等离子体型光催化材料的制备及其降解环境污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会发展,能源短缺与环境污染已经成为人们关注的焦点问题。光催化技术,作为一种绿色高级氧化技术,在环境污染治理领域和能源转化方面有着广泛的应用前景。光催化技术能够将低密度的太阳能转化成高密度易存储的氢能,从而解决能源短缺问题;能够把有毒有害的有机、无机环境污染物降解或矿化成低毒、无毒的物质,减少环境污染;还可以利用太阳能光催化还原C02为低碳烷烃,一方面降低温室气体CO2的量,另一方面转化的产物还能作为燃料,变废为宝,解决能源危机。因此光催化技术有着巨大的发展潜力。然而,以Ti02为代表的传统光催化剂,由于其带隙宽而只能利用太阳光中的紫外光,大大限制了其应用范围。本论文旨在研究新型非Ti02系列光催化材料的控制合成和表面调控,以及其在环境污染物治理方面的应用。并采用XRD、XPS、SEM-EDS、TEM、DRS、PL、EIS等测试手段对合成催化剂的结构、形貌、光电性能及光催化性能进行研究,对结构与性能之间的构效关系进行深入的探讨。本文的具体研究内容如下:
     1.首先合成Ag纳米线,然后通过[Bmim]FeCl4离子液体氧化刻蚀Ag纳米线的方法,合成等离子体型核壳结构Ag@AgCl光催化剂。通过XRD、XPS、SEM-EDS、DRS等方法对催化剂进行表征分析,研究该材料的氧化刻蚀过程。Ag@AgCl表现出贵金属特有的表面等离子体共振吸收现象,其吸收的强度与Ag@AgCl形貌以及Ag、AgCl的比例密切相关。DRS结果表明,随着刻蚀时间的延长,光催化剂等离子体共振吸收也随之增强。实验以甲基橙染料为目标污染物,在可见光照射下考察其光催化活性,结果表明催化剂的降解能力随着等离子体共振吸收的增强而提高。其中刻蚀时间为20h的样品活性最高,40min即可降解95%的甲基橙污染物。此外该光催化剂还能有效降解高毒性的4-氯酚。构效关系研究表明,催化剂的高活性来源于Ag单质的等离子体共振吸收与AgCl之间的协同作用。
     2.通过水热法合成新型光催化材料Ag/AgCl/ZnO。运用XRD、 TG-DSC、SEM、TEM、DRS和XPS等手段对催化剂进行一系列表征。以甲基橙作为降解的目标污染物,在紫外光照射下考察催化剂的光催化活性。结果显示复合催化剂的光催化活性明显高于单体ZnO。进一步研究发现,Ag/AgCl与半导体光催化剂ZnO能够有效耦合,催化剂在经过多次重复性实验后,原先的Ag/AgCl/ZnO结构逐渐转变成Ag/ZnO。尽管催化剂的组成和结构发生转变,但是其活性并没有明显降低。根据光催化剂的表征结果和活性数据分析了催化剂光催化降解甲基橙可能的反应机理。
     3.通过一步法制备新型光催化剂CNT/Ag/AgBr,旨在利用碳纳米管(CNT)的优良导电性进一步提高等离子体型光催化剂Ag/AgBr的光催化活性。通过SEM-EDS、XPS、IR、PL等测试手段对CNT/Ag/AgBr催化剂的结构、形貌和光学性质进行了表征。在可见光照射下,与单体Ag/AgBr才相比,CNT/Ag/AgBr样品降解甲基橙染料活性更高,而且CNT的负载量对催化剂的活性有显著影响。当CNT含量为1.4at%时,复合催化剂光催化活性最高。实验结果表明,低含量的CNT有利于光生电子的转移,从而有益于复合催化剂活性的提高。通过液质联用(LC/MS)和总有机碳(TOC)对污染物的降解过程进行分析,并确定了甲基橙染料可能的降解途径。根据实验结果讨论了该催化剂可见光光催化降解机理。
     4.采用水热法合成了新型等离子体型光催化剂Ag/AgBr/g-C3N4,实现Ag/AgBr在g-C3N4材料表面的有效分散,进而提高复合光催化材料的性能。通过XRD、TEM、DRS、PL、IR等表征手段分析Ag/AgBr/g-C3N4催化剂的结构、形貌和光学性质。分析结果表明,Ag/AgBr和g-C3N4之间存在耦合作用,形成的异质结结构有利于光生电子和空穴的分离,从而促进Ag/AgBr/g-C3N4复合催化剂可见光降解罗丹明B活性的提升。此外,高分散的Ag/AgBr嵌入到g-C3N4的表面也能够提高复合催化剂的催化活性。结果表明,17.8at%Ag/AgBr/g-C3N4复合催化剂光催化降解能力最高,其降解速率常数是单体g-C3N4的18.3倍。进一步讨论了光催化活性和结构之间的关系。
     5.运用水热法合成了CNT/white g-C3N4复合光催化剂。研究发现,CNT和white g-C3N4通过静电吸引自组装结合在一起,形成CNT/-white g-C3N4。通过TEM, XRD, IR, DRS, XPS和PL等手段对合成催化剂的结构、形貌和光学性质进行表征。以亚甲基蓝染料为目标污染物评价催化剂的光催化活性。结果表明不同催化剂的光催化活性顺序为:CNT/white g-C3N4>g-C3N4>white g-C3N4。与white g-C3N4、g-C3N4相比CNT/white g-C3N4复合催化剂在1.5h时的光催化降解性能分别提升66.5%和34.5%。CNT/white g-C3N4催化剂降解速率约为white g-C3N4的8.1倍。PL分析结果表明,CNT/white g-C3N4与whiteg-C3N4相比具有更低的电子空穴复合率,因此复合材料具有较高的光催化性能。结合表征和活性实验结果,深入分析CNT/white g-C3N4光催化性能提升的内在原因。
With the development of the society, energy shortage and environmental pollution have become the hot issues of human concerns. The photocatalytic technology is a green oxidation technology. It has been widely applied in the field of environmental pollution protection and energy conversion. The photocatalyst can convert the low-density solar energy into the easily stored high-density hydrogen, and solve the problem of shortage of energy. It can also reduct the CO2into low-carbon alkane, which can reduce the amount of the greenhouse gas carbon dioxide and turn it into fuel to solve the energy crisis at the same time. Besides, it can degrade toxic and harmful organic pollutants into non-toxic substances. So, photocatalytic technology has great potential for development. However, the wide band gap of the traditional photocatalyst TiO2is large, so it can only use ultraviolet light in sunlight, thus it's scope of application are greatly limited. This paper is emphasized on the controlled synthesis of the photocatalytic materials as well as its application in environmental purification. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), TEM, UV-vis diffuse reflectance spectroscopy (DRS), photolumin-escence (PL), Electrochemical Impedance Spectroscopy (EIS) were used to test the catalyst structure, morphology, optical performance and photocatalytic properties, and the relationship between the structure and activities were also studied.
     The main content and conclusions are summarized below:
     1. In this work, Ag nanowire was firstly synthesized, and then it was etched into core-shell Ag@AgCl by [Bmim]FeCl4ionic liquid. The photocatalyst was characterized by XRD, XPS, SEM-EDS, DRS and other methods. The core-shell Ag@AgCl structure forming process was also proposed. Ag@AgCl exhibited the surface plasmon resonance absorption, which is peculiar to the noble metal. The resonance absorption is closely related with Ag@AgCl morphology and proportions. The DRS result showed that the plasmon resonance absorption increased with the etching time prolonged. The methyl orange was used as the target pollutant to test the photoactivity of the photocatalyst under visible light irradiation. The experiment result showed that the degradation ability of the catalyst with enhanced plasmon resonance absorption enhancement. Among those samples, the Ag@AgCl etched for20h showed the highest photocatalytic ability, which was able to degrade95%methyl orange in40min. In addition, the catalyst could also degrade the highly toxic4-chlorophenol. The relationship between the structure of the photocatalyst and the photocatalytic activities was disscussed, and the result indicated that the high photoactivity of the Ag@AgCl is attributed to the synergetic effect between surface plamon resonance absorption effect of Ag and AgCl.
     2. A new composite photocatalyst Ag/AgCl/ZnO was fabricated by a two-step synthesis method under the hydrothermal condition. The sample was characterized by XRD, TG-DSC, SEM, TEM, DRS and XPS. Methyl orange (MO) was used as a representative dye pollutant to evaluate the photocatalytic activity of Ag/AgCl/ZnO under ultraviolet light irradiation. The photocatalytic activity of Ag/AgCl/ZnO catalyst was higher than that of the pure ZnO catalyst. Further study found that Ag/AgCl and ZnO were able to form a heterojunction structure and the Ag/AgCl/ZnO structure changed to Ag/ZnO gradually after several repeated experiments. However, the photocatalytic ability of the sample was not reduced. Finally, a possible photocatalytic mechanism was proposed.
