活性污泥、鱼塘水和土壤等环境中,通过富集、初筛得到196株细菌,其中氨化菌112株、亚硝酸菌46株、硝酸菌25株和反硝化菌13株;通过复筛得到18株高效菌株,其中氨化菌5株、亚硝酸菌4株、硝酸菌4株和反硝化菌5株。对这些菌株进行菌种鉴定,部分鉴定结果如下, A亚-C-3为枯草芽孢杆菌(Bacillus subtilis),G硝-C-3为门多萨假单胞菌(Pseudomonas mendocina),M氨-4为枯草芽孢杆菌(Bacillus subtilis),R反-5为类产碱假单胞菌(Pseudomonas pseudoalcaligenes)。
     2.脱氮菌群的构建
     选取氨化、亚硝化、硝化和反硝化功能菌各一株组成脱氮菌群组合,共构建72个组合。依据筛选高效降低有机氮和氨氮浓度,且不积累亚硝态氮和硝态氮菌群组合的原则,筛选获得AMGR组合脱氮效率最高,此组合AGMR处理污水48h时总氮去除率为65.32%,96h时总氮去除率达95.27%。
     3.固定化脱氮菌颗粒的制备、颗粒配方优化及质量评价
     采用聚乙烯醇和海藻酸钠包埋微生物,优化颗粒制备配方,优化结果为海藻酸钠最适浓度0.25%,活性炭含量2%,PVA浓度12%,交联时间为24h。以优化后的配方制备固定化亚硝酸菌Bacillus subtilis A颗粒并测试其处理含氮污水的效果,结果表明碳源有利于包埋菌颗粒对氨氮的去除,包埋两种不同浓度菌的颗粒除氨氮效果差异不显著。此外,固定化脱氮菌群颗粒处理模拟富氮营养水和模拟河水效果比固定化单菌颗粒好。本文提出了固定化微生物颗粒质量评价方法,从物理、化学和微生物三方面评价颗粒的质量。
     4.固定化Bacillus subtilis A颗粒在固定床反应器中处理氨氮污水效果研究
     通过试验发现固定化Bacillus subtilis A颗粒在固定床反应器中运行需经一周的驯化期才能达到稳定运行状态。在连续运行中,将HRT控制为20min,氨氮去除率可达90%以上;高溶氧(42.3 - 58.7%)有利于氨氮的去除;污水中较合适的碳氮比为10。
     5.固定化脱氮菌群颗粒在反应器中处理含氮污水的研究
     采用装载固定化复合菌颗粒的反应器系统分别以固定床和流化床方式处理含氮污水,研究不同条件参数对污水处理的影响,优化运行参数及运行方式。①采用固定床连续运行方式,较合适的HRT为20min,当溶氧为36.7–59.8%、碳氮比为20:1时总氮去除率可接近100%。②采用流化床间歇运行方式,停留时间为140min,溶氧为56.8~71.6%时,总氮去除率可接近100%。本反应器系统适于处理初始氮浓度低于20mg/L的微污染水。③采用流化床连续运行,停留时间为12h时,溶氧为43.0~56.8%条件下,总氮的去除率可达78.12%-80.86%。此外,对流化床和固定床处理含氮污水的运行效果进行比较,流化床处理效率更高。
     6.固定化脱氮菌颗粒处理含氮污水的机理探讨
     脱氮菌处理含氮污水过程中,氮的转化脱除起主要作用;通过电镜观察发现固定化颗粒内的脱氮菌经驯化后会出现分布上的演替,主要分布在颗粒外层;初步探讨脱氮菌群产气成分以氮气为主。
Nowadays eutrophication is one of more severe problems occurred in water pollution,and the occurrence and deterioration of eutrophication are caused by many factors, among which increase of nutrient substance content is the main one. In this study, aiming at removing nitrogenous substance from the pollution water we developed an immobilization technology of bacterial consortium for nitrogen removal to reduce nitrogen concentration in sewage and decrease the risk of causing eutrophication. The ammonifier, heterotrophic nitrosobacteria, nitrobacteria and denitrifying bacteria were screened from activated sludge, soil and other niches. The strains were identified by observation of colony morphology, physiological and biochemical characteristics and 16S rDNA sequence analysis. The bacterial consortium for nitrogen removal was composed of four strains that had different functions and able to reduce organic nitrogen and ammonia nitrogen concentration efficiently without accumulating nitrate and nitrite. The granule immobilization technology of nitrogen removal bacterium consortium was researched, the composition was optimized and the quality evaluation system of immobilized granules was established. The treating effect of the immobilized granule on nitrogenous sewage in self-developed sewage treatment reactor was studied. This paper provided theoretical basis and practical guidance for nitrogenous sewage treatment by microbial means. It has combined immobilization technology of nitrogen removal bacterial consortium with the technique of sewage treatment reactor, which had great purification effect on nitrogenous sewage. The following conclusions were mainly drawn:
     1. Screening and identification of ammonifier, heterotrophic nitrosobacteria, nitrobacteria and denitrifying bacteria
     196 bacteria including 112 ammonifiers, 46 heterotrophic nitrosobacteria, 25 nitrobacteria and 13 denitrifying bacteria were obtained through enrichment and initial screening from activated sludge, fish pond water and soil. 18 high efficient strains including four ammonifiers, four heterotrophic nitrosobacteria, four nitrobacteria and five denitrifying bacteria were gained through secondary screening. A nitroso-C-3, G nitro-3, M ammonia-4 and R denitro-5 were identified as Bacillus subtilis, Pseudomonas mendocina, Bacillus subtilis and Pseudomonas pseudoalcaligenes, respectively.
