絮凝剂对减缓膜—生物反应器膜污染速率的效果和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜-生物反应器技术(MBR)是一种卓越的水处理与回用技术,与传统活性污泥技术相比,膜-生物反应器具有很多优势。然而,由膜污染导致的高昂维护费用和操作不便是制约MBR广泛应用的主要瓶颈,研究膜污染过程和机理对于控制膜污染、降低MBR运行成本具有重要意义。近年来,通过向膜-生物反应器中投加过滤助剂/抗污染剂,人为的改善反应器中活性污泥混合液的性质,从而减缓膜污染进程成为一种新兴的膜污染控制技术。本研究选取了六种最常使用的絮凝剂:水和硫酸铝(Al_2(SO_4)_3.xH_2O)、聚合氯化铝(PAC)、三氯化铁(FeCl_3)、聚合硫酸铁(PFS)、壳聚糖(Chitosan)和聚丙烯酰胺(PAM),对其作为膜污染控制剂的作用和机理分别做了深入的探讨。根据其化学性质,六种絮凝剂分别属于单体金属盐,聚合金属盐和有机高分子絮凝剂三类。实验结果表明,所有絮凝剂都对改善膜-生物反应器活性污泥混合液的可过滤性起到了显著的作用。在操作通量为20L/m2.h时,各MBR中的膜污染速率排序为PFS反应器<壳聚糖反应器<聚丙烯酰胺反应器<三氯化铁反应器<聚合氯化铝反应器<水合硫酸铁反应器。其中,添加壳聚糖和PFS可以使MBR可持续操作时间延长至对照反应器的约7倍。
     在膜污染进程中透膜压力(TMP)的上升分三个阶段:第一阶段发生在初始的几小时内,由于膜孔的缩窄或堵塞造成的膜表面特性的改变,导致透膜压力突然的上升。第二阶段表现为透膜压力的长时间慢速上升过程,主要原因是膜表面的凝胶层累积。凝胶层的主要来源是膜对混合液中大分子物质的截留。第三阶段是TMP的突然跃升并导致膜过滤无法继续操作,主要特点是泥饼层的堆积和TMP增长的“自我加速”。在这三个阶段中,对膜污染速率起到关键性作用的污染物是不同的,而各种絮凝剂作用于每个阶段的效果和机理也各有区别。本研究将污染物分为溶液相和固体相两个部分,就各种絮凝剂对污染三阶段的作用分别作了细化和深入的探讨。
     对于溶液相污染物而言,为了进一步细化不同性质以及不同颗粒大小的污染物的污染趋势以及絮凝剂对每一种污染物组分和性质的调节作用,本研究利用凝胶渗透色谱(GPC)对污染物的颗粒大小以膜孔径为标准进行了细分,明确了目标污染物的分子量范围。在此基础上进一步利用傅立叶红外转换光谱(FTIR)对污染物的物质属性进行了辨别,找出了易造成膜内部污染的物质的化学成分。结果表明,分子量大于100KDa的可溶性物质才是需重点控制的污染物,而蛋白质和多糖类物质是膜内污染的主要贡献者。多种絮凝剂均能有效地降低膜孔中蛋白和多糖含量,减轻膜的不可逆污染;降低液体相大分子浓度,减缓凝胶层的形成速率和膜总孔隙率的衰减速率。
     对于固体污染物,即活性污泥颗粒而言,本研究分别探讨了活性污泥絮体的(1)形态学指标:絮体平均粒径(dp)和絮体分型维数(df);(2)理化指标:污泥絮体表面电荷(本研究中以污泥表面Zeta电位表征),絮体表面相对疏水性(RH),活性污泥混合液动力学粘度(η)(3)污泥絮体的生化成分:EPS的浓度。考察了各种絮凝剂在不同剂量下对各个指标的改变作用以及对膜污染带来的影响。
     在絮凝剂-MBR这个二级多因素系统中。膜污染的影响因子众多,机理复杂。为了将量纲不同的各影响因子进行统计分析,本研究采用了归一化,标准化的方法对数据进行了处理,并进一步采用线性回归和多元直线回归等统计方法对添加絮凝剂的MBR中,在5个剂量梯度下的所有指标的数据进行了分析整合,得到了各絮凝剂的膜污染控制关键因素以及各因素的膜污染贡献率。结果表明,絮凝剂按其对不同指标的作用因子可以分为有机和无机两大类。有机絮凝剂对于改变污泥形态学性质的作用较大,壳聚糖和聚丙烯酰胺的膜污染控制效果是通过降低和转化溶液相中的大分子物质,增大污泥的平均粒径和增加污泥絮体的疏松度而实现的。无机絮凝剂对絮体的理化性质作用显著但对于污泥的形态结构以及混合液的粘度的作用可忽略。无机絮凝剂膜污染控制效果是通过降低SMP浓度,中和污泥絮体表面电荷,即增加絮体Zeta电位和增加污泥絮体表面疏水性实现的。用选定的关键因子对每一絮凝剂进行了膜污染速率与关键因子的经验公式拟和,结果是所有公式与实验实测数据的拟和效果非常好。
Membrane bioreactor has been regarded as one of the most promisingtechnologies for wastewater treatment and reclamation due to manyoutstanding advantages over conventional activated sludge processes.However, membrane fouling has still been a major barrier limiting its wideapplication because fouling could cause high operating costs andinconvenience in application .Recently, application of filter aids or antifoulingagents in MBR to modify biomass characteristics artificially for alleviation ofmembrane fouling has been considered as a new technology of fouling control.this study, the effects of addition of six types of flocculants (aluminiumsulphate, ferric chloride, polyaluminium chloride, polymeric ferric sulfate,Chitosan, polyacrylamide) on mitigation of membrane fouling in membranebioreactors (MBR) were investigated respectively. According to actionmechanism, the flocculants adopted could be classified as monomer, inorganicpolymer and high molecular weight organic flocculants respectively.
