九寨沟马脑壳金矿露天矿山生态恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山生态恢复研究起始于20世纪上半叶,其主要内容是对采矿业和开采地下水造成的塌陷、地形地貌变化等环境进行生态恢复研究。工业革命使得人类对资源的要求和开发的规模急剧增长,在轻率地进行开发和获得直接效益中,基本没考虑对土地的破坏,致使土地污染破坏程度由个别发展现象为普遍现象。这一现象最早出现在欧洲,尽管有些有识之士提出,但并未引起重视。直至1966年,英国南威尔士阿贝芬发生了一场灾难才引起了人们的极大关注;它使人们更清晰地认识到对矿业废弃地进行生态恢复的重要性,为恢复生态学的诞生奠定了坚实的应用基础。20世纪70年代,学术界已经开始对受损生态系统的改良(恢复、重建、改建)做较为系统的研究;80年代之后,有关恢复生态学的研究迅速兴起,成为现代生态学研究的热点之一。总体上看,世界各国对生态恢复各有侧重,表现为:欧洲侧重于矿地恢复、北美洲则强调水体和林地恢复,而新西兰、澳洲则侧重于草原管理与恢复。
     我国矿山生态环境恢复工作的萌芽始于20世纪50年代,前期主要是以土地退化,尤其是土壤退化为主,并且多为土地、土壤退化交织。起初是个别矿山自发进行的小规模恢复治理工作。恢复生态学研究最早是1959年中国科学院华南植物研究所余作岳等人在广东的热带沿海侵蚀台地上开展的退化生态系统的植被恢复技术与机理研究。20世纪50~70年代,该项工作还处于自发探索阶段;进入20世纪80年代,才被真正得到重视,从自发、零散状态转变为有组织的恢复治理阶段。各大研究机构先后对不同退化生态系统作了研究。到20世纪90年代,对矿山废弃地生态恢复的研究逐渐增多。一些矿山开展不同程度生态恢复工作和科研工作,如加强矿山生态恢复工艺技术研究、基质改良研究、生态恢复经济分析、土地复垦专家系统模型研究等。特别是1988年颁布《土地复垦规定》和1989年颁布《中国人民共和国环境保护法》,标志着矿山生态环境修复走上了法制化的轨道。这项工作在我国尽管起步较晚,但发展十分迅速。
     总的来看,中国由于人口众多,土地压力大,更强调农业综合利用,矿地复垦率呈逐年上升的趋势。
     当前,世界各国,特别是主要的采矿工业国家都很重视恢复采矿工业破坏的土地,并取得十分可观的成绩。
     本论文根据恢复生态学自我设计理论和人为设计理论思想,坚持自然恢复与人工辅助恢复相结合的原则,分别对矿山土壤理化性质、生物多样性、生物量及优势物种糙野青茅的发芽力、生产力的角度进行了较为深入、系统的研究。其主要结论如下:
     (1)土壤理化性质是植被生长的前提条件;通过对比矿山原生草地及边排坡土壤理化性质发现,矿山原生草地各层土壤总孔隙度、毛管孔隙度随着海拔的升高先升高而后降低,土壤自然持水量也具有同样的空间分布规律;边排坡土壤孔隙度小,自然含水量小,土壤粒度不均匀及土壤肥力低下等因素是导致边排坡植被恢复过程中植物种子发芽率降低、植物生长缓慢、发育不健全、易于死亡、甚至无法恢复等问题的主要因素。在矿山生态恢复过程中,应通过混合有机土、施加有机复合肥及农作物秸秆等措施,加速矿山形成一层有利于植被生长的土壤环境,改良矿山边排坡地的土壤理化性质。
     (2)矿山草本植物多样性指数、丰富度指数等随海拔的升高先升高而后降低,在海拔3200 m左右达到峰值。这是由于放牧、采药、刈割等干扰和矿山自身的地理、气候条件共同作用的结果;建议矿山生态恢复中,在充分利用矿山自身地理气候的有利条件下,应加强矿山生态恢复过程中各类干扰管理和控制。
     (3)矿山植被多样性调查研究发现,在同一生长期不同的海拔高度范围,物种组成及分布各不相同;同一海拔高度,不同的季节物种优势也有一定的变化。从总体上看,各个生长时期矿区原生草地的主要优势物种有糙野青茅、羊茅、垂穗披碱草、四川嵩草、早熟禾等。但在不同的生长季节,各草本优势表现不尽相同。有少部分草本植物,如白顶早熟禾、珠芽蓼、地榆、华北翦股颖、白花刺参、掌裂蟹甲草等在不同的海拔范围成熟期较早,7月份这些植物分布面积较大,盖度较高,植被最高,处于成熟期,生物量至其最高,占有较大比例;此期间其它多数草本物种正处于生长旺盛期,但生物量却相对较小;矿山雨季前期(6月底7月初),这些早熟种对防止雨水冲刷和提高水土保持起着重要作用。因此,在矿山生态恢复的物种选择上,应根据原生草地草本植物海拔分布特征和季节分布特征,在不同的海拔高度选择不同的优势物种组合,使矿山在恢复过程中各个海拔高度各个生长季节均有较多的植被覆盖,增加恢复过程中物种多样性和系统稳定性;促进矿山植被的蓄水功能、保土功能及保持养分的功能等等;促进矿山生态系统持续、健康、稳定的发展。
     (4)矿山优势草本生物量在垂直梯度上差异性较大,不同的优势物种变化规律不尽一致,在低海拔区(2900~3000 m),是以垂穗披碱草、糙野青茅等为优势的草本群落组成;中海拔区(3100~3300 m),则是以糙野青茅、白顶早熟禾、羊茅等为优势的草本群落组成;高海拔区(3400~3500 m),以羊茅、四川嵩草、糙野青茅为优势种的草本群落组成。
     除海拔高度对矿山草本植物生物量影响显著外,坡度、干扰等环境因素对草本生物量也造成一定的影响。表现为坡度小、干扰小的区域植被生长良好、植被覆盖高、生物量大。因此,在矿山生态恢复过程中,应注意对陡坡的处理和干扰的控制。
     (5)矿山土壤有机质含量多少直接影响土壤理化性质,从而影响植被生长的速率。土壤有机质含量越高,糙野青茅的发芽率、发芽势及发芽速均相应地提高;当矿山土壤中有机质含量达到3/4时,糙野青茅发芽力各项指标均接近峰值;其后,随着有机土的增加,草本发芽力各项指标增加不明显,对于糙野青茅的生产力也有同样的规律。同时,采取浸种措施有利于种子发芽,促进发芽时间提前,提高种子发芽率和发芽势。在矿山生态恢复前应对不同草本种子采用不同的浸种措施,促进草本种子的发芽,提高恢复效率。
     有机土含量对糙野青茅幼苗生产力的影响十分显著,试验表明,糙野青茅幼苗的生产力随恢复土壤中有机土含量的增加而升高。有机土含量几乎为零的矿山排渣边坡其草本生产力极为低下。
     (6)根据研究和观察结果,提出建议:矿山生态恢复应以生物措施和工程措施相结合;在生物措施的恢复物种选择上,应注意物种的空间分布特征、季节特征,根据矿山气候条件,选择根系发达、生长迅速、耐干旱、耐贫瘠、耐高温的土著优势物种作为矿山生态恢复的先锋物种。在矿山生态恢复过程种,应采取搬运客土、播种、施肥等辅助措施,加速、缩短矿山生态恢复进程。
     (7)矿山生态恢复是一项综合工程,不能简单地、一味地追求矿山生态恢复速度,而应以系统的观点,从生物多样性、矿山生态系统稳定性以及矿山生态恢复经济效益、社会效益、生态效益及美学效益等多方面的综合考虑矿山整个生态系统。