     2. Construction of nitrogen removal bacterial consortium
     The bacterial consortia were constructed from four strains which had respective function, and there were 72 consortia in all. The AMGR consortia were screened out according to the principle of reducing organic nitrogen and ammonia nitrogen concentration efficiently and accumulating no nitrite and nitrate nitrogen. The denitrogen rate of AMGR consortia was higher than others. The denitrogen rate of AMGR was 65.32% within 48h and 95.27% within 96 h.
     3. Preparation of immobilized consortium granules, optimization of granule ingredient and quality evaluation.
     Polyvinyl alcohol (PVA) and Na-alginate were used as a gel matrix to entrap microbes within the beads, and optimized compositions were 0.25% Na-alginate, 2% activated carbon, 12% PVA and linking cross time of 24 h. Immobilized nitrosobacterium Bacillus subtilis A beads were prepared under the optimized formula. The results showed the carbon source was beneficial to ammonia nitrogen removal and granules with two different bacterial concentration have similar effect on removing ammonia nitrogen. Compared with immobilized single bacterium, the immobilized consortium had better effect of removing nitrogen in the simulated eutrophic water and river. This paper proposed the quality evaluation system of immobilized microbe beads in aspect of physical, chemical and microbial index.
     4. Effect of immobilized Bacillus subtilis A granule on ammonium nitrogen-rich sewage in bioreactor system
     Immobilized Bacillus subtilis A beads would be in the steady state after one week’s domestication. In the continuous treating process, when HRT was 20 min, the concentration of ammonium nitrogen effluent was lower than 0.3 mg/L, and removal rate of ammonia nitrogen was more than 90%; Compared with low DO condition, high DO was beneficial to removing ammonium nitrogen; More suitable carbon nitrogen ratio was 10.
     5. Effect of immobilized bacterium consortium on nitrogen removal in sewage treatment reactor
     Immobilized nitrogen removal bacterium beads would work in fixed bed reactor and fluid bed reactor, and this paper researched the effect of sewage treatment under different parameters and optimized these parameters.①In fixed bed continuous flow way, the results showed HRT of 20 min was a suitable retention time, at which time the removal rates of effluent total nitrogen was close to 100%.②In fluid bed intermittent flow way, the removal rate of effluent total nitrogen was close to 100% when HRT was 140min and DO was between 56.8% and 71.6%. This reactor system was fit for slight pollution water, initial nitrogen concentration in which was below 20 mg/L.③In fluid bed continuous flow way, the removal rates of total nitrogen were between 78.12% and 80.86% under HRT of 12h and DO of 43.0~56.8%. In addition, compared fixed bed reactor, the treatment effect of fluid bed reactor was better.
     6. The theoretical discussion on nitrogen removal of immobilized denitrogen bacterial consortium
     In the process of nitrogenous sewage treatment with immobilized denitrogen bacterial consortium, the nitrogen removal played major role; Observing with the scanning electron microscopy, we found that the microbes after domestication would show succession in distribution, mainly at surface layer of beads; The dominant gas produced by bacterial consortium was the nitrogen gas.
