重金属污染下红壤微生物生态特征及生物学指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项目选择红壤作为研究材料,采用室内培养、野外调查以及相关数学分析相结合的研究方法,探讨了重金属污染红壤的微生物生态特征及其影响机制,提出了镉、铅单一污染和镉、铅、铜、锌复合污染下红壤微生物学敏感性生态参数及其动力学变化特征,为重金属污染土壤的修复、环境质量评价以及建立有效的土壤重金属污染预警指标体系提供有益的参考。本项目研究所获得的主要结果如下:
     1.以红黄泥和红砂泥两个土属作为供试红壤,采用室内培养方法对外加镉、铅污染红壤的微生物活性及群落结构进行了研究。结果表明:较低浓度Cd、Pb离子有利于提高土壤微生物活性,高浓度Cd、Pb离子则会对土壤微生物活性产生严重的抑制作用。当镉、铅的浓度分别大于15mg·kg~(-1)和200mg·kg~(-1)时两供试红壤的微生物活性开始下降。随重金属浓度增加,各指标下降幅度各有差别,其中微生物生物量碳、微生物生物量氮以及基础呼吸和微生物代谢商随重金属浓度增加而明显下降;土壤脱氢酶、脲酶、酸性磷酸酶活性的下降幅度较为明显,过氧化氢酶、蔗糖酶活性次之,蛋白酶活性较为稳定。几种生化作用强度的下降顺序为硝化作用>固氮作用>纤维素分解强度>氨化作用;但土壤微生物生物量碳氮比则随着重金属污染水平的升高而增加。两种土壤比较,以上微生物活性指标对重金属胁迫的响应程度在红砂泥上表现更为明显。上述微生物活性指标与重金属间的相关性分析表明,微生物生物量碳、基础呼吸、微生物代谢商、脱氢酶活性与Cd、Pb的加入量呈极显著负相关性,土壤微生物生物量C∶N比与Cd、Pb的加入量呈现极显著正相关关系。可认为,微生物生物量碳、基础呼吸、微生物代谢商、脱氢酶活性及土壤微生物生物量C∶N比是敏感反映Cd、Pb污染状况的生物学指标。在本文中我们将供试红壤的上述微生物活性指标和2种重金属含量进行主成分因子分析,其结果得出,红黄泥和红砂泥的土壤微生物活性镉胁迫的临界承载量分别为15mg·kg~1和0~15·mg·kg~1;铅胁迫的临界承载量分别为200mg·kg~(-1)和200~400mg·kg~(-1)。这一结果将为重金属污染下红壤环境质量生物学评价提供参考。
     镉、铅污染红壤微生物群落结构的研究结果亦表明,镉、铅严重污染破坏了土壤微生物区系,使土壤细菌、放线菌及真菌数量下降,其中放线菌对重金属毒性影响最为敏感,细菌次之,真菌受其毒性影响较少。BIOLOG GN测试结果显示,镉、铅污染红壤微生物群落代谢剖面(AWCD)及群落丰富度、多样性指数均显著低于非污染土壤,表明重金属污染引起了土壤微生物群落功能多样性下降,减少了能利用有关碳源底物的微生物数量、降低了微生
    
     中义摘要
    物对单一碳源底物的利用能力,最终导致土壤微生物群落功能多样性发生变化。
     2.通过对红黄泥和红砂泥两个红壤试样外加锻、铅的醋酸盐和氯化盐的培养试验,比
    较了锅、铅污染下相伴 OAC用7 CI阴离于对红壤微生物活性及其群落功能多样性的影响。研
    究结果表明:在相同重金属浓度卜,Cd、PbOAC“盐污染红壤的微生物生物量碳、基础ojT{吸、
    代谢商、酶活性以及微生物数量、微生物群落代谢剖面和群落功能多样性的抑制作出入丁
    Cd、PbCI盐处理。进一步研究表明,锅、铅醋酸盐处理的十壤有效态里金属含量均明显高
    了氯化盐的处理。锅、出的醋酸盐利氯化盐的加入对红黄泥的pH值无明显影响,但对红砂
    泥的一值产生一定程度的影响。然而,从外加醋酸钾和氯化钾的另一辅助试验结果显示,
    在等量钾离于浓度条件下,川醋酸钾(KOAC)处理不仅没有对十壤微生物活性、数社及群
    落功能多样性产生抑制作用,反而有刺激作用,微生物生物量有~定幅度的增加,提高了微
    生物群落功能多样性。由此可认为,相伴 OAC和 CI阴离于的锅、铅盐导致污染红壤微生物
    生态特征指标差异并非相伴阴离于本身的直接影响,而主要是相伴阴离于影响重金属的生物
    有效性所致。并且,从培养前后测得的土壤pH的变化,可推测不同土壤其影响程度是不同
    的。
    3.在室内培养条件卜,应用四因素五水平二次止交问归旋转组合设计方案,对Cu、Zn、Ph。
    Cd复合污染红壤环境的微生物活性及群落功能多样性进行了研究。结果表明;至金属复合
    污染对红壤微生物活性及群落功能多样性的影响达显著或极显著性水平:而微生物生物量
    碳、十壤基础呼吸及群落功能多样性指数可较为敏感地反映红壤中重金属复合污染程度状
    况。同时,在复合污染试验条件下,*d、CU对供试红壤各项微生物学指标的毒性影响较为
    明显,Zn次之,Ph的影响最小,并且在红砂泥中表现较为突出。因此,在该复合污染生境
    中重金属的微生物毒性效应发挥主要由Cd、Cll两元素决定,其生物毒性顺序表现为:
    Cd>CU>Zn>Ph。与单一锅、单一铅污染处理相比,重金属复合污染对供试红壤微生物活性及
    其群落功能多样性的影响并非简单的加和作用,或协同作用或桔抗作用,而是一个非常复杂
    的复合作用。两元素交互效应进一步分析结果表明,当N=400 ig·kg’、Cd-50 lgkg’,Zll
    $400 n。gkg-’时,对红壤微生物学指标的影响 C
In this paper, soil microbial ecological characteristics and their influence mechanism in red soils contaminated with heavy metals were studied using the incubation experiment, and field investigations. Some sensitive microbial ecological indexes and kinetic parameters were brought forward under the single pollution of cadmium or lead, and cadmium-lead-copper-zinc compound pollution ways, respectively, which will be useful reference for bioremediation, environmental quality evaluation and building up alert index systems in red soils polluted by heavy metals. Here the main results of this study are presented:
    1. Two incubation experiments were conducted to evaluate the effect of cadmium and lead applied singly on soil microbial activities and functional diversity of microbial community in red clayey soil and red sandy soil. The results showed the lower concentration of cadmium or lead helps to increase soil microbial activities, but their higher concentration cause greater inhibitory effect on microbial activities in red soils. Soil microbial biomass carbon, microbial biomass nitrogen, soil basal respiration and metabolic quotient all showed a decreasing trend under more than 15 mg.kg-1 cadmium or more than 200 mg.kg-1 lead, respectively. Soil dehydrogenase, urease and acid phosphotase activities have a significant decrease, and the activities of soil catalase and invertase taking sencond place, while soil protease activities showed stable state. The order of four soil biochemical intensity being sensitive to heavy metal pollution indicated as: nitrification>nitrogen fixation>decomposition of cellulose>ammonification. However, soil microbial biomass C:N ratio increased with the increasing of heavy metals level. Moreover, the effect of heavy metal pollution on soil microbial indexes was significant in red sandy soils. There were significant negative relationships among soil microbial carbon, microbial nitrogen, basal respiration, microbial metabolic quotient, urease activity, dehydrogenase activity, nitrification, nitrogen fixation and cadmium or lead concentration (R0.01=0.765, R0.05=0.632) .There was a close positive relationship between soil microbial biomass C:N ratios and cadmium or lead concentration (R=0.8920). Thus it can be seen that soil microbial biomass carbon, microbial biomass nitrogen, soil microbial biomass C:N ratio and microbial metabolism quotient are very sensitive to heavy metals pollution in red soils. Some soil microbial activity parameters and heavy metals contents were analyzed by principal component method. The results showed that the critical levels of cadmium and lead in red clayed soil and red sandy soil were 15 mg.kg-1 and 0-15.mg.kg-1, 200 mg.kg-1and 200-400 mg.kg-1, respectively.
    