     In membrane fouling process,the rise in TMP is described as a 3-stageprocess. The first stage occurs in a period of afew hours and involves abruptTMP rise due to“conditioning”presumably by pore blockage and closure.Stage 2 is a prolonged period of slow TMP rise,which is ascribed to formationof gel layer. Stage 3 is a sudden rise in TMP due to accumulation of cake layer.The effect of flocculants on membrane pore blocking, gel layer and cake layerresistance were analyzed respectively.
     Significant improvement of the sustainable filtration was demonstrated in allflocculants added MBRs. The membrane fouling rate of the MBRs operatedunder 20L/m2.h flux was in the order of Control MBR (no filter aid added)     The biomasses in various MBRs were characterized by morphologicalproperties (mean floc size (dp), fractal dimension (df)), physical parameters(surface charge, relative hydrophobicity (RH), dynamic viscosity) and thebiochemical components of the mixed liquor (concentration of extracellularpolymeric substances (EPS)). Statistical methods such as normalization,nondimensionalization and multiple linear regressions were used to identifythe dominant membrane fouling contributors and to simulate membranefouling rates. The results demonstrated that the key factors affectingmembrane fouling varied in different flocculants added MBRs. Organicpolymeric flocculants have significant effects on biomass morphologicalproperties. Membrane-fouling alleviation was mainly due to the decrease inSMP and df as well as the increase in dp. Inorganic flocculants have strongeffects on SMP, EPS, Zeta potential and RH but weak effects on d p, df andviscosity. For the inorganic flocculants added MBRs, the lower fouling ratecould be mainly attributed to the decrease in SMP and surface charge as wellas the increase in RH. For each type of flocculants, the empirical equations ofsustainable filtration time (Γ45) were simulated to predict membrane foulingrates in different MBRs.
引文
[1] S. Judd, TheMBRBook: Principles and Applications of Membrane Bioreactors inWater and Wastewater Treatment, Elsevier, Oxford, 2006.
    [2] C.V. Smith, D. DiGregorio, R.M. Talcott, The use of ultrafiltration membranes foractivated sludge separation, in: Proceedings of the 24th Annual Purdue IndustrialWaste Conference, 1969.