引文
1.蔡昌凤,梁磊.混合固定化硝化菌和好氧反硝化菌处理焦化废水[J].环境工程学报,2009,3(8):1391-1394.
    2.蔡昌凤,梁磊.高效好氧反硝化细菌的筛选及脱氮特性的研究[J].环境科学与技术,2011,34(1):41-44.
    3.曹国民,赵庆祥,龚剑丽,等.固定化微生物在好氧条件下同时硝化和反硝化[J].环境工程,2000,18(5):17-19.
    4.曹国民,赵庆祥,张彤.单级生物脱氮技术的进展[J].中国给水排水,2000,16(2):20-24.
    5.曹国民,赵庆祥,龚剑丽,等.新型固定化细胞膜反应器脱氮研究[J].环境科学学报,2001,21(2):189-193.
    6.成水平,夏宜铮.香蒲、灯心草人工湿地的研究-Ⅱ.净化污水的空间[J].湖泊科学,1998,10(1):62-66.
    7.陈水勇,吴振明,俞伟波,等.水体富营养化的形成、危害和防治[J].环境科学与技术,1999,2:11-15.
    8.陈玉成.污染环境生物修复工程[M].北京:化学工业出版社,2003:192-198.
    9.陈庆森,刘建.聚乙烯醇和海藻酸盐共固定化冰核活性细菌——黄单胞菌TS206的研究[J].微生物学报,2003,43:492 - 497.
    10.杜刚,王京伟.共固定化微生物对养殖水体脱氮的研究[J].山西大学学报(自然科学版),2007,30(4):550-553.
    11.杜连祥,路福平,等.微生物学实验技术[M].北京:中国轻工业出版社,2006:154-164
    12.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    13.冯本秀.固定化微生物去除废水中氨氮及固定化载体的研究[D].广东:广东工业大学,2006.
    14.冯本秀,赖子尼,陈俊彬.固定化硝化细菌去除水体中氨氮的研究[J].广东工业大学学报,2006,23(2):29-33.
    15.高锡芸.梅梁湾及大太湖富营养化限制性营养盐研究[A].蔡启铭.太湖环境生态研究[C].北京:气象出版社,1998,51.
    16.郭海燕.曝气动力循环一体化同时硝化反硝化生物膜反应器及其特性研究[D].大连:大连理工大学,2005.
    17.国家环境保护局《水和废水监测分析方法》编委会.水和废水监测分析方法[M],第四版北京:中国环境科学出版社,2002.
    18.韩振为,梁斌.脱硫菌H-412的固定化及其脱硫性能[J].化学工业与工程,2008,25(1):32-35.
    19.何为中,刘有智.好氧生物流化床反应器处理有机废水技术进展[J].化工环保.1999,19(5):278-283.
    20.何霞,赵彬,吕剑,等.异养硝化细菌Bacillus sp. LY脱氮性能研究[J].环境科学.2007,28(6):1404-1408.
    21.黄珏,何义亮,赵彬,等.一株异养脱氮菌的脱氮性能及其影响因素研究[J].环境工程学报.2009,3(3):395-399.
    22.黄运红,冯香玲,龙中儿,等.好氧反硝化有效微生物群的筛选及特性研究[J].安徽农业科学,2007,35(36):197-199.
    23.黄亚洁,陈宁,梁颖,等.氧化亚铁硫杆菌固定床生物反应器运行的工艺条件[J].化工进展,2008,27(3):421-425.
    24.姜爱霞.水环境污染的机理和防治对策[J].中国人口.资源与环境,2000,10:75-76.
    25.姜巍,曲久辉,雷鹏举,等.固定床自养反硝化去除地下水中的硝酸盐氮[J].中国环境科学,2001, 21(2):133-136.
    26.蒋展鹏.环境工程学[M].北京:高等教育出版社,1992:128-180.
    27.金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990.
    28.孔繁翔,高光.大型潜水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    29.李峰.序批式反应器中运用固定化细胞技术处理氨氮废水[J].给水排水,2000,26(1):63-65
    30.李海波,杨瑞崧,李培军,等.聚乙烯醇-海藻酸钠固定Microbacterium sp. S2-4的微环境分析[J].生态学杂志,2007,26(1):16-20.
    31.李海波,李培军,张轶,等.固定化微球菌技术修复受污染地表水[J].中国给水排水,2005,2(2):6-10.
    32.李海云.脱氮微生物制剂的研究[D].太原:山西大学,2004.