    
    
    Soil microbial populations and functional diversities of microbial community have changed to some extent under the stress of cadmium and lead pollution. The number of soil bacterial, actinomycetes and fungus in red soils polluted by heavy metals decreased greatly compared with non-polluted soil samples. The order of sensitivity to heavy metals pollution was actinomycetes > bacteria > fungus. At the same time, the result of the functional diversity of soil microbial community indicated that soil microbial metabolism quotient (AWCD), microbial community richness and shannon index all decreased significantly in red soils polluted by cadmium and lead compared with non-polluted soils. These results suggested the structure of microbial community have changed, decreased the functional diversity of microbial community, and reduced the microbial number utilizing different carbon resources.
    In a word, the changing of soil microbial activities and the functional diversity of microbial community reflected to some degree the evolvement law of environmental ecological function of soil contaminated with heavy metals. Simultaneously, some soil microbial parameters were very sensitive to cadmium and lead pollution.
    2. Two laboratory incubation experiments were carried out to evaluate the influence of accompanyin
引文
[1].陈怀满 等编.1996.土壤—植物系统中的重金属污染.北京:科学出版社.71~25.
    [2].许嘉琳,杨居荣编著.1995.陆地生态系统中的重金属.中国环境科学出版社.157~287.
    [3].何振立 主编.1998.污染及有益元素的土壤化学平衡.中国环境科学出版社.129~160.
    [4].卡里德,谢正苗,黄昌勇,等.1998.不同铅化合物对红壤中微生物生物量的毒性差异.应用与环境生物学报,4(2):179~184.
    [5].徐建民,王秀丽,等.2003.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境学科学报,23(1):22~27.
    [6].孙铁珩,周启星,李培军 主编.2001.污染生态学.科学出版社.298~312.
    [7].龚平,孙铁珩,李培军.1997.重金属对微生物的生态效应.应用生态学报,8(2):218~224.
    [8].顾宗濂,谢思琴,吴留松.1987.土壤中镉、砷、铅的微生物效应及其临界值.土壤学报,24(4):327~334.
    [9].滕应,黄昌勇.2002.重金属污染土壤的微生物生态效应及修复研究进展.土壤与环境,11(1):85~89.
    [10].蒋先军,骆永明,赵其国.2000.重金属污染土壤的微生物学评价.土壤,3:130~134.
    [11].谢正苗,卡里德,黄昌勇,等.2000.镉铅锌污染对红壤中微生物生物量碳氮磷的影响.植物营养与肥料学报,6(1):69~74.
    [12].谢正苗.1998.红壤中醋酸根对镉害微生物量的影响.浙江农业大学学报,24(1):89~92.
    [13].骆永明.1999.重金属污染土壤的植物修复.土壤,31(5):261~265,280.
    [14].杨肖娥,龙新宪,等.2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报,13(6):757~762.
    [15].何振立.1994.土壤微生物量的测定方法:现状和展望.土壤学进展,22(4):36~44.
    [16].何振立.1997.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤,29(2):61~69.
    [17].杨元根,PatersonE,等.2002.Biolog 方法在区分城市土壤与农村土壤微生物特性上的应用.土壤学报,39(4):582~589.
    [18].杨元根,PatersonE,等.2001.城市土壤中重金属元素的积累及其微生物效应.环境科学,22(3):44~48.
    [19].滕应,黄昌勇,龙健,等.2003.侵蚀红壤矿区土壤微生物群落多样性特征研究.水土保持学报,17(1):115~118.
    [20].龙健,黄昌勇,滕应,等.2002.我国南方红壤矿山复垦土壤的微生物特征研究.水土保持学报,16(2):126~128,132.
    [21].唐世荣,黄昌勇,朱祖祥.1996.污染土壤的植物修复及其研究进展.上海环境科学,15(12):37~39.
    [22].夏立江,华珞,李向东.1998.重金属污染生物修复机制及研究进展.核农学报,12(1):59~64.
    [23].李阜棣.1993.当代土壤微生物学的活跃研究领域.土壤学报,30(3):229~36.
    [24].沈德中 编著.2002.污染环境的生物修复.化学工业出版社.10~318.
    [25].黄昌勇 主编.2000.土壤学.北京:中国农业出版社.166~167.
    [26].和文祥,朱铭莪,张一平.2000.土壤酶与重金属关系的研究现状.土壤与环境,9(2):139~142.
    [27].和文祥,陈会明,冯贵颖,等.2000.汞镉砷元素污染的土壤酶监测研究.环境科学学报,
    