Mining ecological restoration research began in the first half of the 20th century, the main contents is the ecological restoration of environment about the collapse of mining and groundwater exploiting. The industrial revolution made to the scale of the resources requirements and development has increased dramatically. For development and gaining direct benefit hastily, it neglected land damages completely. The scale of the land pollution damage developed from individual phenomena to common phenomenon. This phenomenon appear first in Europe, although some brains puts forward, but did not pay attention. Until 1966, Britain south wales BeiFen O a disaster just drawn people's attention; It made people more clearly realize the importance of mining restoration, and laid a solid application foundation for the birth of mining ecological restoration. In the 1970s, scholars have started to improvement of damaged ecosystem restoration; After the 1980s, the recovery of ecology research developed rapidly and become the hot spot of modern ecology. In general speaking, the world ecological recovery researches have different records. European focused on mining recovery, North America emphasized water and forest restoration, while New Zealand and Australia are focused on grassland management and recovery.
     The mine ecological environment restoration work began in the 1950s, the prophase work is mainly land degradation study, especially soil degradation and more for land, soil degradation intertwined. At first is the individual mining spontaneous small-scale to restore the government work. For such the researchers as Yu Zuo-yue in Chinese academy of sciences, the south institute of botany began to study on vegetation technology and its mechanism of degraded ecosystem restoration in Guangdong tropical coastal erosion stage in 1949. This is the earliest restoration ecology research in China. The 1950s~1970s. the work is still in the spontaneous exploration stage; Enter in the 1980s, it was really get attention, began from spontaneous, scattered state transition to organized stage of restoration and government. Many research institutions study successively on different degraded ecosystem. During the 1990s, the ecological restoration research of abandoned mine lands have increased gradually. Some mines began to ecological restoration work and the scientific research work in different extents, such as strengthening the mine ecological recovery technology research, substrates modified research, ecological restoration economic analysis, land reclamation and expert system model research, etc. Especially promulgated the land reclamation regulations in 1988 and promulgated the environmental protection law of the People's Republic of China in1989, marked the mine ecological environment restoration on the institutionalized. Restoration work started late in our country, but it is developing very rapidly.