    33.李辉华,朱学宝,谭洪新,等.闭合循环系统中固定化活性污泥降解氨氮的研究[J].环境科学与技术,2005,28(1):16-18.
    34.李树刚和马光庭.生物脱氮菌种筛选及条件选择的研究[J] .广西大学学报(自然科学版),2003,28(2):173-176.
    35.李雪梅,杨中艺,简曙光,等.有效微生物群控制富营养化湖泊藻的效应[J].中山大学学报,2000,39(1):81-85.
    36.李正魁,濮培民.固定化增殖氮循环细菌群SBR法净化富营养化湖水[J].核技术,2001,24(8):674-679.
    37.林燕,孔海南,王茸影,等.异养硝化作用的主要特点及其研究动向[J].环境科学,2008,29(11):3291-3296.
    38.刘晶晶,汪苹,王欢.一株异养硝化-好氧反硝化菌的脱氮性能研究[J].环境科学研究.2008,21(3):121-125.
    39.刘培桐,薛纪瑜,王华东,等.环境学概论[M].北京:高等教育出版社,1995,64-75.
    40.刘雨,赵庆良,赵兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    41.刘咏,钱家忠,魏兆军,等.反硝化细菌Klebsiella sp. DB-1的分离鉴定与活性研究[J].中国科学技术大学学报,2011,41(1):16-61.
    42.刘则华,邢新会,冯权.多孔微生物载体固定床生物反应器的污水处理特性[J].水处理技术,2006,32(4):34-38.
    43.钱存柔,黄仪秀,等.微生物学实验教程[M].北京:北京大学出版社,1999.
    44.秦伯强,张柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报, 2006(16):1857-1866.
    45.秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J].地球科学进展.2007,22(9):896-906.
    46. R.E.布坎南.伯杰细菌鉴定手册[M].中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.第八版.北京:科学出版社,1984:729-798.
    47.茹梅莲.水质氮污染危害及防治[J].陕西水利,1993,3:27-28.
    48.宋鸿遇,严君华,张娅珍.硝化细菌的分离纯化[J].微生物学通报,1982,3:139-141.
    49.苏俊峰,王继华,马放,等.好氧反硝化细菌的筛选鉴定及处理硝酸盐废水的研究[J].环境科学,2007,28(10):2332-2335.
    50.万红,宋碧玉.序批式生物膜法处理水产养殖废水的研究[J].水生态学杂志,2008,1(2):81-84.
    51.王风芹,侯淑芬,谢慧,等.新型脱氮微生物与水体脱氮新工艺研究进展[J].生物学杂志,2011,28(2):69-72.
    52.王弘宇,马放,苏俊峰,等.好氧反硝化菌株的鉴定及其反硝化特性研究[J].环境科学,2007,28(7):1548-1552.
    53.王欢,低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮[J].环境科学,2009,30(3):815-821
    54.王凯军.UASB工艺系统设计方法探讨[J].中国沼气,2002,20(2):18-23.
    55.王磊.固定化硝化菌去除氨氮的研究[J].环境科学,1997,18(2):12.
    56.王磊,兰淑澄.固定化硝化菌去除氨氮的研究[J].环境科学,1997,3:18-20.
    57.王平,吴晓芙,李科林,等.应用有效微生物(EM)处理富营养化源水试验研究[J].环境科学研究,2004,17(3):39- 43.
    58.王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002.
    59.王鑫.异养硝化菌的筛选及其在污水脱氮中的应用[D].天津:天津科技大学,2006.
    60.王一明,彭光浩.异养硝化微生物的分子生物学研究进展[J].土壤,2003,35(5):378-386.
    61.唐传祥.污水处理的生物流化床工艺[J].西南给排水,1992,2:16.
    62.韦朝海,焦向东,陈焕钦.生物好氧流化床废水处理技术研究进展[J].环境科学与技术.1998,(4):5-9.
    63.温东辉,唐孝炎.异养硝化及其在污水脱氮中的作用[J].环境污染与防治.2003,25(5):283-285.
    64.吴生才,陈伟民.水体富营养化的渐进性和灾难性[J].灾害学,2004,19(2):13-17
    65.谢炜平.废水中氨氮的去除与利用[J].环境导报,1999(1):14-15.
    66.许保玖.当代给水与废水处理原理[M].北京:高等教育出版社,1990:392.