    20(3):338-343.
    [28].和文祥,朱铭莪.1977.陕西土壤脲酶活性与土壤肥力关系分析——土壤脲酶动力学特征.土壤学报,34(1):392~398.
    [29].闵航,赵宁华 主编.1999.微生物学.浙江大学出版社.
    [30].加里乌林.1992.根据土壤酶的活性监测土壤的重金属污染.国外农业环境保护,3:33~36.
    [31].李惠英,陈素英,等.1993.土壤中镉、铅、铜、锌复合污染生态效应的研究.生态农业研究,1(3):70~73.
    [32].李志超.1984.微生物对甲基汞的降解作用.环境科学,5(3):61~64.
    [33].刘树庆.1996.保定市污灌区土壤的Pb、Cd 污染与土壤酶活性关系研究.土壤学报,33(2):175~182,
    [34].鲁如坤 主编.1999.土壤农业化学分析法.北京:北京农业科技出版社.107~240.
    [35].马文漪,杨柳燕 编.1998.环境微生物工程.南京大学出版社.136~141.
    [36].孟昭福,薛澄泽,张增强等.1999.土壤中重金属复合污染的表征.农业环境保护,18(2):87~91.
    [37].南京农业大学主编.1986.土壤农化分析.农业出版社.
    [38].史长青.1995.重金属污染对水稻土酶活性的影响.土壤通报,26(1):34~35.
    [39].高拯民 主编.1986.土壤—植物系统污染生态的研究,中国科学技术出版社.
    [40].周启星,高拯民.1995.土壤—水稻系统Cd-Zn 的复合污染及其衡量指标的研究.土壤学报,32(4):430~435.
    [41].周启星 编著.1995.复合污染生态学.中国环境科学出版社.47~90.
    [42].宋菲,郭玉文等.1996.土壤中重金属镉锌铅复合污染的研究.环境科学学报,16(4):432~436.
    [43].孙波,赵其国,张桃林,俞慎.1997.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标.土壤,29:225~234.
    [44].唐启义,冯明光.1997.实用统计分析及其计算机处理平台.北京:中国农业出版社.56~108.
    [45].涂从,郑春荣,陈怀满,2000.铜矿尾矿库土壤—植物体系的现状研究.土壤学报,37(2):284~287.
    [46].王保军,1996.微生物与重金属的相互作用.重庆环境科学,18(1):35~38.
    [47].王国惠,于鲁冀.1999.细菌生理群的研究及其生态学意义.生态学报,39(1):128~133.
    [48].王淑芳,胡连生,纪有海,等.1991.重金属污染黑土中固氮菌及反硝化菌作用强度的测定.应用生态学报,2(2):174~177.
    [49].王秀丽.2002.重金属复合污染对土壤环境微生物群落的影响机理研究.浙江大学硕士学位论文.
    [50].王岩,沈其荣,史瑞和,黄东迈.1998.有机、无机肥料施用的土壤微生物量C、N、P的变化及N素转化.土壤学报,35(2):227~234.
    [51].维尔.1999.施用有机肥条件下Cu、Pb对红壤微生物量的影响.浙江大学博士论文.
    [52].吴燕玉,王新,陈怀满等.1998.Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究.环境科学学报,18(4):408~412.
    [53].吴燕玉,余国营,等.1998.Cd、Pb、Cu、Zn、As复合污染对水稻的影响.农业环境保护,17(2):49~54.
    [54].夏增禄 主编.1986.土壤环境容量研究.气象出版社.
    [55].许光辉,李振高 主编.1991.微生物生态学.南京:东南大学出版社.
    [56],许光辉,郑洪元 主编.1986.土壤微生物分析方法手册.上海科技出版社.226~228.
    [57].杨亚提,张一平.2003.陪伴离子对土壤胶体吸附Cu~(2+)和pb~(2+)的影响.土壤学报,40
    
    (2):218~223.
    [58].杨志新,刘树庆.2000.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响.土壤与环境,9(1):15~18.
    [59].杨志新,刘树庆.2001.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响.环境科学学报,21(1):60~63.
    [60].廖敏.1998.有机酸对红壤环境中镉的行为的影响及其机理.浙江大学博士学位论文.
    [61].姚槐应.2000.红壤质量及肥力演变的微生物学特征.浙江大学博士学位论文.
    [62].俞慎.2002.红壤铜污染的物理化学行为和生物学表征.浙江大学博士学位论文.
    [63].张金彪,黄维南.2000.镉对植物的生理生态效应的研究进展.生态学报,20(3):514~523.
    [64].郑春荣,陈怀满.土壤—水稻体系中污染重金属的迁移及其对水稻的影响.环境科学学报,1990,10(2):145~151。
    [65].中国环境监测总站 编著.1992.土壤元素的近代分析方法.北京:中国环境科学出版社.64~139.
    [66].中国环境监测总站 编著.1990.中国土壤元素背景值.北京:中国环境科学出版社.336~392.
    [67].中国科学院红壤生态实验站 编.1992.红壤生态系统研究.科学出版社.
    [68].周礼恺,张志明,曹承锦.1983.土壤酶活性的总体在评价土壤肥力水平中的作用.土壤学报,20(4):413~418.
    [69].周礼恺,张志明,曹承锦,等.1985.土壤的重金属污染与土壤酶活性.环境科学学报,5(2):176~183.
    [70].周礼恺 编著.1987.土壤酶学.科学出版社.
    [71].关松阴.1987.土壤酶及其研究法.北京:农业出版社.274~339.
    [72].周文敏 编著.1989.环境优先污染物.北京:中国环境科学出版社.129~160.
    [73].朱祖祥 主编.1983.土壤学(上册).北京:农业出版社.59~61.
    [74].曹素忱 等译著.1989.纯化学试剂.北京:高等教育出版社.160~162.
    [75].樊军,郝明德.2002.旱地农田土壤服酶与碱性磷酸酶动力学特征.干旱地区农业研究,20(1):35~37.
    [76].Adediran, S. A. and Kramer, J. R. 1987. Copper adsorption on clay, iron-manganese oxide and organic fractions along a salinity gradient. Appl. Geochem, 2: 213~216.
    [77].Alexander M. Microbiology of the rhizosphere. In intruduction to soil Microbiology, Wiley. Chichester. 1997: 423~437.
    [78].Alexander, M. 1977. Introduction to soil microbiology. 2 nd Edition. Wiley, New York.
    [79].Anderson T H, Domsch K H. 1993. The metabolic quotient for CO_2 a specific activity parameter to assess the effects of environmental conditions. Soil Biol Biochem., 25: 393~395.
    [80].Anderson, J. E. and K. H. Domsch, 1980. Quantities of plant nutrients in the microbial biomass of selected soil. Soil Sci. 130: 211~216.
    [81].Anderson, T. and K. H. Domsch., 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem., 21: 471~479.
    [82].Anderson, J. E and Domsch, K. H. 1978. A physiological method for measurement of microbial biomass in soils. Soil Biol.Biochem., 10: 215~221.
    [83].Anderson. J. E. and Domsch, K. H. 1978. A physiological method for measurement of microbial biomass in soils. Soil Biol. Biochem., 10: 215~221.
    [84].Aoyama, M and Itaya, S. 1995. Effects of copper on the metabolism of~(14)C-labeled glucose in soil in relation to amendment with organic materials. Soil Sci. Plant Nutr., 41: 245~252.
    [85].Aoyama, M. and S. Itaya. 1993. Effects of copper on the decomposition of plant
    
