人工土层快渗系统除污性能及氮去除机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工土层快渗系统(Constructed Rapid Infiltration System,简称CRI)是在快渗系统(Rapid Infiltration System,简称RI)基础上发展起来的,属污水土地处理技术,是可持续发展的污水生态处理技术之一。
     三峡库区地形复杂,气候独特,集中分布着紫色土——这一中国特有的土壤资源。库区小城镇规模小、分布广、经济落后、管理水平低,对基建费用低、能耗低、流程短、运行管理简便的污水处理工艺有更迫切的需求。将CRI系统应用于三峡库区,研究采用库区可大量获得的紫色土为主体渗滤介质且适应于库区温暖、高湿度、低照度、低风速条件的CRI系统的构造和运行参数,为扩大CRI系统的适用范围提供理论依据与技术支撑。
     基于CRI系统的基本原理和要求,采用三峡库区特有的紫色耕作土及其它库区常见渗滤介质构建CRI试验装置,在库区天然的气候条件下进行室外试验。通过测定介质的清、污水渗滤系数、给水度等实验,拟定了水力负荷,污水投配时间,水力负荷周期及湿干比等系统运行参数。考察了0.08m3/ m2·d、0.10m3/ m2·d、0.12m3/ m2·d、0.14m3/ m2·d四种水力负荷,1d:4d、1d:3d、1d:2d三种湿干比条件,紫色土、陶粒、卵石及土砂混合物等渗滤介质采用不同高度的构建方式,并与干湿交替、干湿交替+美人蕉(牛耳朵大黄或风车草)、干湿交替+通气管3类通气方式相组合,形成的5种不同配置的CRI装置处理生活污水的性能。研究发现:
     试验构建的CRI试验装置的最优工况为水力负荷0.1m3/ m2·d,湿干比1d:3d,该工况下紫色土(70cm)/陶粒(20cm)/卵石(10cm)配置的CRI装置的COD、NH3-N、TN、TP平均出水浓度分别为50.0mg/L、7.9mg/L、20.6mg/L、0.9mg/L,平均去除率分别为84.2%、72.3%、57.7%、85.1%,出水除TN略有超标外(平均值20.6mg/l,超标概率约为50%),其它指标均达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级B标准的要求。
     水力负荷、水力负荷周期与湿干比的变化对CRI系统的COD,TP的去除效果影响不大,对NH4+-N和TN的去除效果影响较大。TN的去除率与水力负荷呈负相关关系,湿干比和气温对总氮的去除有一定相关性。配水与落干的交替工作方式是系统复氧的主要形式,系统最优的复氧组合为干湿交替+种植美人蕉。
     针对年均气温17℃~ 19℃的三峡库区,平均相对湿度60~80%、30%左右的日照率和年均1.12m/s的风速条件,研究获得了能够适应三峡库区小城镇经济、技术及管理水平的、以紫色耕作土为主构建的CRI系统。研究获得的系统构建形式及运行参数是对CRI系统的创新与补充,是CRI系统在应用范围上的扩展。
     在CRI系统除污性能测试的运行条件下,出水中TN的达标概率约为50%,成为进一步提高装置水力负荷和除污能力的主要制约因素。为此,论文考察了影响系统氮去除性能的主要因素(土砂配比、土层厚度),被处理污水的碳氮比及主要运行参数(水力负荷周期与湿干比),从优化系统构造和运行参数方面探讨提高系统脱氮性能的方法。结果表明:
     对紫色土与河砂混合形成的渗滤介质,土砂比较小,有利于NH4+-N向NO3--N转化;土砂比较大,有利于NH4+-N、TN的去除。土砂比4:1构建的CRI装置对NH4+-N、TN的去除效果相对最好,去除率分别为:71.7%,48.8%,综合水力负荷等其它因素,土砂比为4:1的介质构成在三峡库区是较合适的介质选择。
     对以紫色土为主构建的CRI系统,其处理污水以好氧生物反应为主,有机物和凯氏氮的氧化主要在系统表层的0.6m土层内完成,TN的去除主要发生在0.6~1.0m的土层内,土层厚度越深,系统脱氮性能不一定提高。试验采用1.0m的处理层介质厚度构建的CRI装置的脱氮效果相对较好。
     污水中的C:N浓度对出水NO3--N、TN的浓度影响显著,随着进水C:N浓度的升高,出水中的NO3--N、TN显著减少。在污水进水中适量投加碳源(进水COD不宜超过400mg/L),控制C:N在6.0~8.0之间,是提高TN去除率的较为可行的措施。
     以紫色土:河砂=3:1为渗滤介质构建的CRI系统:湿干比越小、配水时间越短,对NH4+-N的去除率越高,试验条件下,湿干比为1:9,配水12h,水力负荷周期为120h时,NH4+-N去除率最高可达71.4%;湿干比越小,配水时间越长,对TN的去除率越高,试验条件下,湿干比为1:9,配水48h,水力负荷周期为480h时,TN的去除率最高可达59.1%。配水时间长有利于CRI系统的反硝化过程。
     进一步深入研究N在快渗土层内的运移转化机理发现:NH4+-N是CRI系统中N运移转化的核心,故基于紫色土:河砂=3:1的土砂混合物为渗滤介质构建1.0m高CRI土柱,在水力负荷周期为4d,湿干比1d:3d的条件下运行,通过单一氮化合物(NH4+-N和NO3--N)的人工配水输入土柱,研究NH4+-N在试验土柱中的运移转化机理及规律。
     以NO3--N配水进行氮运移转化机理试验表明:NO3--N在基于紫色土为主要处理层介质构建的CRI土柱中不存在吸附作用,配水5~9h之后,CRI土柱中有反硝化作用的发生,有效高度为1.0m的CRI土柱中,0.25m~0.85m之间的土层是反硝化作用的空间范围。
     以NH4+-N配水进行氨氮运移转化机理试验表明:NH4+-N配水进入CRI土柱即开始进行硝化反应,并同时存在着NH4+-N的吸附过程,清水淋洗后的9h,土柱出水中的NH4+-N接近于0表明,NH4+-N在CRI土柱中的吸附是较为简单的、短暂的过程,易于解吸,且解吸完全。皮尔逊相关系数的计算表明,NH4+-N在CRI土柱中的去除是一个稳态的过程,土壤溶液中的NH4+-N浓度与配水时间无关,在一定土柱高度范围内与柱高呈显著的负相关关系。
     依据单一氨氮、硝氮配水条件下的试验结果,引入多孔介质的溶质运移理论及对流-弥散方程,考虑NH4+-N在CRI系统中的运移受到对流和水动力弥散作用的影响,并吸附-解吸、硝化与反硝化3个过程,首次将配水流经CRI土柱的孔隙水流速方程与CRI土柱内发生的、以氧为约束条件的硝化、反硝化过程联系起来,建立了CRI系统一维垂向氨氮运移转化数学模型,表达式为:
     研究分别通过静态等温吸附实验率定了模型方程中的阻滞系数、通过渗滤试验测定了土柱中的孔隙水流速、通过测定弥散试验中示踪剂的电导率确定了纵向弥散系数、通过气压过程分离(Baps)技术测定了土柱中的总硝化与反硝化反应速率常数,最后通过测定土柱沿程氧化—还原电位的方法分析氨氮在CRI系统中的运移转化机理。
     结合测量所得的模型中的各参数值,基于有限差分法以Matlab编程,将CRI系统一维垂向氨氮运移转化数学模型应用于模拟单一氮化合物(NH4+-N)的人工污水向CRI土柱表面投配的运移转化机理试验。比较模拟结果与实测数据发现,模拟结果能够反映将人工配制的含氮污水投配到CRI土柱表面后,在不同配水时段内,CRI土柱的不同高度上,土壤溶液中NH4+-N、NO3--N浓度的变化趋势与浓度值大小,二者吻合较好。
     对模型参数进行敏感性分析发现:模型中各参数对CRI装置出水NH4+-N浓度的影响程度为:纵向弥散系数D≈阻滞系数Rd1 >孔隙流速v =硝化反应速率常数K1;对NO3--N浓度的影响程度为:硝化反应速率常数K1 >纵向弥散系数D >阻滞系数Rd2 >反硝化反应速率常数K2 >孔隙流速v,为进一步研究提高除N性能指出了努力方向。
Constructed rapid infiltration system which developed from rapid infiltration system, is one of the sewage land treatment technology and it is also the sustainable and ecological wastewater treatment technology.