    67.许友泽,王凤霞,向仁菌,等.微生物处理含Cr废水工艺研究[J].化工环保,2010,30(5):404-407.
    68.杨家华,郭志宏.EM技术及其在水环境保护中的应用研究进展[J].环境科学与技术,2007,30(6):112-114.
    69.杨剑,邓超冰,冼萍,等.SBR处理猪场废水厌氧硝化液脱氮工艺的优化[J].环境科学与技术,2009,32(1):174-177.
    70.杨文龙.湖水藻类生长的控制技术[J].云南环境科学,1999,18(2):34-36.
    71.姚磊,叶正芳,倪晋红,等.固定化曝气生物滤池处理污染河水的中试研究[J].中国给水排水,2007,23(13):20-23.
    72.易志刚.农业面源污染及其防治策略研究[J].安徽农业科学,2007,35(24):7589-7590.
    73.尹华,李桂娇,彭辉等.絮凝剂高产菌的研究及其在水处理中的应用[J].水处理技术,2003,29(5):272-275.
    74.叶建锋,徐祖信,薄国柱.新型生物脱氮工艺-OLAND工艺[J].中国给水排水,2006,22(4):6-8.
    75.余冬冬,金勇威,迟莉娜,等.包埋固定化微生物处理微污染原水的试验研究[J].2008,24(13):86-88.
    76.于爱茸,李尤,俞吉安.一株耐氧反硝化细菌的筛选及脱氮特性研究[J].微生物学杂志,2005,25(3):77-81.
    77.于淑萍.微生物基础[M].北京:化学工业出版社,159.
    78.原丁.氮肥工业中氨氮废水治理技术进展[J].化工环保,1995,15(2):73-74.
    79.周德庆.微生物学实验手册[M].上海:上海科学技术出版社,1986,121-123.
    80.周景博.国内外水体度营养化治理的经验及对我国的政策建议[J].环境保护,2003,9:57-60.
    81.张翠粉,戴建军.氨氮废水物化法处理技术探讨[J].污染防治技术,2006,19(3):19-20.
    82.张光亚,陈美慈,韩如旸,等.一株异养硝化细菌的分离及系统发育分析[J].微生物学报,2003,43(2):156-161.
    83.张杰.序批式膜生物反应器反硝化除磷脱氮研究[D].大连:大连理工大学,2007.
    84.张颖明.好氧生物膜法处理工业微污染水的研究[J].造纸化学品,2010,22(2):31-33.
    85.章力建,蔡典雄,王小彬,等.农业立体污染及其防治研究的探讨[J].中国农业科技导报.2005,7(1):3-6.
    86.章力建,任天志,王迎春,等.农业立体污染与水体富营养化解析[J].中国农业科技导报,2006,8(1):54-58.
    87.赵彬.异养菌株HNR脱氮性能[J].华中科技大学学报(自然科学版),2008,36(12):128-132.
    88.中华人民共和国环境保护部、中华人民共和国统计局、中华人民共和国农业部,第一次全国污染源普查公布[M].2010,4-19.
    89.周群英,高延耀.环境工程微生物学[M].北京:高等教育出版社,1988:207-213.
    90. Alves C F, Melo L F, Vieira M J. Influence of medium composition on the characteristics of a denitrifying biofilm formed by Aicallgenes Denitrificans in a fluidized bed reactor[J].Process Biochem.2002, 37, 837-845.
    91. Anderson I C , Poth M, Homstead J, et al. A comparison of NO and N2O production by the autotrophic nitrifier Nitorsomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis[J]. Appl. Environ. Microbiol., 1993, 59 (11) : 3525-3533.
    92. Anshuman A. Simultaneous nitrification and denitrification by diverse Diaphorobacter[J]. Appl. Microbiol. Biotechnol., 2007, 77:403-409.
    93. Aravinthan V, Takizawa S, Fujita K, et al. Factors affecting nitrogen removal from domestic wastewater using immobilized bacteria[J]. Wat. Sci. Tech., 1998, 38(1):193-202.
    94. Bell L C, Ferguson S J. Nitric and nitrous oxide reductase are active under aerobic conditions in cells of Thiosphaera pantoropha[J]. Biochem. J, 1991, 273 :423 - 427.
    95. Beun J J, Hendriks A, Van Loosdrech M C M.Aerobic granulation in a sequencing batch reactor[J].Wat. Res., 1999, 33(10):2283-2290.