    [3] K. Yamamoto, M. Hiasa, T. Mahmood, T. Matsuo, Direct solid–liquid separationusing hollow fiber membrane in an activated-sludge aeration tank, Water Sci. Technol.21 (1989) 43–54.
    [4]郑详,朱小龙,张绍园。膜生物反应器在水处理中的研究及应用,环境污染治理技术与设备,2000,1(5):12-19。
    [5] Stephenson,T.著,张树国,李咏梅译。膜生物反应器污水处理技术。第一版,北京:化学工业出版社,2003。
    [6] P. Le-Clech, V. Chen,T.A.G. Fane. Fouling in membrane bioreactors used inwastewater treatment.Journal of Membrane Science.2006,284(1-2): 17-53.
    [7]张劲松,MBR的膜污染机制与可持续操作原理。大连:大连理工大学,2006。
    [8] G. Belfort, R.H. Davis, A.L. Zydney, The behavior of suspensions andmacromolecular solutions in crossflow microfiltration, J. Membr. Sci. 96 (1994)1–58.
    [9] R. Chan, V. Chen, Characterization of protein fouling on membranes: opportunitiesand challenges, J. Membr. Sci. 242 (2004) 169–188.
    [10] A.D. Marshall, P.A. Munro, G. Tragardh, The effect of protein fouling inmicrofiltration and ultrafiltration on permeate flux, protein retention and selectivity: aliterature review, Desalination 91 (1993) 65–108.
    [11] A.G. Fane, C.J.D. Fell, A review of fouling and fouling control in ultrafiltration,Desalination 62 (1987) 117–136.
    [12] J. Hermia, Constant Pressure Blocking Filtration Laws: APPlication to Power LawNon-Newtonian Fluids. Trans. I. Chem.E, 60(1982):P.183一187.
    [13] R.W.Field, Mass Transport and the Design of Membrane Systems. In: IndustrialMembrane SeParation Technology. eds. K. Scottand R. Hughes. London 1996.Blackie: P.67-113
    [14] B. Jefferson, A. Brookes, P. Le-Clech, S.J. Judd, Methods for understanding organicfouling in MBRs, Water Sci. Technol. 49 (2004) 237–244.
    [15] P. Le-Clech, B. Jefferson, I.S. Chang, S.J. Judd, Critical flux determination by theflux-step method in a submerged membrane bioreactor, J. Membr. Sci. 227 (2003)81–93.
    [16] B. Espinasse, P. Bacchin, P. Aimar,On an experimental method to measure criticalflux in ultrafiltration, Desalination 146 (2002) 91–96.
    [17] B.D. Cho, A.G. Fane, Fouling transients in nominally sub-critical flux operation of amembrane bioreactor, J.Membr. Sci. 209 (2002) 391–403.
    [18] L. Defrance, M.Y. Jaffrin, Reversibility of fouling formed in activated sludgefiltration, J. Membr. Sci. 157 (1999) 73–84.
    [19] L. Defrance, M.Y. Jaffrin, Comparison between filtrations at fixed transmembranepressure and fixed permeate flux: application to a membrane bioreactor used forwastewater treatment, J. Membr. Sci. 152 (1999) 203–210.
    [20] S. Ognier, C.Wisnieswski, A. Grasmick, Biofouling in membrane bioreactors:phenomenon analysis and modelling, in: Proceedings of the MBR 3, CranfieldUniversity, UK, 2001.
    [21] V. Chen, A.G. Fane, S. Madaeni, I.G.Wenten, Particle deposition during membranefiltration of colloids: transition between concentration polarization and cake formation,J. Membr. Sci. 125 (1997) 109–122.
    [22] H.P. Grace, Structure and performance of filter media, AIChE J. (1956) 307–315.
    [23] S. Chellam, J.G. Jacangelo, Existence of critical recovery and impacts of operationalmode on potable water microfiltration, J. Environ. Eng. ASCE 124 (1998)1211–1219.
    [24] H. Carrere, F. Blaszkowa, H. Roux de Balmann, Modelling the microfiltration oflactic acid fermentation broths and comparison of operating modes, Desalination 145(2002) 201–206.