    residues, microbial biomass, and beta-glucosidase activity in soils. Soil Scl. Plant Nutr. 39: 557~566.
    [86].Aoyama, M. and T. Nagumo. 1996. Factors affecting microbial biomass and dehydrogenase activity in apple orchard soils with heavy metal accumulation. Soil Sci.Plant Nutr. 42: 821~831.
    [87].Bth E. 1989. Effects of heavy metal in soil on microbial processes and populations: a review. Water Air Soil Pollution, 335~379.
    [88].Bth E. Diaz-Ravina M, Frostegard A and Campbell CD.1998. Effect of metal~rich sludge amendments on the soil microbial community. Appl. Environ. Microbiol., 64, 238~245.
    [89].Bth E., K. Arnebrant, A. Nordgren. 1991. Microbial biomass and ATP in smelter polluted forest humus. Bull. Environ. Contam. Toxicol. 47: 278~282.
    [90].Babichhd, Stotzky. G. 1983. Developing standards for environmental toxicants: the need to consider abiotic environmental factors and microbe mediated ecological processes. Environment. Health Perspect. 49, 247~260.
    [91].Balzer W., E. Ahren. 1990. The effects of long~term sewage sludge application on the microbial activity in a silty loam. Verband deutscher Landwirtschaftlicher Untersuchungs und Forstchungsanstalten Reihe kongressberichte 30: 479~484.
    [92].Banerjee M. R. et al. 1999. Influence of urea fertilization and urease inhibitor on the size and activity of the soil microbial biomass under conventional and zero tillage at two site. Canadian J. Soil Sci., 79: 255~263.
    [93].Bardgett R. D and S. Saggar. 1994. Effects of heavy metal contamination on the short term decomposition of labeled carbon glucose in pasture soil. Soil Biol. Biochem. 26: 727~733.
    [94].Bardgett R. D and T. W. Speir. 1994. Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol. Fertil. Soils. 18: 71~79.
    [95].Bardos R. P. and Edwards P. J. 1984. Some effects of the heavy metal pollution at a devon mine site on soil bacteria. Environmental Contamination. Edinburgh, UK; CEP Consultants. 696~701.
    [96].Belitsyna G. D. et al.. 1989. Alteration of certain indices of soil biological activity under anthropogenic stress. Sovier Soil Sci. 21: 40~44.
    [97].Benbi D. K. et al..1996. Nitrogen mineralization kinetics in sewage water irrigated and heavy metal treated sandy soils. Van Cleemput O et al.(eds). Developments in Plant and Soil Sciences. 68: 17~22. Klumer Academic Publishers, NL.
    [98].Benjamin M M, Leckie J O. 1981. Conceptual model for metal~ligand~surface interaction during adsorption. Environ Sci Technol., 15: 1050~1057.
    [99].Berg B.. 1991. Reduction of decomposition rates of scots pine needle litter due to heavy metals pollution. Water, Air, and Soil Pollution. 59: 165~177.
    [100].BIOLOG Inc. Instruction for Use of BIOLOG GN Microplate[M]. BIOLOG Inc., Hayward, CA.
    [101].Biro B. et al..1995. Metal sensitivity of some symbiotic N_2-fixing bacteria and pseudomonas strains. Acta Biologica Hungarica. 46: 9~16.
    [102].Bisessar, S. 1982. Effect of heavy metals on microrganisms in soils near a secondary lead smeltor. Water, Air, Soil Pollut. 17: 305~308.
    [103].Bolton H, Frederickson J K, Elliott L E Microbial ecology of the rhizosphere. In soil microbial ecology (F. B. Metting. Ed.), Marcel Dekker, New York. 1992: 27~36.
    [104].Bossio DA, Scow KM, Gunapala N and Graham KJ. 1998. Determinants of soil microbial
    
    communities: effects of agricultural management, season and soil type on phospholipid fatty acid profiles. Microb Ecol 36: 1~12.
    [105].Bremner, J. M. and Mulvaney C. S. 1982. Nitrogen~total In Method of soil analysis, Part 2. Eds. A. L Page, R H Miller, D R Keeney, pp595~622. SSSA Publ Inc. Madison, WI.
    [106].Brendecke J W, Axelson R D, Pepper I L. 1993. Soil microbial activity as an indicator of soil fertility: long-term effects of municipal sewage sludge on an arid soil. Soil Biol Biochem., 25: 751~758.
    [107].Bronwyn D. H, Raymond L. C. 1997. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods. 30: 91~101.
    [108].Brookes P C. 1984. Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 35: 341~346.
    [109].Brookes P C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils., 19: 269~279.
    [110].Brookes P. C. and S. P. McGrath. 1987. Adenylate energy charge in metal contaminated soil. Soil Biol. Biochem. 19: 219~220.
    [111].Brookes P. C., Powlson D. S. and Jenkinson D. S. 1985. The microbial biomass in soil. p. 123~125. In J. M. Lynch(ed.)Soil biotechnology. Blackwell, Oxford, London.
    [112].Buyer JS and Drinkwater LE. 1997. Comparison of substrate utilization assay and fatty analysis of soil microbial communities. J Microbiol Method, 30, 3~11.
    [113].Campbell C D, Grayston S J, Hirst D J. 1997. Use of rhizosphere carbon sources in soile carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 34(3):501~514.
    [114].Campbell CD, Grayston SJ and Hirst DJ. 1997. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J Microbiol Meth 30, 33~41.
    [115].Carbonell G. et al.. 2000. Rapid and cost~effective multiparameter toxicity tests for soil microorganisms. The Science of the total Enviromnent. 247: 143~150.
    [116].Chander K., P. C. Brookes. 1993. Residual effects of zinc, copper and nickel in sewage sluge on microbial biomass in sandy loam. Soil Biol. Biochem. 25: 1231~1239.
    [117].Chander K., P. C. Brookes. 1995. Microbial biomass dynamics following addition of metal~enriched sewage sludges to a sandy loam. Soil Biol. Biochem. 27: 1409~1421.
    [118].Chander, K, P. C. Brookes. 1991a. Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty clay loam U. K. soil. Soil Biol. Biochem. 23: 927~932.
    [119].Chander, K, P. C. Brookes. 1991b. Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper-contaminated soils? Soil Biol. Biochem. 23: 909~915.
    [120].Chander, K, P. C. Brookes. 1992. Synthesis of microbial biomass from added glucose in metal-contaminated and non-contaminated soils following repeated fumigation. Soil Biol. Biochem. 24: 613~614.
    [121].Chen H M, Zheng C R, Sun X H. 1991. Effect of different lead compounds on growth and heavy metal uptake of wetland rice. Pedosphere, 1(3): 253~264.
    [122].Chen H M, Zheng C R, Sun X H. 1991a. Effect of anions on adsorbility and extractability of lead added in soil. Pedosphere, 1: 51~62.
    [123].Chen, W. and Coleman, D. 1989. A Simple method for measuring CO_2 in a continuous
    