     3. Carbon nanotubes (CNT)-loaded Ag/AgBr was prepared by a facile, one-step hydrothermal method. The purpose of the study was to further enhance the photocatalytic activity of plasma photocatalyst Ag/AgBr by taking advantage of the excellent conductivity of CNT. The structure, morphology and optical properties of the samples were characterized by SEM-EDS、XPS、IR、PL. The CNT/Ag/AgBr composite exhibited much higher photocatalytic activity than the pure Ag/AgBr in degrading Methyl orange (MO) dye pollutant under visible light irradiation. The loading amount of CNT has a significant influence on the photoactivity of the CNT/Ag/AgBr composite. When the CNT loading amount was1.4at%, the hybrid material showed the highest photocatalytic ability. The result showed that a small amount CNT was beneficial to the photo-generate electron transfer, and the photoactivity of the CNT/Ag/AgBr could be enhanced. The degradation process of the dye solution was tested by liquid chromatography mass spectrometry (LC/MS) and total organic carbon (TOC). Based on the results, the possible degradation path of the MO dye was proposed. In addition, a possible visible light photocatalytic degradation mechanism was also discussed.
     4. A new plasmonic photocatalyst of Ag/AgBr/g-C3N4was prepared by a hydrothermal method. It is expected to enhance the dispersity of the Ag/AgBr on the surface of the g-C3N4, which can further enhance the photoactivity of the hybrid. XRD, TEM, DRS, PL emission spectra and IR spectra were employed to confirm the structure, morphology and optical property of the as-prepared Ag/AgBr/g-C3N4composite. XPS analysis indicated the interaction between Ag/AgBr and g-C3N4. They formed the heterojunction structure, which was facile to the separation of the electron-hole, and hence enhanced the photocatalytic activity of Ag/AgBr/g-C3N4in degrading Rhodamine B under visible light irradiation. Besides, the highly dispersion of Ag/AgBr anchored on the surface of g-C3N4was also assumed to responsible for the enhanced activity and good recycling ability. The17.8at%Ag/AgBr/g-C3N4 showed the highest photoactivity, the degradation rate constant of17.8at%Ag/AgBr/g-C3N4was as high as18.3times to that of the pure g-C3N4. The relationship between the photocatalytic activity and the structure of Ag/AgBr/g-C3N4hybrid materials was discussed.
     5. The white g-C3N4and CNT combined together and formed the CNT/white g-C3N4composite due to electrostatically-driven self-assem-bly by the hydrothermal method. The structure, morphology and optical properties of the white g-C3N4and CNT/white g-C3N4composite photocatalyst were characterized by TEM, XRD, IR, DRS, XPS and PL The photoactivity of the catalysts was evaluated by degrading methylene blue (MB) dye solution. The results showed that the photoactivity for the degradation of MB solution was in the following order:CNT/white g-C3N4composite> g-C3N4> the white g-C3N4. The photoactivity of the CNT/white g-C3N4composite was66.5%and34.5%higher than that of the white g-C3N4sample and that of the g-C3N4at1.5h, respectively. The degradation rate of the CNT/white g-C3N4photocatalyst was almost8.1times as high as that of the white g-C3N4. The PL result showed that the CNT/white g-C3N4have much lower electron-hole recombination rate, which leads to the enhanced photoactivity. The reason to the photoactivity of the CNT/white g-C3N4was much higher than that of g-C3N4and the white g-C3N4was discussed based on characterize and the photocatalytic experiment.
引文
[1]Fujishima A, Honda K. Electroehemieal Photolysis of water at a semieonductor Electrode[J]. Nature,1972,238,37-38
    [2]Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature,1979,277,637-638
    [3]Mills A, Lee S K. A web-based overview of semiconductor photochemistry-based current commercial applications[J]. J. Photochem. Photobiol., A,2002,152,233-247
    [4]Fujishima A, Zhang X T, Tryk D A. TiO2 photocatalysis and related surface phenomena[J]. Surf. Sci. Rep.,2008,63,515-582
    [5]Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations-A review[J]. Appl. Catal., B,2004,49, 1-14
    [6]Hernandez-Alonso M D, Fresno F, Suarez S, Coronado J M. Development of alternative photocatalysts to TiO2:Challenges and opportunities[J]. Energy Environ. Sci.,2009,2, 1231-1257
    [7]Cary J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contam. Toxicol,1976,16,697-701
    [8]Daghrir R, Drogui P, Robert D. Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res.2013,52,3581-3599
    [9]Murugan K, Rao T N, Gandhi A S, Murty B S. Effect of aggregation of methylene blue dye on TiO2 surface in self-cleaning studies[J]. Catal. Commun.,2010,11,518-521
    [10]Sharma M V P, Kumari V D, Subrahmanyam M. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light:Part 2. Silica prepared using acrylic acid emulsion[J]. J. Hazard. Mater.,2010,175,1101-1105
    [11]Wang L, Cai H J, Li S Z, Mominou N. Ultra-deep removal of thiophene compounds in diesel oil over catalyst TiO2/Ni-ZSM-5 assisted by ultraviolet irradiating[J]. Fuel,2013,105,752-756
    [12]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,2001,293,269-271
    [13]Li H Y, Wang D J, Fan H M, Wang P, Jiang T F, Xie T F. Synthesis of highly efficient C-doped TiO2 photocatalyst and its photo-generated charge-transfer properties[J]. J. Colloid Interface Sci.,2011,354,175-180
    [14]Wang Y P, Li J, Peng P Y, Lu T H, Wang L J, Preparation of S-TiO2 photocatalyst and photodegradation of L-acid under visible light[J]. Appl. Surf. Sci.,2008,254,5276-5280
    [15]Chen D M, Yang D, Wang Q, Jiang Z Y. Effect of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles[J]. Ind. Eng. Chem. Res.,2006,45,4110-4116
    [16]陈恒,龙明策,徐俊,蔡伟民.可见光响应的氯掺杂Ti02的制备、表征及其光催化活性[J].催化学报,2006,27,890-894
    [17]文晨,孙柳,张纪梅,邓桦,王鹏.碘掺杂对纳米Ti02催化剂光催化活性的影响[J].高等学校化学学报,2006,27,2408-2410
    [18]Cong Y, Tian B Z, Zhang J L. Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping[J]. Appl. Catal. B,2011,101,376-381
    [19]Xiao Q, Ouyang L L, Gao L, Jiang W J. One-step hydrothermal preparation and photocatalytic activity of (C, S, Sm)-tridoped mesoporous TiO2 photocatalyst under visible light irradiation[J]. Mater. Chem. Phys.,2010,124,1210-1215
    [20]Wu Y M, Zhang J L, Xiao L, Chen F. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light[J]. Appl. Surf. Sci.,2010,256,4260-4268
    [21]Jang H S, Kim H G, Borse P H, Lee J S. Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation[J]. Int. J. Hydrogen Energy,2007,32,4786-4791
    [22]Smith Y R, Raj K J A, Subramanian V, Viswanathan B. Sulfated Fe2O3-TiO2 synthesized from ilmenite ore:A visible light active photocatalys[J]. Colloids Surf., A,2010,367,140-147
    [23]Chen L C, Tsai F R, Fang S H, Ho Y C. Properties of sol-gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination[J]. Electrochim. Acta, 2009,54,1304-1311
    [24]Ilive V, Tomova D, Rakovsky S, Eliyas A, Puma G L, Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation[J]. J. Mol. Catal. A:Chem.,2010,327,51-57
    [25]Ishibai Y, Sato J, Nishikawa T, Miyagishi S. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification:Role of TiO2 substrate for high photocatalytic activity[J]. Appl. Catal. B,2008,79,117-121
    [26]Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J. Catal.,2003,216,505-516
    [27]Li X Z, Li F B, Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Waste water Treatment[J]. Environ. Sci. Technol.,2001,35,2381-2387