    [25] H.K. Vyas, R.J. Bennett, A.D. Marshall, Performance of cross flow microfiltrationduring constant transmembrane pressure and constant flux operations, Intern. Dairy J.12 (2002) 473–479.
    [26] D.N. Petsev, V.M. Starov, I.B. Ivanov, Concentrated dispersions of charged colloidalparticles: sedimentation, ultrafiltration and diffusion, Colloid Surf. A: Physiochem.Eng. Asp. 81 (1993) 65–81.
    [27] M. Hamachi, M. Mietton-Peuchot, Experimental investigations of cakecharacteristics in crossflow microfiltration, Chem. Eng. Sci. 54 (1999) 4023–4030.
    [28] Y. Lee, M.M. Clark, Modeling of flux decline during crossflow ultrafiltration ofcolloidal suspensions, J. Membr. Sci. 149 (1998) 181–202.
    [29] B.Keskinler,E.Yildiz, E. Erhan, M. Dogru,Y.K. Bayhan, G. Akay, Crossflowmicrofiltration of low concentration-nonliving yeast suspensions, J. Membr. Sci. 233(2004) 59–69.
    [30] T. Tanaka, K.-I. Abe, H. Asakawa, H. Yoshida, K. Nakanishi, Filtrationcharacteristics and structure of cake in crossflow filtration of bacterial suspension, J.Ferment. Bioeng. 78 (1994) 455–461.
    [31] T. Tanaka, R. Kamimura, R. Fujiwara, K. Nakanishi, Cross-flow filtration of yeastbroth cultivated in molasses, Biotechnol. Bioeng. 43 (1994) 1094–1101.
    [32] T. Tanaka, K. Usui, K. Nakanishi, Formation of the gel layer of polymers and itseffect on the permeation flux in crossflow filtration of Corynebacterium glutamicumbroth, Sep. Sci. Technol. 33 (1998) 707–722.
    [33] A.A. McCarthy, P.K. Walsh, G. Foley, Characterising the packing and dead-endfilter cake compressibility of the polymorphic yeast Kluyveromyces marxianus var.marxianus NRRLy2415, J. Membr. Sci.198 (2002) 87–94.
    [34] Y.Z. Xujiang, J. Dodds, D. Leclerc, Cake characteristics in cross-flow and dead-endmicrofiltration, Filt. Sep. 32 (1995) 795–798.
    [35] M. Mota, J.A. Teixeira, A. Yelshin, Influence of cell-shape on the cake resistance indead-end and cross-flow filtrations, Sep. Purif. Technol. 27 (2002) 137–144.
    [36] T. Tanaka, K.-I. Abe, H. Asakawa, H. Yoshida, K. Nakanishi, Filtrationcharacteristics and structure of cake in crossflow filtration of bacterial suspension, J.Ferment. Bioeng. 78 (1994) 455–461.
    [37] N. Arora, R.H. Davis,Yeast cake layers as secondary membranes in deadendmicrofiltration of bovine serum albumin, J. Membr. Sci. 92 (1994) 247–256.
    [38] C. Guell, P. Czekaj, R.H. Davis, Microfiltration of protein mixtures and the effectsof yeast on membrane fouling, J. Membr. Sci. 155 (1999) 113–122.
    [39] V.T. Kuberkar, R.H. Davis, Effects of added yeast on protein transmission and fluxin cross-flow membrane microfiltration, Biotechnol. Prog. 15 (1999) 472–479.
    [40] S. Panpanit, C. Visvanathan, The role of bentonite addition in UF flux enhancementmechanisms for oil/water emulsion, J. Membr. Sci. 184 (2001) 59–68.
    [41] G. Foley, A.A. McCarthy, P.K. Walsh, Evidence for shape-dependent deposition incrossflow microfiltration of microbial cells, J. Membr. Sci. 250 (2005) 311–313.
    [42] A.A. McCarthy, D.G. O’Shea, N.T. Murray, P.K. Walsh, G. Foley, Effect of cellmorphology on dead-end filtration of the dimorphic yeast Kluyveromyces marxianusvar. marxianus NRRLy2415, Biotechnol. Prog. 14 (1998) 279–285.