     Overall, Chinese mine restoration stressed on agricultural comprehensive utilization because of its more population. Mines reclamation rates show ascendant trend.
     At present, the world, especially the main mining industrial countries attach importance to restore mining industry lands, and obtain some remarkable achievement.
     This paper according to self- design theory and human design theory design theory, insist on combining natural restoration with assisted restoration, study on the mine soil physical and chemical properties, biodiversity, biomass and representative dominents species (ie. Deyeusla bcabrescens) germinated force (including germination rate, germination potential and permination speed, etc.) and productivity respectively with more intensive and systematic research. The main conclusions are as follows:
     (Ⅰ) The soil physical and chemical properties is the prerequisite of the vegetation grows; Through comparing soil physical and chemical properties of the mining native grassland and side row slope, found that small soil porosity and natural water content of small, uneven soil particle size and poor soil fertility of edge/row slope is the main factors that lead to lower plant seed germination rate and stunted plants, insufficiently developed, easy to death, even not restoration etc. in the course of mining restoration. In mine ecological recovery process, we should mix some organic soils, organic compound fertilizers and crop straw and other measures, to accelerate mining form a layer of soil environment conducive to vegetation growth, improving mining soil physical and chemical properties.
     (II) Due to the disturbances such as grazing, collecting herbs and cutting, and others, mining native herbecious diversity and abundance index is rise with the increasing elevations rise at first, and then reduce after the 3200m or so. Mining restoration should strengthen mining managements of interference and it is healthy for the development of mine restoration.
     (Ⅲ) Vegetation diversity investigation found that species composition is different with the different altitudes in the same growth terms; different season also has certain species dominent at the same altitude. Generally speaking, each growth period the main advanced species of mining native grass is Deyeusla bcabrescens, Festuca ovina, Elymus nutans, Kobresia setchwadensis, Poa acroleuca, and so on. In different growth season, each herb dominent performance is not the same. There were pockets of herbaceous plants, such as Poa acroleuca, Polylgonum viviparum, Sanguisorba oftcinalis, and so on, mature earlier at different elevations range. July these plant distribution area is larger, and have higher coverand height, and have arrived in their maturity; their biomass to the top and have higher proportion; This period while most other herb species are in rapid growth times, but biomass is comparatively small; At the beginning of the mining rains'season, that is the period between June and July, these early matures play an important role that to prevent rain erosion of soil and water-conservation. Therefore, in the mine ecological recovery, different pioneer species should be selected by the different altitudes and seasons. This will increase the eco-system species diversity and system-stability and promote mine vegetation water-conservation function, soil conservation function and nutrient function, and so forth, because of high vegetations'coverage in different altitudes.
     (Ⅳ) The dominant herb's biomass of mining is significantly different with vertical gradient. Different dominant species have different law with elevations. In the low-altitude regions (2 900~3 000 m), Elymus nutans, Deyeusla bcabrescens, etc. are the dominant species; in the mid-altitude(3 100~3 300 m) regions, the dominant species are Deyeusla bcabrescens, Poa acroleuca, Festuca ovina, and so on; while Elymus nutans, Kobresia setchwadensis, Deyeusla bcabrescens are the dominant species in the high-altitude(3 400~3 500 m).
     In addition to altitude significant influence on the herb biomass, slope and disturbances and other environmental factors also caused certain effect on it. The study shows that the places of slow slope and slight interference are the high coverage, high biomass and healthy growth vegetation regions. Therefore, we should enhance the treatment of steep slope and the control of the disturbances.
     (Ⅴ) Mining contents of soil organic matter influence immediately soil physical and chemical properties, and affect the rate of growth of vegetation. The higher the soil organic matters are, the higher the germination rate and germination potential and germination speed of Deyeusla bcabrescens are. When mining soil organic matter content of soil to 75%, the index of germination of Deyeusla bcabrescens close to the peak; after that, with the increase of the contents of organic matter, the changes of the index are not obvious. Its productivity also has the same law. Meanwhile, seed measures adopted to improve seed germination in the former terms of mine ecological restoration, deal with different seed measures to improve the seed sprouts force and enhance recovery efficiency.
     The soil organic matters have remarkable influence on seedling production; the increase of the content of organic soil would promote and improve seedlings productivity.
     (Ⅵ) According to the research and observations results, this articles put forward the suggestions:The mine ecological restoration in biological measures should be combined with engineering measures; In the species-selection of the biological measures, the recovery should be paid attention to the spatial distribution patterns of the species and seasonal feature; According to the mining climatic conditions, ecological restoration should choose the root developed, rapidly growing, drought resistant, barren resistant, high temperature resistance of native dominents as pioneer species in mining ecological restoration. In the mine ecological restoration process, should adopt handling replace with out-soil, sowing, fertilization, and other the auxiliary measures, to accelerate and shorten the mine ecological recovery process.