    [28]Zou C W, Rao Y F., Alyamani A, Chu W, Chen M J, Patterson A, Emanuelsson E. A. C, Gao W. Heterogeneous Lollipop-like V2O5/ZnO Array:A Promising Composite Nanostructure for Visible Light Photocatalysis[J]. Langmuir,2010,26,11615-11620
    [29]Zhang H C, Huang H, Ming H, Li H T, Zhang L L, Liu Y, Kang Z H. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light[J]. J. Mater. Chem.,2012,22,10501-10506
    [30]Shu H M, Xie J M, Xu H. Li H, Gu Z, Sun G, Xu Y, Structural characterization and photocatalytic activity of NiO/AgNbO3[J]. J. Alloys Compd.,2010,496,633-637
    [31]Li Y, Liu J, Huang X, Li G. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres[J]. Cryst. Growth Des.,2007,7,1350-1355
    [32]Hu X, Hu C. Preparation and visible-light photocatalytic activity of Ag3VO4 powders[J]. J. Solid State Chem.,2007,180:725-732
    [33]Arney D, Watkins T, Maggard P A. Effects of Particle Surface Areas and Microstructures on Photocatalytic H2 and O2 Production over PbTiO3[J]. J. Am. Ceram. Soc.,2011,94, 1483-1489
    [34]桑丽霞,傅希贤,白树林,杨秋华,王俊珍,孙艺环.制备方法对LaFeO3及掺杂LaFeO3光催化活性的影响[J].化学工业与工程,2000,17,336-340
    [35]Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J. M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater.,2009,8,76-80
    [36]Niu P, Zhang L L, Liu G, Cheng H M. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Adv. Funct. Mater.,2012,22,4763-4770
    [37]Liang J, Zheng Y, Chen J, Liu J, Hulicova-Jurcakova D, Jaroniec M, Qiao S Z. Facile Oxygen Reduction on a Three-Dimensionally Ordered Macroporous Graphitic C3N4/Carbon Composite Electrocatalyst[J]. Angew. Chem. Int. Ed.,2012,51,3892-3896
    [38]Liao G Z, Chen S, Quan X, Yu H T, Zhao H M. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation[J]. J. Mater. Chem.,2012,22, 2721-2726
    [39]Ge L, Han C C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity[J]. Appl. Catal. B,2012,117-118,268-274
    [40]Kim M, Hwang S, Yu J S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell[J]. J. Mater. Chem.,2007,17,1656-1659
    [41]Wang Y, Yao J, Li H R, Su A S, Antonietti M. Highly Selective Hydrogenation of Phenol and Derivatives over a Pd@Carbon Nitride Catalyst in Aqueous Media[J]. J. Am. Chem. Soc.,2011, 133,2362-2365
    [42]Ge L, Han C C, Liu J, Li Y F. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles[J]. Appl. Catal. A,2011,409-410,215-222
    [43]Zhang J S, Zhang M W, Sun R Q, Wang X C. A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions[J]. Angew. Chem. Int. Ed.,2012, 124,10145-10149
    [44]Sun J X, Yuan Y P, Qiu L G, Jiang X, Xie A J, Shen Y H, Zhu J F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J]. Dalton Trans.,2012,41,6756-6763
    [45]Wang Y J, Wang Z X, Muhammad S, He J. Graphite-like C3N4 hybridized ZnWO4 nanorods: Synthesis and its enhanced photocatalysis in visible light[J]. CrystEngComm,2012,14, 5065-5070
    [46]Zhou X S, Jin Bei, Li L D, Peng F, Wang H J, Yu H, Fang Y P. A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst:synthesis, characterization, and photoelectrochemical properties[J]. J. Mater. Chem.,2012,22,17900-17905
    [47]Fu J, Tian Y L, Chang B B, Xi F N, Dong X P. BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism[J]. J. Mater. Chem.,2012,22, 21159-21166
    [48]Stephen A G, Fisher R J. Methods for the Analysis of HIV-1 Nucleocapsid Protein Interactions with Oligonucleotides[J]. Methods Mol. Biol.,2009,485,209-210
    [49]Mouri R, Konoki K, Matsumori N, Oishi T, Murata M. Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance[J]. Biochemistry, 2008,47,7807-7815
    [50]Karlsson R, Michaelsson A, Mattsson L. Kinetic-analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system[J]. J. Immunol. Methods,1991,145, 229-240
    [51]Collier C P, Saykally R J, Shiang J J, Henrichs S E, Heath J R. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition[J]. Science,1997,277, 1978-1981
    [52]Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide[J]. J. Am. Chem. Soc.,2008,130,1676-1680
    [53]Li F H, Wang Z H, Shan C S, Song J F, Han D X, Niu H. Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application[J]. Biosens. Bioelectron.,2009,24,1765-1770
    [54]Xuemei Zhou, Gang Liu, Jiaguo Yu, Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light[J]. J. Mater. Chem.,2012,22,21337-21354
    [55]Kim Y H, Lee D K, Cha H G, Kim C W, Kang Y S. Synthesis and Characterization of Antibacterial Ag-SiO2 Nanocomposite[J]. J. Phys. Chem. C,2007,111,3629-3635
    [56]Schill L, Putluru S S R, Jacobsen C F, Hansen C H, Fehrmann R, Jensen A D. Ethanol-selective catalytic reduction of NO by Ag/Al2O3 catalysts:Activity and deactivation by alkali salts[J]. Appl. Catal. B,2012,127,323-329
    [57]沈江,杜俊明,黄静静,杨新艳,沈伟,徐华龙,范康年.Ag/ZrO2催化剂上的1,2-丙二醇选择性气相氧化反应[J].化学学报,2007,65,403-408
    [58]Sun S M, Wang W Z, Zhang L, Shang M, Wang L. Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst[J]. Catal. Commun.,2009,11,290-293
    [59]Yan Y, Sun H P, Yao P P, Kang S Z, Mu J. Effect of multi-walled carbon nanotubes loaded with Ag nanoparticles on the photocatalytic degradation of rhodamine B under visible light irradiation[J]. Appl. Surf. Sci.,2011,257,3620-3626
    [60]Jung J H, Hwang G B, Lee J E, Bae G N. Preparation of Airborne Ag/CNT Hybrid Nanoparticles Using an Aerosol Process and Their Application to Antimicrobial Air Filtration[J]. Langmuir,2011,27,10256-10264
    [61]Yang G W, Gao G Y, Wang C, Xu C L, Li H L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J]. Carbon,2008,46,747-752
    [62]Qin X Y, Luo Y L, Lu W B, Chang G H, Asiri A M, Al-Youbi A O, Sun X P. One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H2O2 detection[J]. Electrochim. Acta,2012,79,46-51
    [63]Baby T T, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated grapheme[J]. J. Mater. Chem.,2011,21,9702-9709
    [64]Kim S H, Jeong G H, Choi D, Choi D, Yoon S Y, Jeon H B, Lee S M, Kim S W. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide[J]. J. Colloid Interface Sci.,2013,389,85-90
    [65]Zhou Y Z, Yang J, Cheng X N, Zhao N, Sun L, Sun H B, Li D. Electrostatic self-assembly of graphene-silver multilayer films and their transmittance and electronic conductivity[J]. Carbon, 2012,50,4343-4350
    [66]Zhang H, Chen S, Quan Xie, Yu H T, Zhao H M. In situ controllable growth of noble metal nanodot on graphene sheet[J]. J. Mater. Chem.,2011,21,12986-12990
    [67]Wen C Y, Shao M W, Zhuo S J, Lin Z Q, Kang Z H, Silver/graphene nanocomposite:Thermal decomposition preparation and its catalytic performance[J]. Mater. Chem. Phys.,2012,135, 780-785
    [68]Li H Y, Zhang Y W, Chang G H, Liu S, Tian J Q, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Environmentally Friendly Photocatalytic Synthesis of Porphyrin/Ag Nanoparticles/Reduced Graphene Oxide Ternary Nanohybrids Having Superior Catalytic Activity[J]. ChemPlusChem, 2012,77,545-550
    [69]Cao S W, Fang J. Shahjamali M M, Wang Z, Yin Z, Yang Y H, Boey F Y C, Barber J, Loo S C J, Xue C. In situ growth of Au nanoparticles on Fe2O3 nanocrystals for catalytic applications[J]. Cryst. Eng. Comm.,2012,14,7229-7235
    [70]Liu Y P, Fang L, Lu H D, Li Y W, Hu C Z, Yu H G. One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4[J]. Appl. Catal. B,2012,115-116,245-252
    [71]Wang S L, Qian H H, Hu Y, Dai W, Zhong Y J, Chen J F, Hu X. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity[J]. Dalton Trans.,2013,42,1122-1128
    [72]Zhu L F, He C, Huang Y L, Chen Z H, Xia D H, Su M H, Xiong Y, Li S Y, Shu D. Enhanced photocatalytic disinfection of E. coli 8099 using Ag/BiOI composite under visible light irradiation[J]. Sep. Purif. Technol.,2012,91,59-66