    96. Bleakley B H, Tiedje J M. Nitrous oxide production by organisms other than nitrifiers or denitriers[J]. Appl. Environ. Microbiol., 1982, 44:1342-1348.
    97. Bllag J M, Tung G. Nitrous oxide release by soil fungi[J]. Soil Biochem., 1972, 4:271-276.
    98. Brierley E D R, Wood M. Heterotrophic nitrification in an acid forest soil: isolation and characterization of a nitrifying bacterium[J]. Soil. Biol. Biochem., 2001, 33:1403-1409.
    99. Campos J L, Mosquera-Collal A, Sānchez M, et al. Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit[J]. Wat. Res., 2002, 36:2555-2560.
    100. Cao G M, Zhao Q X, Sun X B, et al. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J]. Enzyme Microb. Tech., 2002, 30(1): 49-55.
    101. Carucci A, Dionisi D, Majone M, et al.Aerobic Storage by activated sludge on real wastewater[J].Water Res., 2001, 35:3833-3844.
    102. Chung YC, Huang C, Tseng C P. Biotreatment of ammonia from air by an immobilized Arthrobacter oxydans CH8 biofilter[J]. Biotechnol. Progr., 1997,13:794-798.
    103. Dave R and Madamwar D. Esterification in organic solvents by lipase immobilized in polymer of PVA-alginate-boric acid[J]. Process Biochem., 2006, 41(4):951-955.
    104. de-Bashan L E, Moreno M, Hernandez J P, Bashan Y,2002. Removal of ammonium and phosphorous ions from synthentic wastewater by the microalage Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense[J]. Wat. Res., 36(12):2941-2948.
    105. De Van G, De B P, Robertson L A, et al.Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8):2187-2196.
    106. Diaz R J, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural resources of benthic macrofauna[J]. Oceanography and Marine Biology: An annual review, 1995, 33:245-303.
    107. Duarte C. Submerged aquatic vegetation in relation to different nutrient regimes[J]. Ophelia, 1995,41: 87-112.
    108. Halling- Scrensen B and Nielsen S N. A model of nitrogen removal from waste water in a fixed bed reactor using simultaneous nitrification and denitrification (SND)[J].1996, 87:131-141
    109. Heitkamp M A, Camel V, Reuter T J. Biodegradation of P-nitrophenol in an aqueous waste streamby immobilized bacteria[J]. Appl. and Envir. Microbiol.,1900, 56(10):2967-2973.
    110. Hiroaki U,Akikazu A and Hiroshi S. Effect of oxygen concentration on nitrogen removal by Nitrosomonas europaea and Paracocces denitrifications immobilized within tubular polymeric gel[J].J. biosci. bioeng., 2000, 90(6):654-660.
    111. Hisashi N, Tasako H, Kenji, et al. Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads[J].J. biosci. Bioeng., 1999, 87(2): 189-193.
    112. Horne A J, Goldman C R. Limnology[M]. Second Edition, New York : McGraw-Hill, Inc., 1994.
    113. Iza J. Fluid bed reactor for anaerobic wastewater treatment[J]. Wat.Sci.Tech.,1991,24(8):109.
    114. Bacquet G, Joret J C, Rogalla F. Biofilm start-up and control in aerated filter[J]. Environ. Technol., 1991, 12:747-756.
    115. Geraats S G M, Hooijmans C M, van Niel E W J. The use of a metabolically structured model in the study of growth nitrification and denitrification by Thiosphaera pantotropha [J]. Biotechnol. Bioeng., 1990 , 36 :227-267.
    116. Halim A A, Aziz H A, Johari M A M, et al. Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent: Fixed bed column adsorption performance[J].J. Hazard. Mater., 2010,175:960-964
    117. Hellinga C, ScheUen A A, Mulder J W, et al. The Sharon process:An innovative method for nitrogen removal from ammonium-rich wastewater[J].Water Sci. Technol.,1998, 37(9): 135-142.
    118. Higa T. EM technology serving the world [M]. Personal Communication. 1994.
    119. Ibekwe A M, Grieve C M, Lyon S R. Characteriazation of microbial communties and composition in constructed dairy wetland wastewater effluent[J]. Appl. Environ. Microbiol., 2003, 69(9):5060-5069.