     (VII) Mining ecological restoration is a comprehensive engineering. So we cannot pursuit the ecological restoration speed simply and blindly, and should all-round consider the whole mining eco-system from bio-diversity, the eco-system stability and economic, social, ecological, aesthetical benefits, and so on.
引文
[1]Bradshaw A D. The reconstruction of ecosystem [J]. Journal of Ecology,1983, (20): 1-7.
    [2]Cairns J. Jr. The status of the theoretical and applied science of retoration ecology [J] The Environmental Professional,1991, (13):186-194.
    [3]彭少麟.恢复生态学及植被重建[J].生态科学,1996,15(2):26-31.
    [4]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [5]赵晓英,孙成权.恢复生态学及其发展[J].地球科学进展,1998,17(5):474-480.
    [6]朱震达,刘恕.中国的沙漠化及其治理[M].北京:科学出版社,1989]
    [7]徐文梅,赵海鹰.恢复生态学的研究概况与发展趋势[J].延安大学学报(自然科学版),2008.6,27(2):70-73.
    [8]束文圣,杨开颜,杨兵,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报,2001,7(1):7-13.
    [9]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究.生态学报,2001,21(11):1932-1941.
    [10]戈峰,刘向辉,潘卫东,等.蚯蚓在德兴铜矿废弃地生态恢复中的作用.生态学报,2001,21(11):1790-1795.
    [11]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究.生态科学,2002,19(2):24-30.
    [12]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004.1,24(1):95-100.
    [13]何书金,苏光全.矿区废弃土地复垦潜力评价方法与应用实例[J].地理研究,2000,19(2):165-172.
    [14]孙泰森,白中科.大型露天煤矿废弃地生态重建的理论与方法[J].水土保持学报,2001,15(5):56-60.
    [15]张志权,黄铭洪.土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配.植物生态学报,2001,25(3):306-311.
    [16]阳承胜,蓝崇钰,束文圣.矿业废弃地生态恢复的土壤生物肥力.生态科学,2000,19(3):73-79.
    [17]胡振琪,凌海明.金属矿山污染土地修复技术及实例研究[J].金属矿山,2003,6: 53-56.
    [18]聂湘平,蓝崇钰,张志权,等.锌对大叶相思——根瘤菌共生固氮体系的影响.植物生态学报,2002,26(3):264-268.
    [19]陈同斌,韦朝阳,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47:207-210.
    [20]王剑虹,麻密.植物修复的生物学机制.植物学通报,2000,17(6):504-510]
    [21]白中科,吴梅秀.矿区废弃地复垦中的土壤学与植物营养学问题.煤矿环境保护,1996,10(5):39-42.
    [22]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究.生态学报,2001,21(11):1932-1941.
    [23]龙健,黄昌勇,腾应,等.我国南方红壤矿山复垦土壤的微生物特征研究.水土保持学报,2002,16(2):126-129.
    [24]孙庆业,等.尾矿植被法治理初探[J]..国土与自然资源研究,1999,3:58-60.
    [25]陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科学出版社,1995.
    [26]David J Cooper, Lee H Mac Dorudd. Restoring the Vegetation of Mined Peat lands in the Southern Rocky Mountains ofColorado, U. S. A[J]. Restoration Ecology,2000, 8(2):103-111.
    [27]王克华,刘胜祥.金属尾矿废弃地的生态恢复[J].四川环境,2003,22(1):13-17.
    [28]陈芳清,卢斌,王祥荣.樟村坪磷矿废弃地植物群落的形成与演替.生态学报,2001,21(8):1347-1354.
    [29]白中科,李晋川,王文英.中国山西平朔安太堡大型露天煤矿退化土地生态重建研究.中国土地科学,2000,14(4):1-4.
    [30]刘世忠,夏汉平,孔国辉,等.茂名北排油页岩废渣场的土壤与植被特性研究.生态科学,2002,21(1):25-29.
    [31]孙庆业.铅锌尾矿上自然定居植物.生态学报,2001,21(9):1457-1463.
    [32]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [33]余作岳,彭少麟主编.1997.热带亚热带退化生态系统植被恢复生态学研究,广州:广东科技出版社.
    [34]赵方莹,北京铁矿废弃地植被恢复技术与效果研究[M],2008.
    [35]Gemmell RP. Colonization of Industrial Wasteland [M].London:Arnold1977, 21-47.
    [36]Martinez-Ruiz C, Fernandez-Santos B. Effect of substrate coarseness and exposure on Plant succession in uranium-mining wastes [J].Plant Ecology,2001,155(1):79-89.
    [37]束文圣,蓝崇任,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].1997,8(3):314-318.