    air~flow system: modifications to the substrate-induced respiration technique. Soil Biol. Biochem., 21: 385~388.
    [124]. Cheng, W. X. et al. 1998. Soil Nitrogen, microbial biomass and respiration along an arctic toposequence. Soil Sci. Soc. Am. J. 62: 654~662.
    [125]. Churl Gyu Lee a, Hyo-Taek Chon a, Myung Chae Jung b. 2001. Heavy metal contamination in the vicinity of theDaduk Au-Ag-Pb-Zn mine in Korea; Applied Geochemistry, 16: 1377~1386.
    [126]. Contrufo M. F. et al..1995. Effects of urban heavy metal pollution on organic matter decomposition in woods. Environ. Pollut. 89: 81~87.
    [127]. Cupta, V. V. S. R and Germida J. J. 1988. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol. Biochem., 20: 777~786.
    [128]. Curl, E. A. and B. Truelore. 1986. In The Rhizosphere. Springer-Verlag, New York, pp288~289.
    [129]. Dahlin S. and Witter E., et al..1997. Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biol. Biochem. 29: 1405~1415.
    [130]. Dalal R. C. 1998. Soil microbial biomass what do the number really mean? Aust. J. Exp. Agric. 38: 645~665.
    [131]. Dar G. H. and M. M. Mishra. 1994. Influence of cadmium on carbon and nitrogen mineralization in sewage sludge amended soils. Environ. Pollut. 84: 285~290.
    [132]. Dar G. H. 1996. Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresour. Tech. 56: 141~145.
    [133]. Dar G. H. 1997. Impact of lead and sewage sludge on soil microbial biomass and carbon and nitrogen mineralization. Bull. Environ. Contam. Toxico. 58: 234~240.
    [134]. Dick W. A. and Tabatabai M. A. 1992. Potential uses of soil enzymes. In Soil Microbial Ecology: Applications in Agricultural and Environmental Management (edited by Metting J. R.). Marcel Dekker, New York. 95~127.
    [135]. Doran J. W., Coleman D. C., Bezdicek D. F. & Stewart B. A.. 1994. Defining Soil Quality for a Sustainable Environment, Soil Science Society of American, Madison, USA.
    [136]. Doran, JW and Parkin, TB. 1994. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment(eds J. W. Doran, Coleman D. C., D. F. Bezdicek & B.A.Stewart), pp.3~21. Soil Science Society of America, Madison.
    [137]. Eivazi F. et al.. 1993. Beta-Glucosidase activity in soil amended with sewage sludge. Agric. Ecosyst. Environ. 43: 155~161.
    [138]. Elliontt H A, Denneny C M. 1982. Soil adsorption of cadmium from solution containing organic ligands. J. Environ Qual., 11: 658~663.
    [139]. Engracia, Madejon, Francisco. 2001. Soil enzymatic response to addition of heavy metals with organic residues. Biol Fertil Soils. 34: 144~150.
    [140]. Flieβbach A R, Martens H. 1994. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem., 26: 1201~1205.
    [141]. Friedel JK, Molter K and Fischer WR. 1994. Comparison and improvement of methods for determining soil dehydrogenase activity by using triphenyltetrazolium chloride and iodonitrotetrazolium chloride. Biol Fertil Soils 18, 291~296.
    [142]. Fritze, H. et al. 1989. Soil microbial effects of a Cu-Ni smelter in southwesterm Finland.
    
    Boil Ferti. Soils, 8:87-94.
    [143]. Frostegard A. Tunlid A and Baath E. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Bicrobiology. 59: 3605~3617.
    [144]. Garland J L. 1996b. Patterns of potential C source utilization by rhizosphere communities. Soil Biology & Biochemistry, 28: 223~230.
    [145]. Garland J L., Mills A. L. 1991. Classification and characterization of heterotrophic microbial cormnunities on basis of patterns of conmmnity-level sole-carbon-source utilization. Appli. Envron. Microbiol. 57: 2351~2359.
    [146]. Garland, JL. 1997. Analysis and interpratation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol, 24, 289~300.
    [147]. Geiger G. et al..1998a. The effect of copper on the activity of cellulose and beta~glucosidase in the presence of montmorillonite or Al-montmorillonite. Soil Biology and Biochemistry. 30: 1537~1544.
    [148]. Geiger G. et al..1998b. Beta-glucosidase activity in the presence of copper and goethite. European Journal of Soil Science. 49: 17~23.
    [149]. Gianfreda L. and Bollag J. M. 1996. Influence of natural and anthropogenic factors on enzyme activity. In soil biolochemistry (edited by stotzky G. and Bollag J. M.). Marcel Dekker, New York. 9: 123~193.
    [150]. Giller K E, Witter E. 1998. Toxicity of heavy metals to micro-organisms and microbial processes in agricultural soils. Soil Biol. Biochem., 30: 1389~1414.
    [151]. Giusquiani P. L. et al.. 1994. Long-term effects of heavy metals from composted municipal waste on some enzyme activities in a cultivated soil. Biol. Fertil. Soil. 17: 257~262.
    [152]. Grayston, S. J. et al. 1998. Impact of elevated CO_2 on the metabolic diversity of microbial communities in N-limited grass swards: 203:289~300.
    [153]. H. Yao, Z. He, M. J. Wilson ET AL.. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology. 40: 223~237.
    [154]. Haack, S. K., Garchow, H., Klug, M. J. and Fomey, L. J. 1995. Analysis of factors affecting the accuray, reproducibility, and interpretation of microbial community carbon source utilization patterns. Applied Environmental Microbiology. 61: 1458~1468.
    [155]. Haanstra L. 1983. Glutamic acid decomposition as a sensitive measure of heavy-metal pollution in soil. Soil Biol. Biochem.. 16: 595~600.
    [156]. Haanstra L. and Doelman P. 1991. An ecological dose-response model approach to short~and long-term effects of heavy metals on arylsulphatase activity in soil. Biol. Fertil. Soils. 11: 18~23.
    [157]. Hassan G H, Mishra M M. 1994. Influence of cadmium on carbon and nitrogen mineralization in sewage sludge amended soils. Environmental Pollution[J], 84: 285~290.
    [158]. He. Z. L., Wu J., O'Donnell A. G. and J. K. Syers. 1997. Seasonal responses in microbial biomass carbon, phosphorus and sulfur in soils under pasture. Biol. Fertil. Soils, 24: 421~428.
    [159]. Hemida S. K and S. A. Omar. 1997. Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollut. 95: 13~22.
    [160]. Henrot J., G. R. Philip. 1994. Vegetation removal in two soils of the humid tropics: effect on microbial biomass. Soil Biol. Biochem., 26: 111~116.
    