     The terrain of the Three Gorges Reservoir Area is complex, and the climate is special too, the special purple soil of china is the primary soil of this area. The town of this area is small, widely distributed, with backward economy and poor management of infrastructure, which is in urgent need of sewage treatment processes with low cost, low energy consumption with less processes and easy to operate.Theoretical basis and technical support to expand the scope of CRI system will be provided owing to the research on applying CRI system to the small town of the Three Gorges Reservoir Area and exploring the construction and operation parameters of CRI system suitable to the soils and climatic conditions of the area.
     Based on the basic principles and requirements of RI system, the special purple soil and some other common media were applied to construct the CRI testers, and the experiments were conducted in the field. Parameters such as hydraulic loading, hydraulic loading cycle, flooding time and wet/dry ratio and other operating parameters were studied out through the parameter tests such as water and wastewater infiltration permeability, specific yield of soil etc. The domestic wastewater treatment performance of five CRI testers with different configurations were investigated under the condition of four hydraulic loading level of 0.08m3/ m2·d、0.10m3/ m2·d、0.12m3/ m2·d、0.14m3/ m2·d and three wet/dry ratio of 1d:4d、1d:3d、1d:2d. The study found:
     The prefered CRI tester is constructed with purple soil (70cm)/ceramic(20cm) /pebble(10cm). The preferred operating parameters of the tester are: hydraulic load being 0.1m3/m2·d and the wet/dry ratio being 1d:3d. The mean concentration of COD、NH4+-N、TN、TP of CRI tester effluent is 50.0mg/L、7.9mg/L、20.6mg/L、0.9mg/L and the mean removal rate is 84.2%、72.3%、57.7%、85.1% respectively. All the indexes have matched the B standard of“Pollutants Discharge standard of Urban Sewage treatment plant”except TN which is about 50% exceeding by the B standard.
     Hydraulic load, hydraulic loading cycle and the variation of wet/dry ratio have little effect on the removal of COD and TP, but have great impact on the removal of NH4+-N and TN. The removal rate of TN is negatively correlated with hydraulic loading, but positively correlated with wet/dry ratio and temperature in some degree. Alternation of flooding and dry is the main form of aeration, the best aeration combination of CRI system is the alternation of flooding and dry + plant canna.
     Aiming at the natural environments parameters such as 17℃~ 19℃of the temperature, 60~80% of the average relative humidity, about 30% of the sunshine rate and 1.12m/s of the average annual wind speed, the CRI system constructed mainly by purple soil is worked out compatible to the economical, technological and management level of small towns in the reservoir area. The construction form and operating parameters are the innovation and supplements of CRI system, also they are an an extension of the application scope of CRI system.
     The frequency of TN concentration in the effluent matching the B standard being about 50% becomes the primary cause when the improvement of hydraulic load or the performance of decontamination is concerned. For the reasons above, the main factors such as the ratio of purple soil and sand, thickness of the infiltration soil, the ratio of carbon and nitrogen of the sewage, and the operating parameters are examined carefully, for the purposes to study the method to improve nitrogen removal performance in two ways which are optimizing the CRI system structure and operation parameters. Studies have shown that:
     To the infiltration media mixed with purple soil and the sand, the less the ratio of soil and sand is, the more of NO3--N produced in the effluent, the more the ratio of soil and sand is, the less of NH4+-N、TN produced in the effluent. The CRI tester composed by the mixture of soil and sand in 4:1 ratio had relatively the best removal performance to NH4+-N and TN, the removal rate is 71.7% and 48.8% respectively. Integrated other factors such as hydraulic load, the medium with ratio of soil and sand in 4:1 is the more appropriate media choice.
     The primary mechanism of CRI system is metabolism of aerobic microorganisms. The oxidation of organic and kjeldahl nitrogen is occurred mostly within the 0.6 meter soil layer below the surface, and the removal process of TN is mainly occurred between the soil layer of 0.6~1.0m. The thickness of the soil cannot result in the better performance of N removal. The CRI tester constructed with 1.0 meter infiltration soil has relatively good removal effects of nitrogen.
     The ratio of C:N in the sewage can significantly effect the NO3--N、TN concentration of effluent, with the increased C:N, the NO3--N、TN concentration of effluent decreased markedly. It is a feasible measurement to improve TN removal performance to dose carbon into sewage (the maximum of COD is 400mg/L) and the best proportion of C:N in the sewage should be between 6.0 and 8.0.
     The less the wet/dry ratio is and so does the flooding, the better the NH4+-N removal performance is. The NH4+-N removal rate can achieve to 71.4% when wet/dry ratio is 1:9, the flooding time is 12 hours, and the hydraulic loading cycle is 120 hours. The less the wet/dry ratio is but the longer the flooding time is, the better the TN removal performance is. The TN removal rate can achieve to 59.1% when wet/dry ratio is 1:9, the flooding time is 48 hours, and the hydraulic loading cycle is 480 hours. Long flooding time is benefial to denitrification of CRI system.