    [38]郭逍宇,张金屯,宫辉力,等.安太堡矿山恢复过程主要种生态位梯度变化研究[J].西北植物学报,2004,24(12):2329-2334.
    [39]Bradshaw A D. Restoration of mined lands:using natural Processes [J]. Ecological Engineering,1997, (8):255-269.
    [40]聂湘平,蓝崇任,张志权.锌对大叶相思-根瘤菌共生固氮体系的影响[J].植物生态学报,2002,26(3):264-268.
    [41]卞正富,张国良.矿山土复垦利用试验[J].中国环境科学,1999,19(1):81-84.
    [42]莫测辉,蔡全英,全江海.城市污泥在矿山废弃地复垦的应用探讨[J].生态学杂志,2001,20(2):44-47.
    [43].Prakash K J, Suresh N, Gopinathan M C, et al. Suitability of rhizobia-inoculated wild legumes Argyrolobium flaccidum, Astragalus graveolens, Indigofera gangetica and LesPedeza stenoeaipa in Providing a vegetational cover in an unreclaimed limestone quarry[J]. Plant and Soil,1995,177:139-149.
    [44]Grant C D, Campbell C J, Charnock N R. Selection of species suitable for derelict mine site rehabilitation in New South Wales, Australia[J].Water, Air,& Soil Pollution, 2002,139:215-235.
    [45]Rao A V, Tak R. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone [J]. Journal of Arid Environments,2002,51(1):113-119.
    [46]Lubke R A, Avis A M. A review of the concept sand application of rehabilitation following heavy mineral dune mining [J].Marine pollution Bulletin,1999,37(8): 546-557.
    [47]Duque J F, Matin J, Pedraza A et al. A geomorphological design for the rehabilitation of an abandoned sand quarry in central Spain [J].Landscape and Urban Plann,1998,42:1-14.
    [48]Burton C M, Burton P J, Hebda R, et al. Determining the optimal sowing density for mixture of native Plants used to revegetate degraded ecosy stems [J]. Restoration Ecology,2006,14(3):379-390.
    [49]王宏镔,文传浩,谭晓勇,等.云南会泽铅锌矿矿渣废弃地植被重建初探[J].云南环境科学,1998,17(2):43-46.
    [50]张志权,束文圣,蓝崇钰,等.引入土壤种子库对铅锌尾矿废弃地恢复的作用[J1.植物生态学报.2000,24(5):336-374.
    [51]张光灿,刘霞,王燕.煤矿山生态重建过程中风化研石山植被生长及土壤水文效应[J].水土保持学报,2002,16(5):20-23.
    [52]Darina Hodacova, Karel Prach. Spoil heaps from brown coal mining:technical reclamation versus spontaneous re-vegetation [J].Restoration Ecology,2003,11(3): 385-391.
    [53]Pensa M, Sellin A, Luud A, et al. Ananalysis of vegetation restoration on opencast oil shale mines in Estonia [J]. Restoration Ecology,2004,12(2):200-206.
    [54]郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地恢复过程中的植被动态[J].生态学报,2003,23(8):1470-1476.
    [55]陈法扬.生态修复与可持续发展[A].全国水土保持生态修复研讨会论文汇编[C],2004,32-37.
    [56]Holl K D. Long-term vegetation recovery on reclaimed coal surface mines in the eastern US A[J] .Journal of Applied Ecology,2002,39(6):960-970.
    [57]Damigos D, KaliamPakos D. Assessing the benefits of reclaiming urban quarries:a CVM analysis [J]. Landscape and Urban Planning,2003,64:249-258.
    [58]谢晓佳,程丽君.小型露天非煤矿山土地复垦存在的问题及建议[J].矿业安全与环保,2006.6,33(3):67-69.
    [1]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000.11,20(6):945-950.
    [2]邱扬,傅伯杰,王军. 土壤水分时空变异及其与环境因子的关系[J].生态学杂志,2007,26(1):100-107.
    [3]邱扬,傅伯杰,王勇.土壤侵蚀时空变异及其与环境因子的时空关系[J].水土保持学报,2002.3,16(1):108-111.
    [4]刘端,张毓涛,郝帅,等.天山云杉林下土壤物理性质空间异质性研究[J]安徽农业大学学报,2009,36(3):397-402.
    [5]蔡晓布,周进.退化高寒草原土壤有机碳时空变化及其与土壤物理性质的关系 [J].应用生态学,2009,,20(11):2639-2645.
    [6]黄宇,邹冬生,王华.龙须草对土壤理化性状的影响研究[J].土壤通报,2003,34(5):409-413.
    [7]胡宗达,叶充,胡庭兴.扁穗牛鞭草对土壤理化性质的影响研究[J].草业学报,2008.6,17(3):17-22.
    [8]牛红榜,刘万学,万方浩.,紫茎泽兰入侵对土壤微生物群落和理化性质的影响[J].生态学报,,2007,27(7):3051-3060.