    
    [161]. Hiroki, M. 1992. Effects of heavy metal contamination on soil microbial population. Soil Sci. Plant Nur.. 38: 141~147.
    [162]. Huang C Y, Khan K S, Xie Z M. 1998. Effects of cadmium lead and their interaction on the size of microbial biomass in a red soil. Soil and Environ, 1(3): 227~236.
    [163]. Huang Q. and Shindo H. 2000. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol. Biochem. 32: 1885~1892.
    [164]. Ibekwe A. M. and Kennedy A. C. 1998. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbial. Ecol. 26: 151~163.
    [165]. Insam H, Hutchinson T C. 1996. Effects of heavy metals on the metabolic quotient of the soil microflora. Soil Biol. Biochem., 28: 691~694.
    [166]. Insam H. and Domsch K. H.. 1988. Relationship between Soil organic carbon and microbial biomass on chronsequences of reclamation sites. Microbial Ecol., 15: 177~188.
    [167]. Insam H., Mitchell C. C. and Donnaar J. F. 1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols. Soil Biol Biochem 23: 459~464.
    [168]. Insam, H. and D. Parkinson. 1989. Influence of macroclimates on soil microbial biomass. Soil Biol. Biochem., 21: 211~221.
    [169]. Jacek K, Jan K E. 2000. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biology & Biochemistry, 32: 1405~1417.
    [170]. Jenkinson, D. S. and D. S. Powlson. 1976. Effects of biocidal treatments on metabolism in soil: A method for measuring soil biomass. Soil Biol. Biochem., 8: 209~213.
    [171]. Jenkinson, D. S. and Ladd J. N. 1981. Microbial biomass in soil: Measurement and turnover in: Soil Biochemistry, Paul, E. A. and Ladd, J. N(eds) Marcel Dekker INC. New York, 415~471.
    [172]. Jenkison, D. S. and J. M. Oades. 1979. A method for measuring adenosine triphosphate in soil. Soil Biol. Biochem., 11: 193~199.
    [173]. Joergensen R. G., T. H. Anderson, V. Wolters. 1995. Carbon and nitrogen relationships in the microbial biomass of soils in beech forests. Biol. Fertil. Soils, 19: 141~147.
    [174]. Joergensen, R. G. and Mueller T. 1996. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the KEN Value. Soil Biol. Biochem., 28(1): 33~37.
    [175]. Johansson M. et al..1998. Kinetics of substrate-inducted respiration and denitrification: Application to a soil amended with silver. Ambio. 27: 40~44.
    [176]. John Stenstrom et al.. 1998. Kinetics of substrate-inducted respiration(SIR): Theory. Ambio.27: 35~39.
    [177]. John Stenstrom et al.. 2001. Reversible transition between active and dormant microbial states in soil. FEMS Microbiology Ecology, 36: 93~104.
    [178]. Kandeler E, Luftenegger G, Schwarz S. 1997. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 23: 299~306.
    [179]. Kandeler E. 1992. Soil microbial processes and Testacea as indicators of heavy metal pollution. Zeitshrift fur Pflanzenemahrung und Bodenkunde. 155: 319~322.
    [180]. Keeney D. R. 1982. Nitrogen-availability indices. In Method of soil analysis, Part 2. Eds, A L Page, R H Miller, D. R Keeney. pp711~730, SSSA Publ Inc. Madison, WI.
    
    
    [181]. Kell J J, Tate R L. 1998. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. Journal of Enviromental Quality, 27(3): 609~617.
    [182]. Kell J J, Tate R L. 1998. Use BIOLOG for the analysis of microbial communities from zinc-contaminated soil. Journal of Enviromental Quality, 27(3): 601~608.
    [183]. Khan D. H. and B. Frankland. 1983. Effects of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant. Plant Soil. 70: 335~345.
    [184]. Khan K S, Xie Z M, Huang C Y. 1997. Effect of anions on toxicity of cadmium applied to microbial biomass in red soil. Pedosphere, 7: 231~235.
    [185]. Khan K. S. and C. Y. Huang. 1998a. Effects of heavy metal pollution on soil microbial biomass (a review). J. Environmental Science.
    [186]. Khan KS and Huang C. 1998. Effect of lead-zinc interaction on size of microbial biomass in red soil. Pedosphere, 8: 143~148.
    [187]. Khan, K. S, Z. M. Xie, and C. Y. Huang. 1998a. Effects of cadmium, lead and zinc on size of microbial biomass in red soil. Pedosphere, 8: 27~32.
    [188]. Killham K. 1985. A physiological determination of the impact of environmental stress on the activity of microbial biomass. Environ. Pollut. 38: 283~294.
    [189]. Knight B. 1997. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Applied and Environmental Microbiology, 63: 39~43.
    [190]. Kraffcyzk I, Trolldenier G, Beringer H. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biology & Biochemistry, 16: 315~322.
    [191]. Kuperman R. G. and Carreiro M. M. 1997. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 29: 179~190.
    [192]. Ladd J. N. et al.. 1996. Soil structure and biological activity. In Soil Biochemistry (edited by Stotzky G and Bollag J. M). Marcel Dekker Inc., New York. 9: 23~78.
    [193]. Landi G L, Renella. 2000. Influence of cadmium on the metabolic quotient, L-:D-glutamic acid respiration ratio and enzyme activity: microbial biomass ratio under laboratory conditions. Biol Fertil Soils., 32: 8~16.
    [194]. Landmeyer J. E. and F. H. Chapelle. 1993. Influence of Pb on microbial activity in Pb~contaminated soils. Soil Biol. Biochem. 25: 1465~1466.
    [195]. Lawlor K. et al.. 2000. Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbial. Ecol. 33: 129~137.
    [196]. Lee K. E. 1994. The functional significance of biodiversity in soils. Trans 15th world congr soil sci V4a, 168~181. Acapulco, Mexico.
    [197]. Lee K. E., and C. E. Pankhurst. 1992. Soil organisms and sustainable productivity. Aust. J. Soil Res. 30: 855~892.
    [198]. Leita L. and M. D. Nobili. 1995. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fertil. Soils. 19: 103~108.
    [199]. Lindstrom J. E. et al.. 1997. Microbial community analysis: A kinetic approach to constructing potential C source utilization patterns. Soil Biol. Biochem. 30(2): 231~239.
    [200]. Lovell R. D. and S. C. Jarvis. 1998. Soil microbial biomass and activity in soil from
    