    [73]Sun S M, Wang W Z, Zeng S Z, Shang M, Zhang L. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation[J]. J. Hazard. Mater.,2010,178,427-433
    [74]Zheng Y H, Zheng L R, Zhan Y Y, Lin X Y, Zheng Q, Wei K M. Ag/ZnO Heterostructure Nanocrystals:Synthesis, Characterization, and Photocatalysis[J]. Inorg. Chem.,2007,46, 6980-6986
    [75]Li J T, Cushing S K, Bright J, Meng F, Senty T R, Zheng P, Bristow A D, Wu N Q. Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts[J]. ACS Catal.,2013,3, 47-51
    [76]Shimizu K, Katagiri M, Satokawa S, Satsuma A. Sintering-resistant and self-regenerative properties of Ag/SnO2 catalyst for soot oxidation[J]. Appl. Catal. B,2011,108-109,39-46
    [77]Chang S J, Li M, Hua, Zhang L J, Mac Y S, Yed B J, Huang W X. Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity[J]. J. Catal.,2012,293,195-204
    [78]Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Wei J Y, Whangbo M H. Ag@AgCl:A highly efficient and stable photocatalyst active under visible light[J]. Angew. Chem. Int. Ed., 2008,47,7931-7933
    [79]凌绍明,蒋治良,闭献树,义祥辉.Ag/AgCl纳米粒子的制备及其共振散射光谱研究[J].光谱学与光谱分析,2001,21,819-821
    [80]An C H, Peng S, Sun Y G. Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst[J]. Adv. Mater.,2010,22,2570-2574
    [81]Wang Wei, Lu W S, Jiang L. AgCl and Ag/AgCl hollow spheres based on self-assemblies of a multi-amine head surfactant[J]. J. Colloid Interface Sci.,2009,338,270-275
    [82]Xu H, Li H M, Xia J X, Yin S, Luo Z J, Liu L, Xu L. One-Pot Synthesis of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl in Ionic Liquid[J]. Acs Appl. Mater. Inter.,2011,3,22-29
    [83]Han L, Wang P, Zhu C Z, Zhai Y M, Dong S J. Facile solvothermal synthesis of cube-like Ag@AgCl:a highly efficient visible light photocatalyst[J]. Nanoscale,2011,3,2931-2935
    [84]An C H, Wang R P, Wang S T, Zhang X Y. Converting AgCl nanocubes to sunlight-driven plasmonic AgCl:Ag nanophotocatalyst with high activity and durability[J]. J. Mater. Chem., 2011,21,11532-11536
    [85]Dong L H, Liang D D, Gong R C. In Situ Photoactivated AgCl/Ag Nanocomposites with Enhanced Visible Light Photocatalytic and Antibacterial Activity[J]. Eur. J. Inorg. Chem.,2012, 2012,3200-3208
    [86]Jiang J, Zhang L Z. Rapid Microwave-Assisted Nonaqueous Synthesis and Growth Mechanism of AgCl/Ag, and Its Daylight-Driven Plasmonic Photocatalysis[J]. Chem. Eur. J., 2011,17,3710-3717
    [87]Choi M, Shin K H, Jang J. Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light[J]. J. Colloid Interface Sci.,2010,341,83-87
    [88]Wang P, Huang B B, Lou Z Z, Zhang X Y, Qin X Y, Dai Y, Zheng Z K, Wang X N. Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures[J]. Chem. Eur. J.,2010,16,538-544
    [89]Bi Y P, Ye J H. In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties[J]. Chem. Commun.,2009,0,6551-6553
    [90]Li Y Y, Ding Y, Porous AgCI/Ag Nanocomposites with Enhanced Visible Light Photocatalytic Properties[J]. J. Phys. Chem. C,2010,114,3175-3179
    [91]Sun Y G. Conversion of Ag Nanowires to AgCl Nanowires Decorated with Au Nanoparticles and Their Photocatalytic Activity[J]. J. Phys. Chem. C,2010,114,2127-2133
    [92]Li F, Liu X Q, Yuan Y L, Wu J F, Li Z. Controllable synthesis, characterization and optical properties of Ag@AgCl coaxial core-shell nanocables[J]. Cryst. Res. Technol.,2010,45, 1189-1193
    [93]Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan Jie, Wang S Y, Wang J P, Whangbo M H. Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr[J]. Chem. Eur. J.,2009,15,1821-1824
    [94]Bi Y P, Ye J H. Direct Conversion of Commercial Silver Foils into High Aspect Ratio AgBr Nanowires with Enhanced Photocatalytic Properties[J]. Chem. Eur. J.,2010,16,10327-10331
    [95]Kuai L, Geng B Y, Chen X T, Zhao Y Y, Luo Y C. Facile Subsequently Light-Induced Route to Highly Efficient and Stable Sunlight-Driven Ag-AgBr Plasmonic Photocatalyst[J]. Langmuir, 2010,26,18723-18727
    [96]Liu L, Xu Hui, Li H M, Xu Y G, Xia J X, Yin S. Synthesis and characterization of the efficient visible-light-induced photocatalyst AgBr and its photodegradation activity[J]. J. Phys. Chem. Solids,2012,73,523-529
    [97]Lou Z Z, Huang B B, Qin X Y, Zhang X Y, Wang Z Y, Zheng Z K, Cheng H F, Wang P, Dai Y. One-step synthesis of AgBr microcrystals with different morphologies by ILs-assisted hydrothermal method[J]. CrystEngComm,2011,13,1789-1793
    [98]Jiang J, Li H, Zhang L Z. New Insight into Daylight Photocatalysis of AgBr@Ag:Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis[J]. Chem. Eur. J., 2012,18,6360-6369
    [99]Feng S, Xu H, Liu L, Song Y H, Li H M, Xu Y G, Xia J X, Yin S, Yan Jia. Controllable synthesis of hexagon-shaped-Agl nanoplates in reactable ionic liquid and their photocatalytic activity[J]. Colloids Surf. A,2012,410,23-30
    [100]Rodrigues S, Uma S, Martyanov I N, Klabunde K J. AgBr/Al-MCM-41 visible-light photocatalyst for gas-phase decomposition of CH3CHO[J]. J. Catal.,2005,233,405-410
    [101]Pourahmada A, Sohrabnezhad S H, Kashefian E. AgBr/nanoAlMCM-41 visible light photocatalyst for degradation of methylene blue dye[J]. Spectrochim. Acta A,2010,77, 1108-1114
    [102]Zang Y J, Farnood R, Currie J. Photocatalytic activities of AgBr/Y-zeolite in water under visible light irradiation[J]. Chem. Eng. Sci.,2009,64,2881-2886
    [103]Zhou X F, Hu C, Hu X X, Peng T W, Qu J H. Plasmon-Assisted Degradation of Toxic Pollutants with Ag-AgBr/Al2O3 under Visible-Light Irradiation[J]. J. Phys. Chem. C,2010,114, 2746-2750
    [104]Hu W L, Chen S Y, Li X, Shi S K, Shen W, Zhang X, Wang H P. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes[J]. Mater. Sci. Eng. C,2009,29, 1216-1219
    [105]Li G T, Wong K H, Zhang X W, Hu C, Yu J C, Chan R.C.Y, Wong P.K. Degradation of Acid Orange 7 using magnetic AgBr under visible light:The roles of oxidizing species[J]. Chemosphere,2009,76,1185-1191
    [106]Zhu M S, Chen P L, Liu M H. Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium:enhanced catalytic performance by morphology selection[J]. J. Mater. Chem.,2011,21,16413-16419
    [107]Zhu M S, Chen P L, Liu M H. Ag/AgBr/Graphene Oxide Nanocomposite Synthesized via Oil/Water and Water/Oil Microemulsions:A Comparison of Sunlight Energized Plasmonic Photocatalytic Activity[J]. Langmuir,2012,28,3385-3390
    [108]Zhu M S, Chen P L, Liu M H. Highly efficient visible-light-driven plasmonic photocatalysts based on graphene oxide-hybridized one-dimensional Ag/AgCl heteroarchitectures[J]. J. Mater. Chem.,2012,22,21487-21494
    [109]Xu C, Yuan Y, Cui A, Yuan R S. In situ controllable synthesis of Ag@AgCl core-shell nanoparticles on graphene oxide sheets[J]. J Mater Sci.,2013,48,967-973
    [110]Zhang H, Fan X F, Quan X, Chen S, Yu H T. Graphene Sheets Grafted Ag@AgCl Hybrid with Enhanced Plasmonic Photocatalytic Activity under Visible Light[J]. Environ. Sci. Technol.,2011,45,5731-5736
    [111]Zhou Z J, Long M C, Cai W M, Cai J. Synthesis and photocatalytic performance of the efficient visible light photocatalyst Ag-AgCl/BiVO4[J]. J. Mol. Catal. A:Chem.,2012, 353-354,22-28
    [112]Andersson M, Birkedal H, Franklin N R, Ostomel T, Boettcher S, Palmqvist A E. C, Stucky G D. Ag/AgCl-Loaded Ordered Mesoporous Anatase for Photocatalysis[J]. Chem. Mater., 2005,17,1409-1415
    [113]Wang X F, Li S F, Yu H G, Yu J G. In situ anion-exchange synthesis and photocatalytic activity of Ag8W4O16/AgCl-nanoparticle core-shell nanorods[J]. J. Mol. Catal. A:Chem.,2011, 334,52-59