     Studying further on the mechanism of nitrogen migration and transformation in the CRI system, It is found that NH4+-N is the key of nitrogen migration and transformation in the CRI system, so the study on the mechanism of nitrogen migration and transformation in the CRI tester is carried out at the condition that applied single nitrogen compound (NH4+-N and NO3--N) to one-dimensional soil column constructed by the mixture of purple soil and sand in the ratio of 3:1, and the hydraulic loading cycle is 4 days, the wet/dry ratio is 1d:3d.
     The experiments of NO3--N dosing into the CRI tester showed: adsorption of NO3--N in the soil column tester did not exist; there was denitrification process occured after flooding 5~9 hours, the space of denitrification is between 25cm~85cm as to the CRI soil column with the effective height of 1.0 meter.
     The experiments of NH4+-N dosing into the CRI tester showed: the nitrification and the adsorption processes begins when flooding; the adsorption is a simple and temporary processes, easy to desorption and desorption completely; the removal process of NH4+-N in the CRI system is a steady-state process,has nothing to do with the flooding time, but has negative linear correlation to the deepth of the soil column within a certain height.
     Based on the experiment results of single compound of NH4+-N and NO3--N dosing into the CRI system, referenced to the theory of solute migration and transportation through porous media and convection-dispersion equation, a one-dimensional equation of the vertical migration of NH4+-N was composed to simulate the process of NH4+-N dosing into the CRI system. In the simulation, the migration and transportation of NH4+-N in the CRI system is the results of water convection and hydrodynamic dispersion, and adsorption-desorption, nitrification and denitrification process. It is the first time that the water flow equation of sewage flow through the CRI soil column and the oxygen concentration as the constraints of nitrification, denitrification process were linked together. The expression of one-dimensional mathematical model of vertical migration of ammonia in the CRI system is:
     The parameters in the CRI model are determined as following: the retardarce coefficient is determined by static isothermal absorption experiment, the velocity of sewage travel through the soil column is determined by permeability test, the vertical dispersion coefficient is determined by test the electric conductivity of tracer in the dispersion experiment, the rate of nitrification and denitrification is determined by test of Baps technology. Finally, the migration and transformation mechanism of NH4+-N is analysised out by the test results of oxidization-Redox potentials along with the soil columns.
     The model is applied to simulate the single nitrogen compounds (NH4+-N) of the artificial sewage distributed to the surface of soil columns.The boundary and the original conditions were initialized, the parameters such as retardarce coefficient, the mean water velocity through the infiltration medium, vertical diffusion coefficient, nitrification and denitrification rates were substituted into the equation. The Matlab program was writed out based on the finite difference method. The simulated result and the parameters sensitivity analysis is worked out so as to understand the migration and transformation mechanism of NH4+-N in the CRI system.
     Comparison of simulation results and the measured data showed that simulation results could reflect the NH4+-N concentration when artificial nitrogen-containing sewage being distributed onto the surface of soil column at different periods. Both the trends and the value of concentration are in good agreement when NH4+-N concentration in soil solution in the CRI soil columns of different height concerned.
     The order of sensitive factors which affect the NH4+-N migration and transformation is: vertical dispersion coefficient D.≈retardarce coefficient Rd1 > pore velocity v = nitrification coefficient K1. The order which affect the NO3-N migration and transformation is: nitrification coefficient K1 > vertical dispersion coefficient D.> retardarce coefficient Rd2> denitrification coefficient K2 > pore velocity v, which is helpful on further research on the nitrogen removal performance in the CRI system.
引文
[1] Levine, A.D., Asano, T, 2004. Recovering sustainable water from wastewater.Environ. Sci. Technol. 38, 201A–208A.
    [2] Angelakis AN , Bontoux L, Lazarova V. Challenges and prospectives for water recycling and reuse in EU countries [J] .Water. Supply, 2003, 3(4): 59-68.
    [3] D. Bixioa, C. Thoeyea, J. De Koningb, et.al. Wastewater reuse in Europe [J]. Desalination, 2006, 187(1-3): 89–101.
    [4] A. Lopeza, A. Pollicea, A.Lonigrob.et.al. Agricultural wastewater reuse in southern Italy [J]. Desalination. 2006.187: 323–334.
    [5] John C. Radcliffe. Future directions for water recycling in Australia [J]. Desalination 2006.187: 77-87.
    [6] T. Asano and A. Levine, Wastewater reclamation recycling and reuse: past, present and future [J]. Water Sci. Technol, 1996,33(10–11):1–14.
    [7] R.pujol,M. hamon,X.kandel and Lemmel.Biofilters: flexible,reliable biological reactors [J]. Wat.Sci.Tech, 1994, 29(10-11): 33-38.
    [8]张虎成,田卫,俞穆清等.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备. 2004, 5(2): 11-15.
    [9]高拯民,李宪法.城市污水土地处理利用设计手册[M] .北京:中国标准出版社, 1991.
    [10]黄玮,汪翎.浅议城市污水资源化生态工程中的土地处理系统[J].水电站设计. 2004, Vol.20(1): 80-83.
    [11]刘润堂,许建中.我国污水灌溉现状、问题及对策[J].中国水利. 2002,10: 123-125.
    [12] Roy F. Weston, Inc.,“Operation and Maintenance Considerations for Land Treatment Systems,”EPA-600/2-82-039, Jan., 1982.
    [13]贾宏宇,孙铁珩,李培军.污水土地处理技术研究的最新进展[J].环境污染治理技术与设备.2001, 2(1): 62-65.
    [14] Crites, R.W., Reed, S.C. and Bastian, R.K. Land Treatment Systems for Municipal and Industrial Wastes [M], McGraw-Hill, New York, USA, 2000.
    [15] Angelakis, A.N, Koutsoyiannis, D. and Tchobanoglous, G. Urban wastewater and stormwater technologies in ancient Greece [J]. Water Research, 2005, 39, 210–220.
    [16] US EPA (1979). A History of Land Application as a Treatment Alternative, U.S Environmental Protection Agency, EPA 430/9-79-012, Apr. Washington, DC, USA.
    [17] Reed, S.C., Crites, R.W. and Middlebrooks, E.J. Natural Systems for Waste Management and Treatment (2nd Edition.)[M], McGrow-Hill, Inc, New York, USA.1995.
    [18] V.E.Tzanakakis, N.V.Paranychianaki, A.N.Angelakis. Soil as a wastewater treatment system: historical development. Water Science & Technology: water Supply, 2007.Vol 7(1): 67–75.