    different grassland management treatments stored under controlled conditions. Soil Bio. Biochem., 30: 2077~2086.
    [201]. Magurran A E. Ecological diversity and its measurement. Princeton: Princeton University Press, 1988. 34~59.
    [202]. Maliszewska W. et al.. 1985. The influence of various heavy metal compounds on the development and activity of soil microorganisms. Environmental Pollution. 37: 195~215.
    [203]. Martens R. 1987. Estimation of microbial biomass in soils by the respiration method: importance of soil pH and flushing methods for the measurement of respired CO_2. Soil Biol. Biochem., 19: 77~81.
    [204]. Marumoto T. 1984. Mineralization of C and N from microbial biomass in paddy soil. Plant and Soil, 76: 165~173.
    [205]. Marzadori C. et al.. 1996. Effects of lead pollution on different soil enzyme activities. Biol. Fertil. Soils. 22: 53~58.
    [206]. McGill, W. B., K. R. Cannon, J. A. Robertsoon and F. D. Cook. 1986. Dynamics of soil-microbial biomass and water-soluble organic in breton L after 50 years of cropping to two rotations. Can. J. Soil Sci., 66: 1~9.
    [207]. Mcgrath. S. P., A. M. Chaudhri, K. E. Giller. 1995. Long-term effects of metals in sewage on soils, microorganisms, and plants. Journal of Industrial Microiology. 14: 94~101.
    [208]. Muyzer G. De Wall EC and Uiterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of PCR amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695~700.
    [209]. Nanipieri P. and S. Grego. 1990. Ecological significance of biological activity in soil. p. 293~355. In J. M. Bollag, G. Stotzky (ed.)Soil biochemistry, Vol. 6. Marcel Dekker, New York.
    [210]. Nannipieri P. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst C E, Double B M, Gupta V V S R, Grace P R. (eds). Soil biota: management in sustainable farming systems. CSIRO. Australia. 1994. 238~244.
    [211]. Nicolai S. P. et al..1996. A kinetic method for estimating the biomass of microbial functional groups in soil. Journal of Microbiological Methods, 24: 219~230.
    [212]. Nordgren A. 1986. Soil microbial activity Mycelial lengtha and physiological groups of bacteria in a heavy metal polluted area. Environ. Pollut Ser A E col. Biol, 41(1): 89~100.
    [213]. Nordgren A. 1983. Microfungi and microbial activity along a heavy metal gradient. Appl. Environ. Microbial. 45: 1829~1837.
    [214]. Obbard J. P. et al. 1994. Dehydrofgenase activity of the microbial biomass in soils from a field experiment amended with heavy metal contaminated sewage sludges. Sci. Total Environ. 142: 157~162.
    [215]. Palmborg G. et al.. 1998. Multivariate analysis of microbial activity and soil organic matter at a forest site subjected to low-level heavy metal contamination. Integrated Soil Analysis. Ambio. 27: 53~67.
    [216]. Pankhurst C. E. and B. G. Hawke. 1995. Evaluation of soil biological properties as potential bioindicators of soil health. Aust. J. Exp. Agri. 35: 1015~1028.
    [217]. Pankhurst C. E. Yu S. et al.. 2001. Capacity of fatty acid profiles and substrate utilization patterns to describle differences in soil microbial communities associated with increased salinity and alkalinity at three locations in south Australia. Biol. Fertil. Soils. 33: 204~217.
    [218]. Patra D. D, K. subrahamanyam, D. V. Sigh. 1992. Microbial biomass and nitrogen
    
    mineralization in heavy metal polluted soil. J. Ind. Soc. Soil Sci. 40: 572~575.
    [219]. Patra D. D, K. Subrahmanyam, D. V. Singh. 1991. Effect of Pb, Cd, and Hg on N-mineralization and microbial biomass in soil. Proc. Bio. Sci. 57: 159~163.
    [220]. Paulson K. Z., Kurtz I. T. 1970. Michaelis constants of urease. Soil Sci. Soc. Am. Proc. 34: 70~72.
    [221]. Pennanen T. et al.. 1998. Prolonged, simulated acid rain and heavy metal deposition: separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology. 27: 291~300.
    [222]. Pennanen T. Frostegard A, Baath E. 1996. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests. Applied and Environmental Bicrobiology. 62: 420~428.
    [223]. Post, R. D. and A. N. Beeby. 1993. Microbial biomass in suburban roadside soils: estimates based on extracted microbial C and ATP. Soil Biol. Biochem. 25: 199~204.
    [224]. R. G. McGregor a,), D. W. Blowes b, J. L. Jambor b, W. D. Robertson b; 1998. The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada; Journal of Contaminant Hydrology ,33: 247-271.
    [225]. Robert, M. and Chenu, C. 1991. Interactions between soil minerals and microorgnisms. In Stotzky, G. and Bollog, J. M.(ed). Soil Biochemistry. Marcel Dekker, New York. pp. 307~379.
    [226]. Rochette, P. And E. G. Gregorich. 1998. Dynamics of soil microbial biomass C, soluble organic C and CO_2 evolution after three years of manure application Canadian J. Soil Sci. 78: 283~290.
    [227]. Romkens P. F. et al..1999. Effect of plant growth on copper solubility and speciation in soil solution samples. Environmental Pollution. 106:315~321.
    [228]. Rother, J. A. 1982. Seasonal fluctuations in nitrogen fixation by free living bacteria in soils contaminated with cadmium, lead and zinc. J. Soil Sci. 33: 101~113.
    [229]. Sampson, R. N. et al. 1993. Terrestrial biospheric carbon fluxesquanti~ fication of sinks and sources of CO_2. Watar, Air, and Soil Pollution 70: 3~15
    [230]. Schnurer, J. and Rosswall T. 1987. Mineralization of nitrogen form ~(15)N labelled fungi, soil microbial biomass and roots and its uptake by barley plants. Plant and soil., 102: 71~78.
    [231]. Schulin R. et al.. 1995. Heavy metal retention by soil organic matter under changing environmental conditions. In Biogeodynamics of pollutions in soil and sediments: Risk assessment of delayed and nonlinear responses (edited by Salomons W and Stigliani WM). Springer, Berlin, 53~85.
    [232]. Schuller E. 1989. Enzyme activities and microbial biomass in old landfill soils with long term metal pollution. Verhandlungen Gesellschaft fur Okologie. 18: 339~348.
    [233]. Serr-Wittling et al.. 1995. Soil enzyme response to addition of municipal solid~waste compost. Biol. Fertil. Soils. 20: 226~236.
    [234]. Smalla K. 1998. Analysis for BIOLOG GN substrate utilization patterns by microbial communities. Appli. Environ. Microbiol. 64: 1220~1225.
    [235]. Smit E. 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology. 23: 249~261.
    [236]. Smith J. L., J. M. Lynch, D. F. Bezdicek and R. I. Papendick. 1992. Soil organic matter dynamics and crop residue management. In B. Metting (eds.) Soil microbial ecology, Marcel
    