    [114]Tang Y X, Subramaniam V P, Lau T H, Lai Y K, Gong D G, Kanhere P D, Cheng Y H, Chen Z, Dong Z L. In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate oneycomb by gas phase reaction for visible light degradation of phenol solution[J]. Appl. Catal. B,2011,106,577-585
    [115]Xiong W, Zhao Q D, Li X Y, Zhang D K. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity[J]. Catal. Commun.,2011,16, 229-233
    [116]Asia M A, He C, Su M H, Xia D H, Lin L, Deng H Q, Xiong Y, Qiu R L, Li X Z. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light[J]. Catal. Today.,2011,175,256-263
    [117]Cheng H F, Huang B B, Wang P, Wang Z Y, Lou Z Z, Wang J P, Qin X Y, Zhang X Y, Dai Y. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chem. Commun.,2011,47,7054-7056
    [118]Krishnakumar B, Subash B, Swaminathan M. AgBr-ZnO-An efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light[J]. Sep. Purif. Technol.,2012,85,35-44
    [119]Hou Y, Zuo F, Ma Q, Wang C, Bartels L D, Feng P Y. Ag3PO4 Oxygen Evolution Photocatalyst Employing Synergistic Action of Ag/AgBr Nanoparticles and Graphene Sheets[J]. J. Phys. Chem. C,2012,116,20132-20139
    [120]Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y. One-Step Synthesis of the Nanostructured AgI/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances[J]. Langmuir,2010,26,6618-6624
    [121]Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Ag/AgBr/WO3·H2O: Visible-Light Photocatalyst for Bacteria Destruction[J]. Inorg. Chem.,2009,48,10697-10702
    [122]Hu C, Lan Y Q, Qu J H, Hu X X, Wang A M. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria[J]. J. Phys. Chem. B,2006,110,4066-4072
    [123]Zhang L, Wong K H, Chen Z G, Yu J C, Zhao J C, Hu C, Chan C Y, Wong P K. AgBr-Ag-Bi2WO6 nanojunction system:A novel and eficient photocatalyst with double visible-light active components[J]. Appl. Catal. A,2009,363,221-229
    [124]Cao J, Luo B D, Lin H L, Chen S F. Synthesis, characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst[J]. J. Mol. Catal. A:Chem.,2011,344,138-144
    [125]Wang P, Huang B B, Zhang Q Q, Zhang X Y, Qin X Y, Dai Y, Zhan J, Yu J X, Liu H X, Lou Z Z. Highly Efficient Visible Light Plasmonic Photocatalyst Ag@Ag (Br, I)[J]. Chem. Eur. J., 2010,16,10042-10047
    [126]Wang P, Huang B B, Zhang X Y, Qin X Y, Dai Y, Wang Z Y, Lou Z Z. Highly Efficient Visible Light Plasmonic Photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI[J]. ChemCatChem, 2011,3,360-364
    [127]Lin H L, Cao J, Luo B D, Xu B Y, Chen S F. Synthesis of novel Z-scheme Agl/Ag/AgBr composite with ennced visible lightphotocatalytic activity[J]. Catal. Commun.,2012,21,91-95
    [128]An C H, Wang J Z, Qin C, Jiang W, Wang S T, Li Y, Zhang Q H. Synthesis of Ag@AgBr/AgCl heterostructured nanocashews wth enhanced photocatalytic performance via anion exchange[J]. J. Mater. Chem.,2012,22,13153-13158
    [129]Chen X B, Liu L, Yu P Y, Mao S. S. Increasing Solar Absorption for Photocatalysis with Black hygenated Titanium Dioxide Nanocrystals[J]. Science,2011,331,746-750
    [130]Lin Z S, Orlov A, Lambert R M, Payne M C. New Insights into the Origin of Visible Light potocatalytic Activity of Nitrogen-Doped and Oxygen-Deficient Anatase TiO2[J]. J. Phys. Chem. B,2005,109,20948-20952
    [131]Su Y L, Han S, Zhang X W, Chen X Q, Lei L C. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes[J]. Mater. Chem. Phys.,2008, 110,239-246
    [132]Liu Y D, Xin F, Wang F M, Luo S X, Yin X H. Synthesis, characterization, and activities of visible light-driven Bi2O3-TiO2 composite photocatalysts[J]. J. Alloys Compd.,2010,498, 179-184
    [133]Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Efficient Degradation of Benzene over LaVO4/TiO2 Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation[J]. Environ. Sci. Technol.,2009,43,4164-4168
    [134]Xu Q C, Wellia D V, Ng Y H, Amal R, Tan T T Y. Synthesis of Porous and Visible-Light Absorbing Bi2WO6/TiO2 Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances[J]. J. Phys. Chem. C,2011,115,7419-7428
    [135]Su J, Zou X X, Li G D, Wei X, Yan C, Wang Y N, Zhao J, Zhou L J, Chen J S. Macroporous V2O5-BiVO4 Composites:Effect of Heterojunction on the Behavior of Photogenerated Charges[J]. J. Phys. Chem. C,2011,115,8064-8071
    [136]Zheng Z K, Huang B B, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol[J]. J. Mater. Chem.,2011,21, 9079-9087
    [137]Liu Y, Hu J C, Li J L. Synthesis and photoactivity of the highly efficient Ag species/TiO2 nanoflakes photocatalysts[J]. J. Alloys Compd.,2011,509,5152-5158
    [138]Guo J F, Ma B W, Yin A Y, Fan K N, Dai W L. Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag-Agl/Fe3O4@SiO2 magnetic nanoparticle under visible light irradiation[J]. Appl. Aatal. B,2011,101,580-586
    [139]Yan Z J, Compagnini G, Chrisey D B. Generation of AgCl Cubes by Excimer Laser Ablation of Bulk Ag in Aqueous NaCl Solutions[J] J. Phys. Chem. C,2011,115,5058-5062
    [140]Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis:Recent progress from knowledge to applications[J]. Appl. Catal. A,2010,373,1-56
    [141]Li Z H, Shkilnyy A, Taubert A. Room Temperature ZnO Mesocrystal Formation in the Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide[J]. Cryst. Growth Des.,2008,8,4526-4532
    [142]Kim T Y, Kim W J, Hong S H, Kim J E, Suh K S. Ionic-Liquid-Assisted Formation of Silver Nanowires[J]. Angew. Chem. Int. Ed.,2009,48,3806-3809
    [143]Feng X T, Liu C Y. Use of bmimCl Ionic Liquid for Porous Rutile TiO2 Nanostructures with Different Morphologies[J]. J. Am. Ceram. Soc.,2010,93,1845-1847
    [144]Li H M, Zhu W S, Wang Y, Zhang J T, Lu J D, Yan Y S,. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride[J]. Green Chem.,2009,11,810-815
    [145]Sitze M S, Schreiter E R, Patterson E V, Griffith Freeman R. Ionic Liquids Based on FeCl3 and FeCl2 Raman Scattering and ab Initio Calculations[J]. Inorg. Chem.,2001,40,2298-2304
    [146]Zhang Q, Li W Y, Moran C, Zeng J, Chen J Y, Wen L P, Xia Y N. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30-200 nm and Comparison of Their Optical Properties[J]. J. Am. Chem. Soc.,2010,132,11372-11378
    [147]Lu W W, Gao S Y, Wang J J. One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance[J]. J. Phys. Chem. C,2008,112, 16792-16800
    [148]Ryu J H, Choi W Y. Effects of TiO2 Surface Modifications on Photocatalytic Oxidation of Arsenite:The Role of Superoxides[J]. Environ. Sci. Technol.,2004,38,2928-2933
    [149]Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids[J]. J. Am. Chem. Soc.,2003,125,6386-6387
    [150]Azam A, Ahmed F, Arshi N, Chaman M. Formation and characterization of ZnO nanopowder synthesized by sol-gel method[J]. J. Alloys Compd.,2010,496,399-402
    [151]Su J Z, Guo L J, Yoriya S, Grimes C A. Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization:Application to Photoelectrochemical Water Splitting[J]. Cryst. Growth. Des.,2009,10,856-861
    [152]Li G Q, Yan S C, Wang Z Q, Wang X Y, Li Z S, Ye J H, Zou Z G. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3[J]. Dalton. Trans.,2009,40,8519-8524
    [153]Zhao W, Song X Y, Chen G Z, Sun S X. One-step template-free synthesis of ZnWO4 hollow clusters[J]. J. Mater. Sci.,2009,44,3082-3087
    [154]Wang Z Y, Huang B B, Dai Y, Qin X Y, Zhang X Y, Wang P, Liu H X, Yu J X, High photocatalytic ZnO/In2O3 hetero-nanostructures synthesized by co-precipitation method[J]. J. Phys. Chem. C,2009,113,4612-4617
    [155]Chen S F, Zhao W, Liu W, Zhang S J. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2[J]. Appl. Surf. Sci.,2008,255,2478-2484
    [156]Hu Q R, Wang S L, Jiang P, Xu H, Zhang Y, Tang W H. Influence of Fe2O3 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramic materials[J]. J. Alloys Compd.,2010,496,494-499