    [9]庞学勇,刘世全,刘庆,等.川西亚高山针叶林植物群落演替对土壤性质的影响[J].水土保持学报,2003.12,17(4):42-46.
    [10]涂利华,谢财永,胡庭兴,等.华西雨屏区几种牧草的水土保持能力研究[J].水土保持学报,2005,19(5):35-38,51.
    [11]庞学勇,包维楷,张咏梅.岷江上游中山低效林改造对土壤物理性质的影响[J].水土保持通报,2005.10.,25(5):12-16.
    [1]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报,2001,21(11):1932-1940.
    [2]李海英,顾尚义,吴志强.矿山废弃土地复垦技术研究进展[J].矿业工程,2007,5(2):43-46.
    [3]辜彬,王丽.露天开采矿山生态环境治理的基本理论与方法[J].中国水土保持科学,2006(增刊):134-137.
    [4]周树理.矿山废弃地复垦与绿化[M].北京:中国林业出版社,1995.
    [5]Nakai Y. A study on methods of regenerative work and recovery of vegetation in Ashio Devasted Land[C]. Japan, Proceedings of the 5th workshop of ecology of Subalpine zone, IUFRO,1990:229-236.
    [6]林先贵,王一明.腐植酸类物质是土壤健康的重要保障[J].腐植酸,2010,2:1-10.
    [7]张永锋,梁正伟,隋丽,等.盐碱胁迫对苗期紫花苜蓿生理特性的影响[J].草业学报,2009,18(4):230-235.
    [8]王齐,孙吉雄,安渊.水分胁迫对结缕草种群特征和生理特征的影响[J].草业 学报,2009,18(、2):33-38.
    [9]李新博,谢建治,李博文,等.镉对紫花苜蓿不同生长期生物量的影响及饲用安全评价[J].草业学报,2009,18(5):266-269.
    [10]洪江平,谢英荷,孔令节,等.矿山复垦区土壤微生物及其生化特性研究[J].生态学报,2000,20(4):669-672.
    [11]Kapusta P, Sobczyk L, Rozen A, et al. Species diversity and spatial distribution of enchytraeid communities in forest soils:effects of habitat characteristics and heavy metal contamination[J]. Applied Soil Ecology,2003,23(3):187-198.
    [12]Mo M H, Chen W M, Su H Y, et al. Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils[J]. Applied Soil Ecology,2006,31(1-2):11-19.
    [13]He C Q, Tan G E, Liang X, et al. Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus[J]. Applied Soil Ecology,2010, 44(1):1-5.
    [14]李宏艳,滕彦国,王金生,等.德兴地区土壤重金属含量空间分布特征[J].辽宁工程技术大学学报(自然科学版),2008,27(3):465-468.
    [15]李艺.有色多金属矿山砷污染对生态环境的影响及其治理分析[J].地球与环境,2008,36(3):256-260.
    [16]邢丹,刘鸿雁.铅锌矿区重金属的迁移特征及生态恢复研究现状[J].环保科技,2009,15(2):10-13.
    [17]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [18]张家恩.生态学常用试验研究方法与技术[M].北京:化学工业出版社,2007.
    [19]Vangronsveld J, Assche F V, Clijsters H. Reclamation of a bare industrial area contaminated by non-ferrous metals:In situ metal immobilization and revegetation[J]. Environmental Pollution,1995,87(1):51-59.
    [20]Arienzo M, Adamo P, Cozzolino V. The potential of Lolium perenne for revegetation of contaminated soils from a metallurgical site[J]. Science of the Total Environment,2004,319(1-3):13-25.
    [21]成文竞,崔健宇,闵凡华,等.三种草坪草的根系分布特征及其对土壤养分的影响[J].草业学报,2009,18(1):179-183.
    [22]Schumacher T E, Papiernik S K, Lobb D A, et al. Soil properties and productivity as affected by topsoil movement with in an eroded landform[J]. Soil and Tillage Research,2009,102(1):67-77.
    [23]丁青坡,王秋兵,魏忠义,等.抚顺矿区不同复垦年限土壤的养分及有机碳特性研究[J].土壤通报,2007,38(2):262-267.
    [24]刘楠,张英俊.放牧对草原土壤有机碳及全氮的影响[J].草业科学,2010,17(4):11-14.
    [25]孙铁军,刘素军.6种禾草坡地水土保持效果的比较研究[J].水土保持学报,2008,22(3):158-162.
    [26]杨林章,徐琪.土壤生态系统[M].北京:科学出版社,2005.
    [27]张静妮,赖欣,李刚,等.贝加尔针茅草原植物多样性及土壤养分对放牧干扰的响应[J].草地学报,2010,18(2):177-182
    [28]王长庭,王启兰,景增春,等.不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化[J].草业学报,2008,17(5):9-15.