    [19] Hill, R.D., Bendixen, T.W. and Robeck, G.G. (1964). Status of land treatment for waste functional designs[R]. Water Pollution Control Federation Meeting, Bal Harbour, Florida.
    [20] US EPA. Process Design Manual for Land Treatment of Municipal wastewater. Cincinnati, Ohio: U. S. Environmental Protection Agency Center for Environmental Research Information, EPA 625/1/81-013, Cincinnati, Ohio, 1981.
    [21] US EPA.“Land Treatment of Municipal Wastewater—Supplement on Rapid Infiltration and Overland Flow,”U.S.Environmental Protection Agency CERI, EPA 625/1/81-013a, Cincinnati, Ohio, 1984.
    [22]党酉胜,黄钟,张伯鸣等.污水土地处理的研究现状及发展趋势[J].陕西环境, 2002. 9(5):17-19.
    [23] K. C. Cameron, H. J. Di, and R. G. McLaren. Is soil an appropriate dumping ground for our waster [J], Australian Journal of Soil Research, 1997, 35: 995-1035.
    [24] L. Barton, L. A. Schipper, G. F. Barkle. Land Application of Domestic Effluent onto Four Soil Types: Plant Uptake and Nutrient Leaching [J]. Journal of Environmental Quality, 2005, 34: 635–643.
    [25] Brechin, J., and McDonald, G. K. Effect of form and rate of pig manure on the growth, nutrient uptake, and yield of barley (cv. Galleon). Australian Journal of Experimental Agriculture, 1994. 34(4), 505-510.
    [26] MacGregor, A. N., Stout, J. D., and Jackson, R. J. Quality of drainage water from pasture treated with dairy shed effluent [J]. Progress. Water Technology.1979, 11: 11-17.
    [27] Goold, G. J. Rates of dairy shed effuent applied to pastures on clay soils in Northland [J]. New Zealand Journal of Experimental Agriculture.1980, 8: 93-99.
    [28]古智生.以色列水资源的开发与利用[J].节水灌溉. 1996年第6期: 34-35.
    [29]曾令芳,吴小亮.国外污水灌溉新技术[J].节水灌溉. 2002.3: 34-35.
    [30]齐学斌,钱炬炬,樊向阳等.污水灌溉国内外研究现状与进展[J].中国农村水利水电. 2006, 1: 13-15.
    [31] Bell M, Fred. Nybery. Infiltration wastewater in a newly started pilot sand filter system. I. Reduction of organic matter and phosphorus [J]. Journal of Environmental Quality.1989, 18(4): 451-457.
    [32] Tzanakakis, V.E., Paranychianakis, N.V. and Angelakis, A.N. Performance of slow rate systems for treatment of domestic wastewater [J]. Water Sci. Technol., 2007. 55(1-2):139-47.
    [33] Hasselgren, K. Use of municipal waste products in energy forestry: Highlights from 15 years of experience [J]. Biomass Bioenerg, 1998, 15(1): 71-74.
    [34] Sparling, G.P., Schipper, L.A. and Russel, J. Changes in soil properties after application of dairy factory effluent to New Zealand volcanic ash and pumice soils [J]. Australian Journal of Soil Research, 2001.39(3): 505-518.
    [35] Cabrera, F., Lopez, R., Martnez-Bordiu, A., Dupuy de Lome, E. and Murrilo, J.M. Land treatment of olive oil mill wastewater [J]. International Biodeterioration & Biodegradation, 1996, 38(3-4), 215-225.
    [36] Rhoades, J.D. Intercepting, isolating, and reusing drainage waters for irrigation to conserve water and protect water quality [J]. Agricultural Water Management, 1989. 16(1-2): 37-52.
    [37]郭伟,李培军.污水快速渗滤土地处理研究进展[J].环境污染治理技术与设备, 2004, 5(8): 1-6.
    [38]汪民,吴永锋,钟佐燊等.污水快速渗滤土地处理[M].北京:地质出版社, 1993.
    [39] Crites, R. W, and Tchobanoglous, G. Small and Decentralized Wastewater Management Systems [M], WCB and McGraw-Hill, New York, USA, 1998.
    [40] Angelakis, A.N. Management of wastewater by natural treatment systems with emphasis on land based systems [J]. Decentralized Sanitation and Reuse, 2001.16: 303–333.
    [41] Ronald W. Crites, Sherwood C.Reed, Robert K. Bastian. Land treatment systems for Municipal and Industrial Wastes [M]. McGraw-Hill, New York, USA 2000.
    [42]孙铁珩.污水生态处理技术体系及发展趋势[J].水土保持研究. 2004, 11(3): 1-3.
    [43] Perttu, K.L. Environmental and hygienic aspects of willow coppice in Sweden. Biomass and Bioenergy, 1999:16(4): 291-297.
    [44] Bouwer, H. Integrated water management: emerging issues and challenges [J]. Agricultural Water Management. 2000. 45(3): 217-228.
    [45]杨翠芬,孙铁珩,李培军.污水土地处理生态工程综合效益评价—以霍林河森林型慢速渗滤土地处理工程为例[J].应用生态学报.1999, 10(4): 481-484.
    [46]纪峰,潘安君,李军.快速渗滤在小堡村污水治理中的应用[J].乡村水环境研究.1998.5: 26-27.
    [47]郝火凡.污水土地处理系统中干湿周期的室内模拟试验研究[J].甘肃环境研究与监测, 2001, 14(2): 72-73.
    [48]潘明瑷,徐扬志.阴离子洗涤剂在慢速渗滤系统中的去除研究[J].云南环境科学.1998. 17(1): 5-7.
    [49]彭燕梅,王雪波.楚雄市污水土地处理系统的处理效果分析[J].楚雄师范学院学报. 2002, 17(3): 5-7.
    [50]张笑一,史莉,彭润芝等.地沟式污水土地处理和人工湿地中植物对磷去除的效果研究[J].农业环境科学学报. 2004.23(1): 151-153.
    [51]申秀英,许晓路.若干种有机污水土地处理法研究[J].环境污染与防治.1995.17(1): 18-21.
    [52]中华人民共和国国家标准--污水综合排放标准: GB8978-1996. 1998.1.1号实施.
    [53]张凯松,周启星,孙铁珩.小城镇无害化资源化水处理技术研究与应用[J].中国工程科学. 2003. 15(12): 88-92.
    [54]黄昌勇.土壤学[M].第一版.北京:中国农业出版社, 1999.