    [157]Wahab R, Kim Y S, Mishra A, Yun S I, Shin H S. Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity [J]. Nanoscale. Res. Lett.,2010, 10,1675-1681
    [158]Ozgur U, Alivov Y, Liu C, Teke A, Reshchikov M A, Dogan S, AvrutinV, Cho S J, Morkoc H. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys.,2005,98,041301
    [159]Sakthivel S, Neppolian B, Shankar M V, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2[J]. Sol. Energ. Mat. Sol. C.,2003,77,65-82
    [160]Wang L, Chang L X, Zhao B, Yuan Z Y, Shao G S, Zheng W J. Systematical investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids[J]. Inorg. Chem.,2008,47,1443-1452
    [161]Zhang L W, Cheng H Y, Zong R L, Zhu Y F. Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity[J]. J. Phys. Chem. C,2009,113,2368-2374
    [162]Sasamura T, Okazaki K, Tsunoda R, Kudo A, Kuwabata S, Torimoto T. Immobilization of ZnS-AgInS2 Solid Solution Nanoparticles on ZnO Rod Array Electrodes and Their Photoresponse with Visible Light Irradiation[J]. Chem. Lett.,2010,39,619-621
    [163]Xu C, Cao L X, Su G, Liu W, Qu X F, Yu Y Q. Preparation, characterization and photocatalytic activity of Co-doped ZnO powders[J]. J. Alloys Compd.,2010,497,373-376
    [164]Bae J, Han J B, Zhang X M, Wei M, Duan X, Zhang Y, Wang Z L. ZnO Nanotubes Grown at Low Temperature Using Ga as Catalysts and Their Enhanced Photocatalytic Activities[J]. J. Phys. Chem. C,113 (2009) 10379-10383
    [165]Xu J, Chang Y G, Zhang Y Y, Ma S Y, Qu Y, Xu C T. Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites[J]. Appl. Surf. Sci.,2008,255, 1996-1999
    [166]Ren C L, Yang B F, Wu M, Xu J, Fu Z P, Lv Y, Guo T, Zhao Y X, Zhu C Q. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance[J]. J. Hazard. Mater.,2010, 182,123-129
    [167]Alammar T, Mudring A V. Facile preparation of Ag/ZnO nanoparticles via photoreduction[J]. J. Mater. Sci.,2009,44,3218-3222
    [168]Xiao Q, Huang S P, Zhang J, Xiao C, Tan X K. Sonochemical synthesis of ZnO nanosheet[J]. J. Alloys Compd.,2008,459,18-22
    [169]Col6n G, Hidalgo M C, Navio J A, Pulido Melian E, Gonzalez Diaz O, Dona Rodriguez J M. Highly photoactive ZnO by amine capping-assisted hydrothermal treatmen[J]. Appl. Catal. B, 2008,83,30-38
    [170]Morimoto T, Suzuki K, Torikoshi M, Kawahara T. Ag(core)-AgCl(shell) standard microelectrode-loaded TiO2[J]. Chem. Commun.,2007,41,4291-4293
    [171]Lin D D, Wu H, Zhang R, Wei P. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers[J]. Chem. Mater.,2009,21,3479-3484
    [172]Zhang S C, Zhang C, Man Y, Zhu Y F. Fabrication and photoelectrochemical properties of porous ZnWO4 film[J]. J. Solid State Chem.,2006,179,62-69
    [173]Zhang M L, An T C, Liu X L, Hu X H, Sheng G Y, Fu J M. Preparation of a high-activity ZnO/TiO2 photocatalyst via homogeneous hydrolysis method with low temperature crystallization[J]. Mater. Lett.,2010,64,1883-1886
    [174]Gu C D, Cheng C, Huang H Y, Wong T L, Wang N, Zhang T Y. Growth and Photocatalytic Activity of Dendrite-like ZnO@Ag Heterostructure Nanocrystals[J]. Cryst. Growth. Des.,2009, 9,3278-3285
    [175]Yatmaz H C, Akyol A, Bayramoglu M, Kinetics of the Photocatalytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Suspensions[J]. Ind. Eng. Chem. Res.2004,43,6035-6039
    [176]Yu J G, Xiong J F, Cheng B, Liu S W. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Appl. Catal. B, 2005,60,211-221
    [177]Yu J G, Dai G P, Huang B B, Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays[J]. J. Phys. Chem. C,2009,113, 16394-16401
    [178]Tang J W, Zou Z G, Ye J H, Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal. Lett.,2004,92,53-56
    [179]Wang P, Huang B B, Dai Y, Whangbo M H. Plasmonic photocatalysts:harvesting visible light with noble metal nanoparticles[J], Phys. Chem. Chem. Phys.,2012,14,9813-9825
    [180]Wang D S, Duan Y D, Luo Q Z, Li X Y, Bao L L. Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method[J]. Desalination,2011,270, 174-180
    [181]Hwee C, Ng B, Fan W Y, Controlled Synthesis of β-AgI Nanoplatelets from Selective Nucleation of Twinned Ag Seeds in a Tandem Reaction[J]. J. Phys. Chem. C,2007,111, 2953-2958
    [182]Guo S J, Dong S J, Wang E K. Constructing Carbon Nanotube/Pt Nanoparticle Hybrids Using an Imidazolium-Salt-Based Ionic Liquidas a Linker[J]. Adv. Mater.,2010,22, 1269-1272
    [183]N. Chopra, Shi W W, Bansal A, Structural evolution and stability studies of heterostructures comprised of carbon nanotubes decorated with nickel/nickel oxide core/shell nanoparticles[J]. Carbon,2011,49,3645-3662
    [184]Eder D, Windle A H. Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes[J]. J. Mater. Chem.,2008,18,2036-2043
    [185]Firkowska I, Boden A, Vogt A M, Reich S. Effect of carbon nanotube surface modification on thermal properties of copper-CNT composites[J]. J. Mater. Chem.,2011,21,17541-17259
    [186]Zhang W W, Li W L, Wang J J, Qin C X, Dai L X. Composites of Polyvinyl Alcohol and Carbon Nanotubes Decorated with Silver Nanoparticles[J]. Fiber. Polym.,2010,11,1132-1136
    [187]Du H B, Li Y L, Zhou F Q, Su D, Hou F. One-Step Fabrication of Ceramic and Carbon Nanotube (CNT) Composites by In Situ Growth of CNTs[J]. J. Am. Ceram. Soc.,2010,93, 1290-1296
    [188]Eliseev A A, Yashina L V, Brzhezinskaya M M, Chernysheva M V, Kharlamova M V, Verbitsky N I, Lukashin A V, Kiselev N A, Kumskov A S, Zakalyuhin R M, Hutchison J L, Freitag B, Vinogradov A S. Structure and electronic properties of AgX (X=Cl, Br, I)-intercalated single-walled carbon nanotubes[J]. Carbon,2010,48,2708-2721
    [189]Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation[J]. Carbon, 2009,47,3280-3287
    [190]Zhou C M, Chen Y T, Guo Z, Wang X, Yang Y H. Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide[J]. Chem. Commun.,2011,47,7473-7475
    [191]Silva C G, Faria J L. Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide[J]. Appl. Catal., B,2010,101,81-89
    [192]Zhang K, Zhang F J, Chen M L, Oh W C. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2-CNT catalysts[J]. Ultrason. Sonochem.,2011,18,765-772
    [193]Liu J M, Meng H, Li J I, Liao S J, Bu J H. Preparation of High Performance Pt/CNT Catalysts Stabilized by Ethylenediaminetetraacetic Acid Disodium Salt[J]. Fuel Cells,2007,7, 402-407
    [194]Sampaio M J, Silva C G, Marques R R N, Silva A M T, Faria J L. Carbon nanotube-TiO2 thin films for photocatalytic applications[J]. Catal. Today,2011,161,91-96
    [195]Tian L H, Ye L Q, Deng K J, Zan L. TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity[J]. Solid State Chem., 2011,184,1465-1471
    [196]Zhu P N, Sreekumaran N A, Yang S Y, Seeram R. TiO2-MWCNT rice grain-shaped nanocomposites:Synthesis, characterization and photocatalysis[J]. Mater. Res. Bull.,2011,46, 588
    [197]Chen M L, Zhang F J, Oh W C. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources[J]. New Carbon Mater., 2009,24,159-166
    [198]Zhou W, Pan K, Qu Y, Sun F F, Tian C G, Ren Z Y, Tian G H, Fu H G. Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity[J]. Chemosphere,2010,81,555-563
    [199]Wang X J, Yao S W, Li X B. Sol-gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property[J]. Chin. J. Chem.,2009,27,1317-1320
    [200]Ye A H, Fan W Q, Zhang Q H, Deng W P, Wang Y. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation[J].Catal. Sci. Technol.,2012,2,969-978
    [201]Feng S A, Zhao J H, Zhu Z P. The manufacture of carbon nanotubes decorated with ZnS to enhance the ZnS photocatalytic activity[J]. New Carbon Mater.,2008,23,228-234