    120. Killham K. Heterotrophic nitrification[M].In J. I. Prosser(ed.). Nitrification. IRL Press. 1986: 117-126.
    121. Kim J K, Park K J, Cho K S, et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains[J]. Biores. Technol., 2005, 96:1897-1906.
    122. Kim S K, Kong I, Lee B H, et al.Removal of ammonium-N from a recirulation aquacultural system using an immobilized nitrifier[J]. Aquatic. Eng., 2000(21):139-150.
    123. Kotlar E, Tartakovsky B, Argaman Y , et al. The nature of interaction between immobilized nitrification and denitrification bacteria[J]. J biotechnol., 1996,51(3):251-258.
    124. Kshirsagar M,Gupta A B,Gupta S K.Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha[J]. Environ. Technol., 1995, 16:35-43.
    125. Kuai L P, Versrate W. Ammonium removal by the Oxygen-limited autrophic nitrification- denitrification system[J]. Appi. Env. Tech.,1999, 39(7):13-21.
    126. Lau S S S, Lane S N. Biological and chemical factors inrluencing shallow lake eutriphication: a long-term study[J]. Science Total Environ., 2002, 288:167-181.
    127. Moore L and Thomoton K, Lake and Resseruoi Restoration Guidance, USA:EPA,1988.
    128. Mallick N, 2002. Biotechnological potential of immobilized algae for wastewater N, P and metalremoval: a review. BioMetals, 15(4): 377--390.
    129. Martin C D, Moshiri G A.Nutrient reducation in an in-series constructed wetland system treating landing leachate[J].Water Sci. Technol., 1994,29(4):267-272.
    130. Meiberg J B M, Bruinenberg P M, Harder W.Effect of dissolved oxygen tension on the metabolism of mehylated amines in Hyphomicrobium X in the absence anda presence of nitrate:evidence for aerobic denitrification[J].J.Gen.Microbiol.,1989,120:453-463.
    131. Muller E B, Stouthamer A H, van Verseveld, H W.Simulaneous NH3 oxidation and N2 production at reduced O2 tension by sewage sludge subcultured with chemolitotrophic medium[J]. Biodegradation, 1995,6: 339-349.
    132. Musvoto E V, Samson K, Taljard M, et al.Calculation of peak oxygen demand in the design of ful scale nitrogen removal activated sludge plants[J].Water SA,Special Ed WISA,2002:56-60.
    133. Nejidat A. Isolation and characterization of a functional promoter from Nitrosrmonas europaea [J]. FEMS Microbiol Lett., 1996, 137: 9-12
    134. Nishio T, Yoshikura T. Effects of organic acids on heterotrophic nitrification by Alaligenes faecalis OKK17 [J]. Biosci. Biotech. Biochem., 1994,58 :1574-1578.
    135. Nishio T, Yoshikura T, Mishima H, et al. Conditions for nitridication and denitrification by an immobilized heterotrophic nitrifying bacterium Alcaligenes faecalis OKK 17, Journal of Fermentation and Bioengineering[J].1998, 86(4):351-356
    136. Omar S H. Oxygen diffusion through gels employed for inmmobilization Part 2 In the presence of microorganisms [J].Appl.Microbiol.Biotechnol., 1993, 40(2-3):173-181.
    137. Paerl W, Fulton R S, Moisander P H, et al. Harmful freshwater algal blooms with an emphasis on cyanobacteria[J]. Sci. World, 2001, 1:76-113.
    138. Ramírez M, Gómez J M, Aroca G, et al. Removal of ammonia by immobilized Nitrosomonas europaea in a biotrickling filter packed with polyurethane foam [J]. Chemosphere,2009(74): 1385-1390
    139. Reynoolds C S. Phytoplankton periodicity: the interactions of from, function and enviromental variability [J]. Freshwater Biol., 1984, 14:111-142.
    140. Reynoolds C S, Reynolds S N, Munawar I F, et al. The regulation of phytoplankton population dynamics in the word’s largest lakes [J]. Aquatic ecosystem health and management, 2000, 3:1-21.
    141. Robertson L A, Kuenen J G, Kleijntjens R.Aerobic denitridication and heterotrophic nitrification by thisophaera pantotropha[J].Antonie Van Leeuwenhoek, 1985, 51(4):445.
    142. Roth G W & Fox R H. Soil nitrate accumulations following nitrogen-fertilized corn in Pennsylvania[J]. J. Environ. Qual.,1990, 19:243-248.