    [55] P.R. Thawale, A.A. Juwarkar, S.K.Singh. Rewource conservation through land treatment of municipal wastewater [J], Current Science, 2006, 90(5): 704-711.
    [56] Julie Stauffer, The water crisis: constructing solutions to freshwater pollution [M], Earthscan Publish House, 1998.
    [57]何江涛,钟佐燊,汤鸣皋.解决污水快速渗滤土地处理系统占地突出的新方法[J].现代地质. 2001. Vol.15(3): 339-345.
    [58] Macarty. P. L, Reinhard. M.. Trace organics in groundwater [J]. Environmental Science Technology, 1981a,15(1): 40-51.
    [59] Edward J.Bouwer, Perry L.McCarty, Herman Bouwer et al.Organic contaminant behavior during rapid infiltration of secondary wasterwater at the phoenix 23rd avenue project [J]. Water Research.1984, 18(4): 463-472.
    [60]成徐州,吴天宝,陈天柱等.土壤渗滤技术研究现状与进展[J].环境科学研究,1999,12(4): 33-36.
    [61]郭笃发,姜爱霞.污水土地处理系统的应用分析[J].环境科学进展, 1995, 3(6): 64-70.
    [62] Amy. G. Debroux. J. F, Arnold. R. et al. Preozonation for enhancing the biodegradability of wastewater effluent in a potable-recovery soil aquifer treatment (SAT) system [J]. Journal of Water Science. 1996, 9(3):365-380.
    [63] Magdoff.F.R, D.R.Keeney, J.Bouma. et al. Columns representing mound-type disposal system for septic tank effluent.ⅡNutrient transformations and bacteria pollutions [J].Journal of Environmental Quality.1974, 3: 228-234.
    [64] Stones T.1978.Changes during sewage settlement [J]. Effluent water treatment 18: 445-449.
    [65]田光明.人工土快滤床对耗氧有机污染物的去除机制[J].土壤学报, 2002, 39(1): 127-134.
    [66] Bouwer. H, Rice. R. C, J. C. Lance and R. G. Gilbert. Rapid-infiltration research at flushing meadows project. Arizona [J].Journal (Water Pollution Control Federation), 1980, 52(10): 2457-2470.
    [67] Arizona State University, University of Arizona, University of Colorado, Soil Treatability Pilot Studies to Design and Model Soil Aquifer Treatment Systems [R], AWWA Research Foundation, Denver, Colorado, 1998.
    [68] Herman Bouwer,R.C. Rice. Renovation of wastewater at 23rd Avenue rapid infiltration project [J].Journal WPCF, 1984, 56(1): 76-83.
    [69] J. C. Lance, R. C. Rice and R. G. Gilbert. Renovation of wastewater by soil columns flooded by primary effluent [J]. Journal (Water Pollution Control Federation), 1981. 52(2): 381-388.
    [70] Suzuki. T, Katsuno. T. Land application of wastewater using three types of trenches set in lysimeter and its mass balance of nitrogen [J].Water Resource. 1992. 26: 1433-1444.
    [71] Cater. L. W, Knox. R. C. Septic tank system effect on groundwater quality [M]. Lewis Publisher Inc .Michigan. 1985.
    [72] Richardson. C. J., Davis. J. A. Natural and artificial wetland ecosystem: Ecological opportunities and limitation. In: Aquatic Plants for Water Treatment and resource Recovery, K. R. Reddy, W. H. Smith (eds), Magnolia Publishing Inc, 1987, 819-854.
    [73] Faulkner. S. P, Richardson. C. J. Physical and chemical characteristics of freshwater wetland. In: Constructed Wetlands for Wastewater Treatment [M]. D. A. Hammer. Chelsea. Lewis Publisher Inc .Michigan. 1989. 41-72.
    [74] Mann. R. A. Phosphorus removal by constructed wetlands: subsratum adsorption. In: Constructed Wetlands in Water Pollution Control [M]. P. F. Cooper., B. C. Findlater. Pergamon Press. Oxford. UK. 1990. 97-105.
    [75] Wood. A. Constructed wetlands for wastewater treatment-engineering and design considerations. In: Constructed Wetlands in Water Pollution Control. P. F. Cooper. , B. C. Findlater (eds). Pergamon Press. Oxford. UK. 1990. 481-494.
    [76] A. Tan?k,B. Comako?lu?,Nutrient removal from domestic wastewater by rapid infiltration system [J]. Journal of Arid Environments, 1996, 34(3): 379–390.
    [77]聂艳丽,郑毅,林克惠.根分泌物对土壤中磷活化的影响[J].云南农业大学学报. 2002.17(3):281-285.
    [78] GoEn E. Ho, Kuruvilla M, Robyn A. Gibbs. Nitrogen and phosphorus removal from sewage effluent in amended sand columns [J].water Resource 1992, 26(3): 295-300.
    [79]美国梅特卡夫和艾迪公司.秦裕珩等译.废水工程.处理处置及回用(第二版)[M].化学工业出版社. 1986.
    [80]傅金祥,马黎明,金成清等.污水土地处理除磷脱氮原理探讨[J].沈阳建筑工程学院学报,1994,10(1): 30-35.
    [81]关小满.污水土地生态处理脱氮机理与效率的研究[D].贵州师范大学硕士论文, 2004.
    [82]刘庆余,蔡晓冬.污水污泥的生物处理研究及其展望[J].环境科学进展. 1995, 3(3): 75-79.
    [83]吴永锋,汪民,钟佐燊.污水快速渗滤处理系统水力负荷周期的设计[J].环境科学. 1996. 17(2): 51-53.
    [84]何江涛,马振民.污水快速渗滤土地处理系统存在问题的讨论[J].华东地质学院学报, 2001, 24(1): 45-47.
    [85]李培军,孙铁珩,郭治军等.快速渗滤生态工程冬季运行热平衡研究及其在系统设计中的应用[J].应用生态学报, 1993, 4(2): 182-186.
    [86]黄楚豫,段振渤.污水土地快速渗滤处理的应用前景[J].环境污染与防治, 1993, 5(1): 21-25.
    [87]张祖锡,白瑛.城市污水人工土快滤处理技术[M].北京:中国科学技术出版社, 1991.
    [88] Carlson. R. R.. Rapid infiltration system of primary and secondary effluents, Journal (Water Pollution Control Federation), 1982, 54(3): 270-280.
    [89] Benham-Blair and Affiliates, Inc,”Long-Term Effects of Land Application of Domestic Wastewater: Milton, Wisconsin, Rapid Infiltration Site,”[R], EPA-600/2-79-145, 1979.08.