    [202]Santangelo S, Faggio G, Messina G, Fazio E, Neri F, Neri G. On the hydrogen sensing mechanism of Pt/TiO2/CNTs based devices[J]. Sens. Actuators, B,2013,178,473-484
    [203]Zhang F J, Chen M L, Oh W C. Photoelectrocatalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation[J]. New Carbon Mater.,2010,25,348-356
    [204]Zhu M S, Chen P L, Liu M H. Ag/AgBr/Graphene Oxide Nanocomposite Synthesized via Oil/Water and Water/Oil Microemulsions:A Comparison of Sunlight Energized Plasmonic Photocatalytic Activity[J]. Langmuir,2012,28,3385-3390
    [205]Humphreys F J. Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD)[J]. Scripta Mater.,2004,51,771-766
    [206]Hanada N, Hirotoshi E, Ichikawa T, Akiba E, Fujii H. SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5[J]. J. Alloys Compd.,2008,450, 395-399
    [207]Liu T, Tang H Q, Cai X M, Zhao J, Li D J, Li R, Sun X L. A study on bactericidal properties of Ag coated carbon nanotubes[J]. Nucl. Instr. and Meth. in Phys. Res. B,2007,264,282-286
    [208]Yang M, Zhao J G, Li J J. Synthesis of porous spherical AgBr nanoparticles in the presence of gelatin using AgCl as the precursor[J]. Colloids Surf., A,2007,295,81-84
    [209]Tang T, Shi Z X, Yin J. Poly(benzimidazole) functionalized multi-walled carbon nanotubes/100% acidified poly(hydroxyaminoether) composites:Synthesis, characterization and properties[J]. Mater. Chem. Phys.,2011,129,356-364
    [210]Huang Y L, Ma C C M, Yuen S M, Chuang C Y, Kuan H C, Chiang C L, Wu S Y. Effect of maleic anhydride modified MWCNTs on the morphology and dynamic mechanical properties of its PMMA composites[J]. Mater. Chem. Phys.,2011,129,1214-1220
    [211]Cao J, Luo B D, Lin H L, Xu B Y, Chen S F. Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange[J]. J. Hazard. Mater.,2012,217,107-115
    [212]Yu J G, Fan J J, Cheng B. Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films[J]. J. Power Sources,2011,196,7891-7898
    [213]Tan B, Wu Y Y. Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites[J]. J. Phys. Chem. B,2006,110,15932-15938
    [214]Wang S, Zhang Z Y, Peng L M. Doping-free carbon nanotube optoelectronic devices[J]. Chin. Sci. Bull.,2012,57,149-156
    [215]Yu J G, Ma T T, Liu S W. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel[J]. Phys. Chem. Chem. Phys., 2011,13,3491-3501
    [216]Xiang Q J, Yu J G, Jaroniec M. Preparation and Enhanced Visible-Light Photocatalytic H2 Production Activity of Graphene/C3N4 Composites[J]. J. Phys. Chem. C,2011,115, 7355-7363
    [217]Kim Y K, Park H. How and to what extent do carbon materials catalyze solar hydrogen production from water[J]. Appl. Catal. B,2012,125,530-537
    [218]Zhang J, Yu J G, Jaroniec M, Gong J R. Noble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic H2 Production Performance[J]. Nano Lett.,2012,12,4584-4589
    [219]Zhang W D, Jiang L C, Ye J S. Photoelectrochemical Study on Charge Transfer Properties of ZnO Nanowires Promoted by Carbon Nanotubes[J]. J. Phys. Chem. C,2009,113, 16247-16253
    [220]Liu J C, Bai H W, Wang Y J, Liu Z Y, Zhang X W, Sun D D. Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications[J]. Adv. Funct. Mater.,2010,20, 4175-4181
    [221]Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation[J]. Environ. Sci. Technol.,2007, 41,6234-6239
    [222]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev.,2009,28,253-278
    [223]Chen C C, Ma W H, Zhao J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chem. Soc. Rev.,2010,39,4206-4219
    [224]Liu G, Wang L Z, Yang H G, Cheng H M, Lu G Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring[J]. J. Mater. Chem.,2010,20,831-843
    [225]Zhang D Q, Li G S, Yu J C. Inorganic materials for photocatalytic water disinfection[J]. J. Mater. Chem.,2010,20,4529-4536
    [226]Thomas A, Fischer A, Goettmann F, Antonietti M, Muller J O, Schlogl R, Carlsson J M. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts[J]. J. Mater. Chem.,2008,18,4893-4908
    [227]Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. Polymer Semiconductors for Artificial Photosynthesis:Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light[J]. J. Am. Chem. Soc.,2009,131,1680-1861
    [228]Li X H, Zhang J S, Chen X F, Fischer A, Thomas A, Antonietti M, Wang X C. Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement:Promotion of Crystallinity on Photocatalytic Conversion[J]. Chem. Mater.,2011,23,4344-4348
    [229]Wang Y, Wang X C, Antonietti M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst:From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry[J]. Angew. Chem. Int. Ed.,2012,51,68-89
    [230]Wang Y, Li H R, Yao J, Wang X C, Antonietti M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation[J]. Chem. Sci.,2011,2,446-450
    [231]Wang Y, Di Y, Antonietti M, Li H R, Chen X F, Wang X C. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids[J]. Chem. Mater.,2010,22, 5119-5121
    [232]Liu G, Niu P, Sun C H, Smith S C, Chen Z G, Lu G Q, Cheng H M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4[J]. J. Am. Chem. Soc., 2010,132,11642-11648
    [233]Zhang Y J, Mori T, Ye J H, Antonietti M. Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation[J]. J. Am. Chem. Soc.,2010, 132,6294-6295
    [234]Zhang J S, Zhang G G, Chen X F, Lin S, Mchlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Co-Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light[J]. Angew. Chem., Int. Ed.,2012,51,3183-3187
    [235]Yan S C, Lv S B, Li Z S, Zou Z G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities[J]. Dalton Trans.,2010,39, 1488-1491
    [236]Ge L, Han C C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange[J]. Appl. Catal. B,2011,108-109,100-107
    [237]Wang Y J, Shi R, Lin J, Zhu Y F. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy Environ. Sci.,2011,4,2922-2929
    [238]Yin X T, Que W X, Liao Y L, Xie H X, Fei D. Ag-TiO2 nanocomposites with improved photocatalytic properties prepared by a low temperature process in polyethylene glycol[J]. Colloids Surf., A.,2012,410,153-158
    [239]Zhang Y H, Tang Z R, Fu X Z, Xu Y J. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase[J]. Appl. Catal.B,2011,106,445-452
    [240]Chang X T, Sun S B, Dong L H, Yin Y S. Efficient synthesis of Ag/AgCl/W18O49 nanorods and their antibacterial activities[J]. Mater. Lett.,2012,83,133-135
    [241]Ma B W, Guo J F, Dai W L, Fan K N. Ag-AgCl/WO3 hollow sphere with flower-like structure and superior visible photocatalytic activity[J]. Appl. Catal. B,2012,123-124, 193-199
    [242]Elahifard M R, Rahimnejad S, Haghighi S, Gholami M R. Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria[J]. J. Am. Chem. Soc.,2007,129, 9552-9553
    [243]Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X=Cl, Br) Visible Light Photocatalysts:Surface Plasmon Resonance and Z-Scheme Bridge[J]. ACS Catal.,2012,2,1677-1683
    [244]Wang S, Yi L X, Halpert J E, Lai X Y, Liu Y Y, Cao H B, Yu R B, Wang D, Li Y L. A Novel and Highly Efficient Photocatalyst Based on P25-Graphdiyne Nanocomposite[J]. Small,2012, 8,265-271
    [245]Fu X L, Tang W M, Ji L, Chen S F. V2O5/Al2O3 composite photocatalyst:Preparation, characterization, and the role of Al2O3[J]. Chem. Eng. J.,2012,180,170-177
    [246]Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem. Mater.,2002,14, 3808-3816
    [247]Liu J H, Zhang T K, Wang Z C, Dawson G, Chen W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity[J]. J. Mater. Chem.,2011, 21,14398-14401