    [29]王长庭,龙瑞军.放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应[J].生态学报,2008,28(9):4144-4152.
    [30]Bradshaw A D, Chadwick M J. The Restoration of Land[M]. Berkeley Los Angeles: University of California Press,1980.
    [1]Grime J P. Control of species diversity in herbaceous vegetation[J]. Journal of Environmental Management,1973(1):151-167.
    [2]Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experiments in European grasslands[J]. Science,1999,286:1123-1127.
    [3]Tilman D, Downing J A. Biodiversity and stability ingrasslands[J]. Nature,1994, 367:363-365.
    [4]Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems [J]. Nature,1996,379:718-720.
    [5]Naeem S, Thompson L J, Lawler S P, et al. Declining biodiversity can alter the performance of ecosystems[J]. Nature,1994,368:734-736.
    [6]王启基,周兴民,沈镇西,等.不同调控策略下退化草地植物群落结构及其多样性分析[A].高寒草甸生态系统(第4集)[c].北京:科学出版社,1995.269—279.
    [7]周国英,陈桂琛,赵以莲,等.施肥和围栏封育对青海湖地区高寒草原影响的比较研究—Ⅰ群落结构及其物种多样性[J].草业学报,2004.2:26-31.
    [8]余海波,周守标,宋静,等.铜尾矿库能源植物稳定化修复过程中定居植物多样性研究[J].中国农学通报,2010,26(18):341-346.
    [9]李若愚,侯明明,卿华,等.矿山废弃地生态恢复研究进展[J].矿产保护与利用,2007,1:50-54.
    [10]卞正富,张国良.生物多样性指数在矿山土地复垦中的应用[J].煤炭学报,2000.2,25(1):76-80.
    [11]罗亚平,李明顺,李金城,等.广西锰矿废弃地生态恢复的现状与治理对策[J].现代农业科技,2008,13:356-359.
    [12]金靖博,陆月皎,孙德军.恢复生态学及其在林区矿山植被修复中的应用[J].林业勘查设计,2008,2:44-45.
    [13]马克平.生物群落多样性的测度方法[M].北京:中国科学技术出版社,1994:141-165.
    [14]赵群芬,陈光升.重庆四面山常绿阔叶林群落多样性与海拔梯度的关系[J].四川师范大学学报(自然科学版),2004.7,27(4):405-409.
    [15]张璐,苏志尧,李镇魁,等.广东石坑崆森林植物生活型谱随海拔梯度的变化[J].华南农业大学学报,227.4,28(2):78-82.
    [16]宋爱云,刘世荣,史作民.卧龙自然保护区亚高山草甸物种多样性研究[J].林业科学研究,2006,19(6):767~772.
    [1]Zhao M, Zhou G-S. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management,2005,207:295-313
    [2]Jacque Roy, Bernard Saugier, Harold A. Mooney. Terrestrial Global Productivity San Diegao, California:Academic Press,2001
    [3]Dale MRT. Spatial Pattern Analysis in Plant Ecology.London:Cambridge University Press,1999
    [4]李少青.22年生马尾松林生物量空间分布格局研究[J].福建农业科技,2007.4:76-77.
    [5]李连芳,王培,王警龙等.老芒麦(Elymus sibiricus)种群地上生物量空间分布格局研究[J].生态学报,2001.7,21(7):1208-1211
    [6]张杰,李绍臣等.矿区土地复垦与生态恢复技术研究初探[J].露天采煤技术,2001(1):36-39
    [7]张倩.矿业废弃地的生态恢复综述[J].江苏环境科技,2008.6,21(1):142-144
    [8]孙铁军,刘素军等.6种禾草坡地水土保持效果的比较研究[J].水土保持学报,2008.6,22(3):158-162
    [9]Bradford J M, Huang C H. Interrill soil erosion as affected by tillage and residue cover. Soil & Tillage Research,1994,31:353-361
    [10]Cerda A. Parent material and vegetation affect soil erosion in eastern Spain. Soil Sci. Soc.Am. J.,1999,63:362-368
    [11]Harmel R D, Richardson C W, King K W, et al. Runoff and soil loss relationships for the Texas Blackland Prairies ecoregion. Journal of Hydrology,2006,331:471-483