    [90] Pound, C. E., R. W. Crites, and J. V. Olson,“Long-Term Effects of Land Application of Domestic Waste water-Hollister, California, Rapid Infiltration Site,”[R], EPA-600/2-78-084, Apr. 1978.
    [91] B. Rich. Overview of the Field Test of Innovative On-Site Wastewater Treatment Systems during the La Pine National Demonstration Project [J]. Journal of Hydrologic Engineering, 2008. 13(8): 752-760.
    [92] Mikael Pell, Fred Nyberg. Infiltration of wastewater in a newly started pilot sand-filter system,Ⅰ,Ⅱ,Ⅲ[J]. Journal of Environmental Quality,1989, 18: 451-467.
    [93] S.Van Cuyk, R.Siegrist, A. Logan, et al. Hydrulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems [J]. Water. Resource. 2001. 35(4): 953-964.
    [94] Deborah N,Huntzinger Beach, and John.E.McCray, Numerical modeling of unsaturated flow in wastewater soil absorption system [J].Ground water monitoring & Remediation.2003, 23(2): 64-72.
    [95] F.D.Whisler, J.C.Lance, and R.S.Linebarge. Redox potentials in soil Columns intermittently flooded with sewage water [J] J. Enviro. Quality, 1974, 3(1): 68-74.
    [96] Kerem GüNG?R, KahramanüNLü, Nitrite and Nitrate Removal Effciencies of Soil Aquifer Treatment Columns [J].Turkish Journal Eng Env.Sci.2005. 29: 159-170.
    [97] T. Yamaguchii, P. Moldrup, D.E.Rolston, et al. Nitrification in porous media during rapid unsaturated water flow. Water flow [J], Wat. Resource. 1996.30(3): 531-540.
    [98] Kathleene Conn, Larryb barber, Gregoryk Brown et al. Occurrence and Fate of Organic Contaminants during Onsite Wastewater Treatment [J]. Science & Technology. 2006, 40(23): 7358-7366.
    [99] S. R. Hutchixs, M. B. Tomson, J. T. Wtilson et al. Fate of trace organics during rapid infiltration of primary wastewater at Fort Devens, Massachusetts [J]. Water Resource. 1981 18(8): 1025-1036.
    [100] Sheila Van Cuyk, Robert L. Siegrist. Virus removal within a soil infiltration zone as affected by effluent composition, application rate, and soil type [J]. Water Research 2007. 41(3): 699–709.
    [101] Kirkley K. Heatwole, John E. McCray. Modeling potential vadose-zone transport of nitrogen from onsite wastewater systems at the development scale [J]. Journal of Contaminant Hydrology, 2007, 91(1-2): 184-201.
    [102] Deborah N.H.Beach, John E.McCray, Kathryn S.Lowe et al.Temporal changes in hydraulic conductivity of sand porous media biofilters during wastewater infiltration due to biomat formation[J]. Journal of hydrology, 2005, 311(1-4): 230-243.
    [103] John E.McCray, Shiloh L Kirkland, Robert L Siegrist et al.Model parameters for simulating fate and transport of on-site wastewater nutrients[J].Ground water. 2005.43(4): 628-639.
    [104] Jury, W. A. Sposito, G. White, R. E. A transfer function model of solute transport through soil. 1. Fundamental concepts [J]. Water Resources Research. 1986. 22(2): 243-247.
    [105]崔理华,朱夕珍,汤连茂.城市污水人工土快滤床与水生植物复合处理系统[J].中国环境科学, 2000, 20(5) 432-435.
    [106]牟新民,黄培鸿,张金炳等.人工快速渗滤系统处理深圳市茅洲河水的试验研究[J].应用基础与工程科学学报. 2003, 11(4): 370-377.
    [107]张金炳,黄培鸿,杨小毛.东莞华兴电器厂生活污水人工快渗处理系统[J].环境工程, 2003, 21(6): 32-36.
    [108]王红旗,陈家军.污水土地处理模拟实验比较分析[J].上海环境科学. 2000, 19(6): 288-291.
    [109]何江涛,段光杰,张金炳等.污水渗滤土地处理系统中水力停留时间与出水效果的讨论[J].地球科学—中国地质大学学报. 2002, 27(2): 203-208.
    [110]王禄,喻志平,赵智杰.人工快速渗滤系统氨氮去除机理[J].中国环境科学2006, 26(4): 500-504.
    [111]喻治平,赵智杰,杨小毛.人工快速渗滤池微生物活性的研究[J].中国环境科学. 2005, 25(5): 589-593.
    [112]张广普,安奎进.含氯代烃污水土地处理(RI系统)研究[J].长春科技大学学报. 1994, 2(24): 180-184.
    [113]赵思平,颜京松.废水处理与利用生态工程II一类型及一些案例[J],城市环境与城市生态, 2002, 13(6): 6-11.
    [114]于秀玲,李万庆.乳山市造纸厂废水土地处理技术[J].城市环境与城市生态. 1998, 11(2): 13-16.
    [115]宋汝华.邢台市城市污水土地处理工程设计[J].天津建设科技, 1998, 29(1):40-42.
    [116]何江涛,钟佐燊,汤鸣皋等.人工构建快速渗滤污水处理系统的试验[J].中国环境科学. 2002. 23(3): 239-243.
    [117]崔理华,汤连茂,朱夕珍等.城市污水人工快滤床运行方式的试验研究[J].中国环境科学. 2002, 21(1): 37-40.
    [118]刘洪斌.区域土壤信息系统的建立与应用——以重庆市为例[D].重庆:西南农业大学, 2002.
    [119]何毓蓉,黄成敏,宫阿都.中国紫色土的微结构研究[J].西南农业学报, 2002.Vol.15(1): 65-69.
    [120]重庆市政协发展课题研究组.三峡库区生态环境保护与污染防治研究[J].重庆大学学报, 1996,2(4): 6-13.
    [121]钟章成,邱永树.重庆三峡库区主要生态环境问题与对策[J].重庆环境科学.1999, 21(1): 1-2.
    [122]刘光德,李其林,黄驹等.三峡库区面源污染现状与对策研究[J].长江流域资源与环境. 2003. 12(5): 462-466.
    [123]陈玉成,郑永华,肖广权等.三峡库区重庆段小城镇污水处理对策[J].中国给水排水.2004, 20(5): 28-31.
    [124]杨小俊,袁德玉,关凯等.三峡库区小城镇污水处理厂的设计[J].中国农村水利水电. 2004, 3: 20-22.
    [125]中国三峡总公司网站: http://www.ctgpc.com.cn.
    [126]袁聚云.土工试验与原位测试[M].上海:同济大学出版社.2004.