    Dekker, New York.
    [237]. Smith J. L. and E. A. Paul. 1991. The Significance of soil microbial biomass estimations. In J. M. Bollag and G. stotzky (eds), Soil Biochemistry. Marcel Dkker, New York USA, pp357~396
    [238]. Smith, J. L. et al. 1988. Role of soil type and vegetation on microbial biomass and activity. Perpective in Microbial Ecology., 460~466.
    [239]. Sorensen L. H., 1987. Organic matter and microbial biomass in a soil incubated in the field for 20 years with ~(14)C-labelled barley straw. Soil Biol. Biochem., 19: 39~42.
    [240]. Sparling G. et al. 1998. Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C.
    [241]. Sparling G. P., 1997, Soil microbial biomass, activity and nutrient cycling as indicator of soil helth. In Biological Indicators of soil health(C. E. Pankhurst, B. M. Doube & V. V. S. R. Gupta, Eds.), PP. 97~119, CAB International.
    [242]. Speir T. W, D. J. Ross. 1992. Assessment of the feasibility of using CCA treated and boric acid treated sawdust as soil amendment. Soil biochemical and biological properties. Plant Soil. 142: 249~258.
    [243]. Speir T. W, H. A. Kettles. 1995. A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr toxicity to soil biological properties. Soil Biol. Biochem. 27: 801~810.
    [244]. Stevenson F. J., 1986: Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients. John Willey & Sons, New York.
    [245]. Stevenson F. J. 1994. Humus Chemistry. (2nd Edition) Wiley, New York.
    [246]. Tabatabai M. A. 1982. Soil enzymes.in "Method of Soil Analysis". Am. Soc. of Agro., pp 903~947, Madisosn, USA.
    [247]. Tabatabai, M. A., and M. H. Fu. 1992. Extraction of enzymes from soils. p. 1970227. In G. Stotzky and J~M. Bollag (ed.) Soil Biochemistry. Vol. 7. Marcel Dekker, New York.
    [248]. Tate, K. R., D. J. Ross and C. W. Feltham, 1988. A direct extraction method to estimate soil microbial C: Effects of experimental variables and some different calibration procedures. Soil Biol. Biochem., 20: 329~335.
    [249]. Tessier, L., Gregorich, E. G. and Topp E. 1998. Spatial variability of soil microbial biomass measured by the fumigation extraction method, and K_(EC)as affected by depth and manure application. Soil Biol. Biochem, 30: 1369~1377.
    [250]. Theng BKG. 1974. The chemistry of clay-organic reactions. Adam Hilger Ltd, London.
    [251]. Tiller K. G. 1989. Heavy metals in soils and their environmental significance. p.113~142. In B. A. Stewart(ed.) Advances in soil science. Vol. 9. Spring-Verlag, New York.
    [252]. Tsai C. S. et al..1997. Dynamic response of microbial biomass, respiration rate and ATP to glucose additions. Soil Biol. Biochem. 29: 1249~1256.
    [253]. Tuyer G. 1974. Heavy metal pollution and soil enzymatic activity. Plant and Soil, 41, 303~311.
    [254]. Tyler G. Heavy metals in soil biology and biochemistry. In: Soil Biochemistry. Paul, E. A and Ladd, T. W (eds), Marcel Dekker, New York. 1998. 371~414.
    [255]. Tyler G. 1981. Heavy metals in soil biology and biochemistry. In Soil biochemistry. Marcel Dekker, New York.
    [256]. Ueda K. et al.. 1988. Effect of anionic heavy metals on ammonification and nitrification in soil. Soil Science and Plant Nutrition. 34: 139~146.
    
    
    [257]. Valsecchi G. C. 1995. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biol. Fertil. Soils. 4: 253~259.
    [258]. Vance E D, Brookes P C, Jenkinson D C. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19: 703~707.
    [259]. Vestal J. R., White D. C., 1989, Lipid analysis in microbial ecology: Quantitative approaches to the study of Microbial communities. Bio. Science, 39: 535~541.
    [260]. Wallace A. et al.. 1989. Dose-response curve for zinc, cadmium, and nickel in combinations of one, two, or three. Soil Sci. 147: 401~410.
    [261]. Wang Y. P. et al.. 1986. Effect of copper, zinc, cadmium and chromium on soil microorganisms and plant growth. Journal of Agriculture and Forestry. 35: 97~109.
    [262]. Wardle D. A. 1998. Controls of temproal variability of the soil microbial biomass: a global~scale synthesis. Soil Bio. Biochem., 30: 1627~1638.
    [263]. Weast R. C. 1988. CRC handbook of chemistry and physics. CRC Press, Boca Raton, FL.
    [264]. West, A. W. and Sparling, G. P. 1986. Modification to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. J. Microbial Methods, 5: 177~189.
    [265]. Wilke B. M. 1987. Long term effects of copper and zinc o microbial activity in a humic, loamy sand. Landwirtschaftliche Forschung. 40: 336~343.
    [266]. Wilke B. M.1988. Long term effects of inorganic pollutions on the microbial activity of a sandy Cambisol. Zeitschrift fur Pflanzenrnahrung und Bodenkunde. 154: 417~424.
    [267]. Wilke. B. M. 1989. Long-term effects off different inorganic pollutants on nitrogen transformations in a sandy cambisol. Biol. Fertil. Soils. 7: 254~258.
    [268]. Witter E. et al.. 1993. Size of the soil microbial biomass in a long term field experiment as affected by different N-fertilizers and organic manures. Soil Biol. Biochem. 25: 659~669.
    [269]. Wu J., R. G. Joergensen, Pommerening B., Chaussod R., Brookes P. C. 1990. Measurement of soil microbial biomass C an automatic procedure. Soil Biol. Biochem., 22:1167~1169.
    [270]. Wunsche L. et al..1995. Determination of substrate utilization patterns of soil microbial communities: An approach to assess population changes after hydrogcarbon pollution. FEMS Microbial. Ecol. 17:295~306.
    [271]. Yeats G.W., T.W. Speir. 1994.Impact of pasture contamination by copper, chromium,arsenic timber preservative on soil biological activity. Biol.Fertil. Soil. 18:200~208.
    [272]. Yin, S.X., Fing K.and Cheng C.M. 1994. Effect of ammonium fixation on estimation of soil microbial biomass nitrogen. Pedosphere, 4:321~329.
    [273]. Zak J C, Willing M R, Moorhead D L, Wildman H G. 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry, 26:1101~1108.
    [274]. Zelles L, Bai QY, Rackwitz R,Chadwick D and Beese F.1995. Determination of phospholipid and lipopolysaccharids-derived fatty acids as an estimate of microbial biomass and community structures in soils. Biol Fertil Soils 19,115~123.
    [275]. Zolotareva B.N. et al.. 1993. Emission of CO_2 by gray forest soil depending on the amount of applied heavy metal compounds. Eurasion Soil Science. 25:101~107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700