    [12]王长庭,龙瑞军等.放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应[J].生态学报,2008.9,28(9):4144-4152
    [13]岳慧星.草本植物在工程边坡生态恢复上的试验研究[J].青海草业,2006.6,15(2):5-7
    [14]陈桂琛,周国英等.采用垂穗披碱草恢复青藏铁路取土场植被的试验研究[J].中国铁道科学,2008.9,29(5):134-137
    [15]胡明忠,汤杰等.矿山生态恢复与重建存在的问题及对策[J].中国环境管理,2003.6,22(3):7-9
    [16]胡中民,樊江文,钟华平等.中国草地地下生物量研究进展[J].生态学杂志,2005,24(9):1095-1101
    [17]李武斌,包维楷,何丙辉等.岷江上游大沟流域油松人工幼林生物量组成及其影响因素[J].山地学报,2007.2,25(2):236-244
    [18]冯宗炜,王效科,吴刚.中国森林生态系统的生物量生产力[M], 北京:科学出版社,1999
    [19]袁梦仙,李琳等.坡面植被枯落物层的拦沙效应试验研究[J].江西农业大学学报,2004,26(5):798-800
    [20]叶吉,郝占庆,姜萍.长白山暗针叶林苔藓枯落物层的降雨截流过程[J].生态学报,2004,24(12):2859-2862
    [21]刘欣,陶建平,黄茹等.重庆石灰岩地区3种林分林下枯落物吃水能力比较[J].中国生态农业学报,2008.5,16(3):712-717
    [22]蓝振江,蔡红霞,曾涛等.九寨沟主要植物群落生物量的空间分布[J].应用生物学报,2004,10(3):299-306
    [23]干友民,李志丹,王钦等.川西北亚高山草甸放牧退化演替研究[J].草地学报,2005,13(增刊):48-52
    [24]Luo T-X, Shi P-L, Luo J, et al. Distribution patterns of above ground biomass in Tibetin alpine vegetation transects. Acta Phytoecologica Sinica,2002,26(6):668-676
    [25]黄梅芬,徐驰,曹后英等.不同生境条件对紫茎泽兰营养生长的影响[J].热带作物学报,2009,30(10):1429~1436
    [26]蒲继延,李英年,赵亮等.矮嵩草草甸生物量季节动态及其与气候因子的关系[J].草地学报,2009.9,13(3):238-241
    [27]路远,龙瑞军,林丽.高寒珠芽蓼草甸植被生物量季节动态特征[J].草原与草坪,2007,1-4
    [28]白永飞,许志信.降水量的季节分配对羊草草原群落地上部生物量影响的数学模型[J].草业学报,1997,6(2):1-6
    [29]张静妮,赖欣,李刚等.贝加尔针茅草原植物多样性及土壤养分对放牧干扰的响应[J].草地学报,2010,18(2):177-182
    [30]张靖乾,张卫国,江小雷.刈割频次对高寒草甸群落特征和初级生产力的影响[J].草地学报,2008,16(5):491-496
    [31]白可喻,韩建国,王培等.放牧强度对新麦草人工草地植物地下部分生物量及其氮素含量动态的影响[J].中国草地,2000,(2):15-20
    [32]刘志斌.大型露天煤矿闭坑后的生态环境问题及其对策[J].露天采矿技术,2003,3:1-3
    [1]Bradford J M, Huang C H. Interrill soil erosion as affected by tillage and residue cover. Soil & Tillage Research,1994,31:353-361.
    [2]Cerda A. Parent material and vegetation affect soil erosion in eastern Spain. Soil Sci. Soc.Am. J.,1999,63:362-368.
    [3]Harmel R D, Richardson C W, King K W, et al. Runoff and soil loss relationships for the Texas Blackland Prairies ecoregion. Journal of Hydrology,2006,331: 471-483.
    [4]岳慧星.草本植物在工程边坡生态恢复上的试验研究[J].青海草业,2006.6,,15(2):5-7.
    [5]中华人民共和国国家标准,GB/T5520—85粮食、油料检验种子发芽试验.
    [6]陈文萍,黄靖,王显,等.Cu2+和Cd2+胁迫对马尾松种子萌发率及幼苗生长的影响[J].贵州农业科学,2010,38(9):171-175.
    [7]窦声云,周学丽,莫玉花.Na2CO3胁迫对老芒麦和星星草种子萌发的影响[J].草业科学2010,27(09):124-127.
    [8]冯建永,庞民好,张金林,等.复杂盐碱对黄顶菊种子萌发和生长的影响及机理初探[J].草业学报,2010,17(5):77-86.
    [9]张鹤山,陈明新,田宏,等.高温胁迫下白三叶种子萌发特性及耐热性研究[J].种子,2010,29(8):1-5.
    [10]贺小秀,王勇.不同环境因子对柠条种子萌发影响的研究[J].中国农学通报,2010,26(17):137-140.
    [11]马彦军,曹致中,李毅.胡枝子属植物研究进展[J].草业科学,2010,27(10):128-134.
    [12]周霞,张尧.种子休眠生理研究进展综述[J].安徽农学通报,2010,16(14):51-53.
    [13]余启高,姚茂桂.浓硫酸处理对黄柏种子发芽的影响[J].安徽农学通报,2010,16(19):32-33.
    [14]倪显祥.不同浸种处理对水稻生长和产量的影响比较[J].现代农业科技, 2010,10: 62-63.
    [15]李贤忠,朱存福,胥辉,等.4种不同种源小桐子种子发芽试验[J].林业调查规划,2010.08,35(4):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700