    [127]洪流康主编.土质学与土力学(第二版)[M].北京:人民交通出版社. 2003.
    [128]车振海.试论土壤渗透系数的经验公式和曲线图[J].东北水利水电.1995, 135(9):17-19.
    [129]齐明亮,王有乐,敬宪科等.土地快速渗滤系统的水力负荷研究[J].甘肃环境研究与监测. 1999. 12(4): 169-173.
    [130] Schudel P, Boller M. Onsite Wastewater Treatment With Intermittent Buried filters [J].Wat Sci Tech, 1990, 22(3/4): 93-100.
    [131] Green M, Friedler E, Ruskol Y, et al. Investigation of alternative method for nitrification in constructed wetalnds [J]. Wat. Sci. Tech, 1997, 35(5): 63-70.
    [132] Brix Hans. Treatment of wastewater in the rhizosphere of wetland plants--The root-zone method [J]. Water Science and Technology, 1987, 19: 107-118.
    [133] Brix H. Do macrophytes play a role in constructed treatment wetlands [J]. Water Science and Technology, 1997, 35(54): 11-17.
    [134]陈长太,阮晓红,王雪.人工湿地植物的选择原则[J].中国给水排水.2003.19(3): 65.
    [135]雷志栋,谢森传,杨诗秀等.土壤给水度的初步研究[J].水利学报.1984(5): 10-17.
    [136]刘学军,扬维仁.给水度测定方法研究[J].地下水. 2003. 25(4): 221-223.
    [137] J. C.Lance, F. D. Whisler, and R. C. Rice, Maximizing Denitrification during Soil Filtration of Sewage Water [J]. Journal of Environmental Quality, 1976, 5(1): 102-107.
    [138] Bouwer, Renovation of Wasterwater with Rapid Infiltration Land Treatment System [M]. Artificial Recharge of Groundwater, Butterworth Publishers, Boston Massachusetts. 1985: 249-282.
    [139]吕家珑,张一平,张君常等.土壤磷运移研究[J].土壤学报, 1999, 36(1): 75-82.
    [140] Mandi L, Bouhoum K., Ouazzani N. Application of A Subsurface Constructed Wetland in Iran [J]. Wat Science Technology, 1998, 38(1): 379-387.
    [141]张建,黄霞,刘超翔等.地下渗滤处理村镇生活污水的中试[J],环境科学, 2002, 23(6): 57-61.
    [142]陈崇希.岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究[J].地球科学, 1995, 20(4): 364-366.
    [143]吴俊锋,王燕枫,李勇.低铵污水灌溉下土壤中硝化作用试验研究[J ] .江苏环境科技, 2003, 16 (2): 4-5.
    [144] Carre. J, & Duflis.J. Wastewater treatment by infiltration basins: Usefulness and limites-sewage plant in Creances [J]. (France).Water Science and Technology, 1991, 24(9): 287-294.
    [145]朱夕珍,肖乡,刘怡等.植物在城市生活污水人工土快滤处理床的作用[J].农业环境科学学报. 2003..22(5).582-584.
    [146]张金炳,张永华,杨小毛等.用人工快速渗滤系统处理受污染河水的试验研究[J].华北水利水电学院学报, 2004, 25(3): 65-67.
    [147]刘培斌,丁跃元,张瑜芳.田间一维饱和—非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报, 2000, 37(4): 490-498.
    [148]何江涛,汤鸣皋,张金炳等.人工构建快速渗滤污水处理系统的试验[J].中国环境科学, 2002, 22(3): 239-243.
    [149] Leach.L.E, Enfield C.G, and C.C.Harlin,Jr.”Summary of Long-term Rapid infiltration system studies”[R], EPA-600/2-80-165, July 1980.
    [150]国家环境保护总局, 2008中国环境状况公报. http://www.zhb.gov.cn/plan/ zkgb/ 2008zkgb/200906/t20090609_152552.htm
    [151] Mark R.Matsumoto, Abiotic nitrogen removal mechanisms in rapid infiltration wastewater treatment system [R]. University of California Water Resources Center.2005.
    [152] J. C.Lance, F. D. Whisler. Nitrogen balance in soil columns intermittently flooded with secondary sewage effluent [J] Journal of Environmental. Quality, 1972, 1(2): 180-186.
    [153] J. C.Lance, F. D. Whisler, and H.Bouwer, Oxygen Utilization in Soils flooded with Sewage Water [J], Journal of Environmental Quality,1973, 2(3):345-350.
    [154] Ronald W.Crites, M.ASCE.Nitrogen Removal in Rapid Infiltration System [J].Journal of Environment Engineering .1985, 111(6): 865-873.
    [155]崔理华,朱夕珍,李国学等.北京西郊城市污水人工快滤处理与利用系统[J].中国环境科学, 2000a, 20(l): 45-48.
    [156]崔理华,朱夕珍,李金铃等.城市污水人工土快滤处理系统的进水水质条件研究[J].农业环境保护, 2002a, 21(3): 228-231.
    [157]刘传,田源.人工快渗系统处理生活污水的试验研究[J].环境科学与技术, 2009. 32(1): 134-137.
    [158]张树兰,杨学云,吕殿青等.几种土壤剖面的硝化作用及其动力学特征[J].土壤学报. 2000. 37(3): 372-378.
    [159]陈效民,邓建才,柯用春等.硝态氮垂直运移过程中的影响因素研究[J].水土保持学报. 2003. 17(2): 12-15.
    [160]钟远平,唐将,王力.三峡库区土壤有机质区域分布及影响因素[J].水土保持学报. 2006, 20(5): 73-76.
    [161]刘英,李国学,崔理华.不同配水周期人工土快滤系统对城市污水的净化效果[J].农业环境保护. 2000, 19 (6): 332-335.
    [162] US EPA. Manual: Nitrogen Control. EPA/625/R-93/010, Office of Water, Washington, D.C. September, 1993.
    [163]刘凌,陆桂华.含氮污水灌溉实验研究及污染风险分析[J].水科学进展. 2002, 13(3): 313-320.
    [164]刘翔,刘兆昌,朱馄.氮对地下水的污染预测模型[J].环境科学1991, 12 (6), 8-11.
    [165]郝桂玉.污水土地处理系统相关机理研究及实践应用[D].上海.华东师范大学.2004.
    [166]范晓晖,朱兆良.我国几种农田土壤硝化势的研究[J].土壤通报. 2002. 33(2): 124-125.
    [167] Jennifer H. Miller, Wendell P. Ela, Kevin E. Lansey. et al. Nitrogen Transformations during Soil–Aquifer Treatment of Wastewater Effluent—Oxygen Effects in Field Studies[J]. Journal of Enviromental. Engineering. 2006. 132(10), 1298-1306.