    [248]Li G Q, Yang N, Wang W L, Zhang W F. Synthesis, Photophysical and Photocatalytic Properties of N-Doped Sodium Niobate Sensitized by Carbon Nitride[J]. J. Phys. Chem. C, 2009,113,14829-14833
    [249]Li X F, Zhang J, Shen L H, Ma Y M, Lei W W, Cui Q L, Zou G T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine[J]. Appl. Phys. A: Mater.,2009,94,387-392
    [250]Yan H J, Yang H X, TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation[J]. J. Alloys Compd.,2011,509, L26-L29
    [251]Uddin M N, Yang Y S. Sol-gel synthesis of well-crystallized C3N4 nanostructures on stainless steel substrates[J]. J. Mater. Chem.,2009,19,2909-2911
    [252]Yan S C, Li Z S, Zou Z G. Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation[J]. Langmuir,2010,26,3894-3901
    [253]Dong L H, Tang S S, Zhu J Y, Zhan P Y, Zhang L F, Tong F W. Photoactivated route and new bromine source for AgBr/Ag nanocomposites with enhanced visible light photocatalytic activity[J]. Mater. Lett.,2013,91,245-248
    [254]Xu H, Yan J, Xu Y G, Song Y H, Li H M, Xia J X, Huang C J, Wan H L. Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity[J]. Appl. Catal. B,2013,129,182-193
    [255]Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev.,1995,95,69-96
    [256]Zhang H J, Chen G H, Bahnemann D W. Photoelectrocatalytic materials for environmental applications[J]. J. Mater. Chem.,2009,19,5089-5121
    [257]Kang Z H, Tsang C H A, Wong N B, Zhang Z D, Lee S T. Silicon Quantum Dots:A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions[J]. J. Am. Chem. Soc.,2007,129,12090-12091
    [258]Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties[J]. J. Am. Chem. Soc.,1999, 121,11459-11467
    [259]Fu H B, Pan C S, Yao W Q, Zhu Y F. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6[J]. J. Phys. Chem. B,2005,109,22432-22439
    [260]Zhang Y J, Mori T, Niu L, Ye J H. Non-covalent doping of graphitic carbon nitride polymer with graphene:controlled electronic structure and enhanced optoelectronic conversion[J]. Energy Environ. Sci.,2011,4,4517-4521
    [261]Su F Z, Mathew S C, Lipner G, Fu X Z, Antonietti M, Blechert S, Wang X C. mpg-C3N4-Catalyzed Selective Oxidation of Alcohols Using O2 and Visible Light[J]. J. Am. Chem. Soc.,2010,132,16299-16301
    [262]Li X H, Wang X C, Antonietti M. Solvent-Free and Metal-Free Oxidation of Toluene Using O2 and g-C3N4 with Nanopores:Nanostructure Boosts the Catalytic Selectivity[J]. ACS Catal., 2012,2,2082-2086
    [263]Zhang J S, Sun J H, Maeda K, Domen K, Liu P, Antonietti M, Fu X Z, Wang X C. Sulfur-mediated synthesis of carbon nitride:Band-gap engineering and improved functions for photocatalysis[J]. Energy Environ. Sci.,2011,4,675-678
    [264]Wang Y, Zhang J S, Wang X C, Antonietti M, Li H R. Boron- and Fluorine-Containing Mesoporous Carbon Nitride Polymers:Metal-Free Catalysts for Cyclohexane Oxidation[J]. Angew. Chem., Int. Ed.,2010,49,3356-3359
    [265]Sun Y Q, Liu C, Xu Y X, Bai H, Yao Z Y, Shi G Q. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst[J]. Chem. Commun.,2010,46,4740-4742
    [266]Meng Y L, Shen J, Chen D, Xin G. Photodegradation performance of methylene blue aqueous solution on Ag/C3N4 catalyst[J]. Chem. Mater. Sci.,2011,30,276-279
    [267]Chen X F, Zhang J S, Fu X Z, Antonietti M, Wang X C. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light[J]. J. Am. Chem. Soc., 2009,131,11658-11659
    [268]Karousis N, Tagmatarchis N. Current Progress on the Chemical Modification of Carbon Nanotubes[J]. Chem. Rev.,2010,110,5366-5397
    [269]Rivadulla F, Mateo-Mateo C and CorreaDuarte M A. Layer-by-Layer Polymer Coating of Carbon Nanotubes:Tuning of Electrical Conductivity in Random Networks[J]. J. Am. Chem. Soc.,2010,132,3751-3755
    [270]Xu Z W, Li H J, Fu M S, Luo H J, Sun H H, Zhang L J, Li K Z, Wei B Q, Lu J H, Zhao X N. Nitrogen-doped carbon nanotubes synthesized by pyrolysis of nitrogen-rich metal phthalocyanine derivatives for oxygen reduction[J]. J. Mater. Chem.,2012,22,18230-18236
    [271]Su M H, He C, Zhu L F, Sun Z J, Shan C, Zhang Q, Shu D, Qiu R L, Xiong Y. Enhanced adsorption and photocatalytic activity of BiOI-MWCNT composites towards organic pollutants in aqueous solution[J]. J. Hazard. Mater.,2012,229-230,72-82
    [272]Xu Y J, Zhuang Y B, Fu X Z. New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes:A Case Study on Degradation of Benzene and Methyl Orange[J]. J. Phys. Chem. C,2010,114,2669-2676
    [273]Silva C G, Faria J L. Photocatalytic Oxidation of Phenolic Compounds by Using a Carbon Nanotube-Titanium Dioxide Composite[J]. Catalyst Chemsuschem,2010,3,609-618
    [274]Park J, Choi W. TiO2-Nafion Photoelectrode Hybridized with Carbon Nanotubes for Sensitized Photochemical Activity[J]. J. Phys. Chem. C,2009,113,20974-20976
    [275]Huang L, Lau S P, Yang H Y, Leong E. S. P, Yu S F. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film[J]. J. Phys. Chem. B,2005,109,7746-7748
    [276]Suryawanshi A, Dhanasekaran P, Mhamane D, Kelkar S, Patil S, Gupta N, Ogale S. Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes:Electronic and morphological effects[J]. Int. J. Hydrogen Energy, 2012,37,9584-9589
    [277]Zhang Y J, Thomas A, Antonietti M, Wang X C. Activation of Carbon Nitride Solids by Protonation:Morphology Changes, Enhanced Ionic Conductivity, and Photoconduction Experiments[J]. J. Am. Chem. Soc.,2009,131,50-51
    [278]Guo D J. Novel synthesis of Pt Ru/multi-walled carbon nanotube catalyst via amicrowave-assisted imidazolium ionic liquid method for methanol oxidation[J]. J. Power Sources,2010,195,7234-7237
    [279]Tanaka N, Nishikiori H, Kubota S, Endo M, Fujii T. Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes[J]. Carbon,2009,47,2752-2760
    [280]Yan S C, Li Z S, Zou Z G Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir,2009,25,10397-10401
    [281]Lu X F, Wang Q L, Cui D L. Preparation and Photocatalytic Properties of g-C3N4/Ti02 Hybrid Composite[J]. J. Mater. Sci. Technol.,2010,26,925-930
    [282]Guo Q X, Xie Y, Wang X J, Zhang S Y, Hou T, Lv S C. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures[J]. Chem. Commun.,2004,26-27
    [283]Hu X F, Mohamood T, Ma W H, Chen C. C, Zhao J C. Oxidative decomposition of rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization[J]. J. Phys. Chem. B,2006,110, 26012-26018
    [284]Zhang H, Zong R L, Zhao J C, Zhu Y F. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI[J], Environ. Sci. Technol.,2008,42, 3803-3807
    [285]Jiang J, Zhao K, Xiao X Y, Zhang L Z. Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets[J]. J. Am. Chem. Soc.,2012,134,4473-4476
    [286]Li Q Y, Yue B, Iwai H, Kako T, Ye. J H. Carbon Nitride Polymers Sensitized with N-Doped Tantalic Acid for Visible Light-Induced Photocatalytic Hydrogen Evolution[J]. J. Phys. Chem. C,2010,114,4100-4105
    [287]Zhao S S, Chen S, Yu H T, Quan X. g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation[J]. Sep. Purif. Technol.,2012, 99,50-54
    [288]Wang X C, Blechert S, Antonietti M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis[J]. ACS Catal.,2012,2,1596-1606
    [289]Li W, Wang M L, Xu C X, Chen S F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties[J]. Chem. Eng. J.,2012, 209,386-393
    [290]Min S X, Lu G X. Enhanced Electron Transfer from the Excited Eosin Y to mpg-C3N4 for Highly Efficient Hydrogen Evolution under 550 nm Irradiation[J]. J. Phys. Chem. C,2012,116, 19644-19652
    [291]Cui Y J, Huang J H, Fu X Z, Wang X C. Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors[J]. Catal. Sci. Technol., 2012,2,1396-1402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700