    143. Schryver P D, Verstraete W. Nitrogen removal from aquacture pond water by heterotrophic nitrogen assimilation in lab-scale sequenceing batch reactors[J].Biores. Technol., 2009, 100: 1162-1167
    144. Scuras S, Daigger G T, Grady C P L. Modelling the activated sludge flocmicroenviroment[J]. Wat.Sci.Tech., 1998, 37(4-5):243-251.
    145. Shoun H, Kim D H, Uchiyama H, et al.Denitrification by fungi[J]. FEMS Microbiol. Lett., 1992, 94:277-281.
    146. Shoun H, Kano M,et al. Denitrification by Actinomycetes and Purification of Dissimiliatory Nitrite Reductase and Azurin from Streptomys thioluteuces [J]. J. Bacteriol., 1998, 180: 4413- 4415.
    147. Sllyn-Roberts G, Lewis G. In situ analysis of Nitrosomonas sp. in wastewater treatment wetland biofilm [J]. Wat. Res., 2001, 35(11):2731-2739.
    148. Smith V H. Eutrophication of freshwater and coastal marine ecosystems a global problem [J]. Environ Sci & Pollut Res,2003,10(2):126-139.
    149. Sun H S, Yang Q, Peng Y Z, et al. Advanced landfill leachate treatment using a two-stage USAB-SBR system at low temperature [J]. Journal of environment sciences.2010,22 (4):481-485.
    150. Susumu H, Frurukawa K.Immobilization of activated sludge by PVA-boric method[J].Biotech Bioeng, 1987, 30: 52-59.
    151. Tanaka K, Tada M, Kimata T, et al. Development of new nitrogen removal system using nitrifying bacteria immobilized in synthetic resin pellets [J]. Wat. Sci. Tech., 1991, 23(4-6): 681-690.
    152. Tashirev A B and Shevel V N. Extraction of a broad range of metals from sewage in the city of Kyiv by mixed microbe communities [J].Microbiol Z.2004,66(5):76-83.
    153. Thut R N. Feasibility of treating pulp mill effluent with a contructed wetland [A].In:Moshiri GA(eds). Constructed Wetlands for Water Quality Improvement [C]. Boca Raton Florida: Lewis Publishers, 1993:441-447.
    154. Uemoto H,Saiki H. Nitrogen removal by tubular gel containing nitosomonas europaea and paracoccus denitrificans[J]. Applied and Enviromental Microbiology, 1996, 62(11): 4224- 4228.
    155. van Ginkel C G, Tramper J, Luyben K C A M, et al. Characterization of Nitrosomonas europaea immobilized in calcium alginate[J].Enzyme Microbiol. Technol, 1983, 5: 297-303.
    156. Vanotti M B, Hunt P G. Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymerpellets[J].Tansactions of the Asae, 2000, 43(2): 405-414
    157. Vollenweider R A. Elemental and biochemical composition of plankton biomass; some comments and explorations [J]. Arch. Hydrobiol.,1985,105: 11-29.
    158. Wijffels R H and Tramper J. Nitrification by immobilized cells [J].Enzyme and Microbial Technology, 1995, 17:482-492.
    159. Withers P J A, Clay S D, Breeze V G.Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge[J]. Journal of Enviromental Quality, 2001, 30:180-188.
    160. Wright P C, Paper J A. A review of some parameters involved in fluidized bed bioreactors [J]. Chem. Eng. Technol.1996, 19:50-64.
    161. Xing X H, Shiragami N, Unno H. Simultaneous removal of carbonaceous and nitrogenous substances in wastewater by a continuous-flow fluid-bed bioreactor [J].J Chem Eng Japan., 1995, 28(5):525-530.
    162. Yang S, Yang F, Fu Z, et al.Comparision between a moving bed membrance bioreactor and a conventional membrance bioreactor on organic carbon and nitrogen removal [J]. 2009, 100:2369-2374.
    163. Zhang E D, Wang B, Wang Q H, et al. Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment [J]. Bioresour. Technol., 2008, 99(9): 3787-3793.
    164. Zhu G L, Hu Y Y, Wang Q R. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers[J]. Water Sci. Technol., 2009, 59(12): 2379-2386.
    165. Zhang Y L, Hu W P, Cao G, et al. Driving mechanism of sediment resuspension and conceptual pattern of internal release in Taihu Lake[J]. Chinese Science Bulletion, 2003, 48: 1822-1831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700