    [168] Goen E.Ho,Robyn A.Gibbs et.al. Groundwater recharge of sewage effluent through amended sand [J]. Western Australia. Water Research, 1992, 26(3): 285-293.
    [169] Whisler, F.D.Rodex potentials in soil columns intermittentsy flooded with sewage water [J].Environ.Quality. 1974, 3(1).68-74.
    [170]潘晓峰.氮在包气带的迁移转化规律的研究及模型的建立[D].吉林:吉林大学, 2007.
    [171]宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境2003, 12(2): 240-244.
    [172]付融冰,杨海真,顾国维等.潜流人工湿地对农村生活污水氮去除的研究[J].水处理技术, 2006.Vol.32(1): 18-22.
    [173] Vymazal J,Brix H Cooper,P Haberl R,et al. Removal mechanisms and types of constructed wetlands in Europe [M]. Leiden: Backhuys Publishers, 1998. 17-66.
    [174]重庆市气候与气象灾害, http://www.121.cq.cn/service/cqweather.htm.
    [175]谢红梅,朱波,朱钟麟.紫色土NH4+ .NO3-的吸附-解吸特性研究[J].土壤肥料. 2006, 2: 19-22.
    [176]国家环境保护总局,水和废水监测分析方法[M]. (第四版).北京:中国环境科学出版社, 2002.
    [177]刘家宝.人工快渗系统污染物去除机理及其处理效果研究[D].北京:中国地质大学, 2006.
    [178] Perrotti A.E. and Rodman C.A. Factors involved with the biological regeneration of activated carbon. AIChE Symp. Ser.1974, 144(70): 317–325.
    [179]黄树辉.裂缝条件下稻田土壤中N2O的释放和氮溶质运移的机理研究[D]. .杭州:淅江大学, 2004.
    [180]李韵珠,李保国.土壤溶质运移[M].北京:科学出版社, 1998.
    [181]魏新平,王文焰,王全九等.溶质运移理论的研究现状和发展趋势[J].灌溉排水.1998, 17(4): 58-63.
    [182] N.Persaud, J.V.Giraldez, and A.C.Chang, Monte-Carlo simulation of Noninteracting solute transport in a spatially heterogenous soil[J], Soil Sci. Soc.J.Am,1985, 49: 562-568.
    [183] Aris R. On the dispersion of linear kinematic waves [J], Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1958, 245(1241): pp. 268-277.
    [184]曹巧红,龚元石.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J].植物营养与肥料学报, 2003, 9(2):139-145.
    [185]张思聪,吕贤弼,黄永刚.灌溉施肥条件下氮素在土壤中迁移转化的研究[J].水利水电技术, 1999, 30(5): 6-8.
    [186]杜恩昊,张佳宝,唐立松.一种溶质运移数学模型的应用研究[J].干旱地区农业研究, 2001,18(1): 29-34.
    [187] Kanwar R S, Johnson H P, Baker J L. Comparison of simulated andmeasured losses in the effluent [J]. Transactions of ASAE.1983, 26 (5): 1451-1457.
    [188] Skaggs R W, M A Breve. Simulation of drainage water quality with Drainmod [C]. Trasactions of Workshop on Subsurface Drainage Simulation Model.1993.
    [189]徐晓荣,李恒辉,陈良.利用15N研究氮肥对土壤及植物内硝酸盐的影响[J].核农学报, 2000, 14(5): 301-304.
    [190]叶自桐.用于分析有突变土层界面和水流锋面的非饱和土壤水运动的时间差分格式[J].水利学报. 1987, 8: 1-11.
    [191]黄康乐.原状土壤动态吸附的理论和试验研究[J].武汉大学学报(工学版). 1987, 3: 21-26.
    [192]武晓峰,谢森传.冬小麦田间根层中氮素迁移转化规律研究[J].灌溉排水, 1996, 15(4): 10-15.
    [193]冯绍元.排水条件下饱和—非饱和土壤中氮素运移和转化规律的研究[D].武汉水利电力大学博士学位论文, 1993.
    [194] Addiscott, T. M., and Wagenet, R. J. Concept of solute leaching in soils: a review of modeling approaches [J]. Journal of Soil Science, 1985, 36: 411-424.
    [195]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社, 1988.
    [196]王青海,郑军芳,贾海虹等.阻滞系数及其测试方法分析[J].辐射防护. 2008. 28(4): 215-220.
    [197]冯绍元,张瑜芳,沈荣开等,淹水土壤中氮素运移与转化试验及其数学模拟[J],农业工程学报, 1994, 10(4): 50-56.
    [198]黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型[J].水力学报. 1996, (4): 9-15.
    [199]王红旗.饱和—非饱和土层氮转化迁移动态模拟研究[D],北京:中国地质大学, 1997.
    [200]张翠云,张胜,贾秀梅等,三氮吸附性能对比试验研究[J],勘察科学技术. 2001, 5: 37-39.
    [201]张文静,梁秀娟.确定河流纵向弥散系数的正态分布图解法[J].吉林大学学报(地球科学版).2004,34:83-86.
    [202]叶为民,金麒,黄雨等.地下水污染试验研究进展[J].水利学报.2005, 36(2):251-255.
    [203]刘巧辉.应用Baps系统研究旱地土壤硝化-反硝化过程和呼吸作用[D].南京:南京农业大学. 2005.
    [204]刘义,陈劲松,刘庆等.土壤硝化和反硝化作用及影响因素研究进展[J].四川林业科技. 2006.4.27(2): 36-40.
    [205] Ingwersen J, K. Butterbach - Bahl , R. Gasche ,O. Richter & H. Papen. Barometric process separation: New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils [J]. Soil Science Society of America Journal, 1999, 63: 117-128.
    [206] Kiese Ralf, Hans Papen, Elisabeth Zumbusch, Klaus Butterbach-Bahl. Nitrification activity in tropical rain forest soils of the Coastal Lowlands and Atherton Tablelands, Queensland, Australia [J]. Journal of Plant Nutrition and Soil Science, 2002, 165(6): 682-685.
    [207] Lutz Breuer, Ralf Kiese. And Klaus Butterbach-Bahl. Temperature and Moisture effects on nitrification rates in tropical rain-forest soils [J].Soil science society of American Journal. 2002, 66(3): 834-844.
    [208]唐运平,米瑞兰,赵景林.影响土地处理系统土壤硝化作用条件的探讨[J].农业环境保护. 1992:11(5): 199-201,227.
    [209]贺锋,吴振斌,陶菁.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学. 2005,26(1): 47-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700