    [43] A.A. McCarthy, P. Gilboy, P.K. Walsh, G. Foley, Characterisation of cakecompressibility in dead-end microfiltration of microbial suspensions, Chem. Eng.Commun. 173 (1999) 79–90.
    [44] A.A. McCarthy, P.K.Walsh, G. Foley, Experimental techniques for quantifying thecake mass, the cake and membrane resistances and the specific cake resistance duringcrossflow filtration of microbial suspensions, J.]Membr. Sci. 201 (2002) 31–45.
    [45] P.H. Hodgson, G.L. Leslie, A.G. Fane, R.P. Schneider, C.J.D. Fell, K.C. Marshall,Cake resistance and solute rejection in bacterial microfiltration: the role of theextracellular matrix, J. Membr. Sci. 79 (1993) 35–53.
    [46] K. Ohmori, C.E. Glatz, Effect of carbon source on microfiltration of Corynebacteriumglutamicum, J. Membr. Sci. 171 (2000) 263–271.
    [47] Simon Judd, The development in MBR technology, H2O MBR Special, 2001:56
    [48] M. Meireles, P. Aimar,V. Sanchez. Effects of protein fouling on the apparent pore sizedistribution of sieving membranes. Journal of Membrane Science.1991, 56(1):13-28.
    [49] Y. Shimizu, Y.-I. Okuno, K. Uryu, S. Ohtsubo, A. Watanabe, Filtration characteristicsof hollow fiber microfiltration membranes used in membrane bioreactor fordomesticwastewater treatment,Water Res. 30 (1996) 2385–2392.
    [50] H.H.P. Fang, X. Shi, Pore fouling of microfiltration membranes by activated sludge, J.Membr. Sci. 264 (2005) 161–166.
    [51] J. Kim, M. Jang, H. Chio,,S. Kim. in Proceedings of the WaterEnvironment-Membrane Technology Conference Seoul, Seoul, Korea 2004.
    [52] S. Kang, E.M.V. Hoek, H. Choi,H. Shin. Effect of membrane surface properties duringthe fast evaluation of cell attachment. Separation Science and Technology.2006,41(7):1475-1487.
    [53] K.H. Choo,C.H. Lee. Effect of anaerobic digestion broth composition on membranepermeability. Water Science and Technology.1996,34(9): 173-179.
    [54]张颖,任南琪,田文君,王爱杰,刘敏,林明,膜生物反应器(MBR)中膜组件结构形式的优化设计初探,哈尔滨建筑大学学报,2001,34(5):72-75
    [55] R. Dufresne, R.E. Lebrun, H.C. Lavallee, Comparative study on fluxes andperformances during papermill wastewater treatment with membrane bioreactor, Can.J. Chem. Eng. 75 (1997) 95–103.
    [56] E.H. Bouhabila, R. Ben Aim, H. Buisson, Microfiltration of activated sludge usingsubmerged membrane with air bubbling (application to wastewater treatment),Desalination 118 (1998) 315–322.
    [57] T. Ueda, K. Hata, Y. Kikuoka,O. Seino. Effects of aeration on suction pressure in asubmerged membrane bioreactor. Water Research.1997,31(3): 489-494.
    [58] K.-H. Choo, C.-H. Lee, Hydrodynamic behavior of anaerobic biosolids duringcrossflow filtration in the membrane anaerobic bioreactor, Water Res. 32 (1998)3387–3397.
    [59] P. Le-Clech, B. Jefferson, S.J. Judd, Impact of aeration, solids concentration andmembrane characteristics on the hydraulic performance of a membrane bioreactor, J.Membr. Sci. 218 (2003) 117–129.
    [60] R. Liu, X. Huang,Y.F. Sun,Y. Qian, Hydrodynamic effect on sludge accumulationover membrane surfaces in a submerged membrane bioreactor, Process Biochem. 39(2003) 157–163.
    [61] C. Psoch, S. Schiewer, Long-term study of an intermittent air sparged MBR forsynthetic wastewater treatment, J. Membr. Sci. 260 (2005) 56–65.
    [62] X.Huang, P.Gui and Y.Qian, Effect of Sludge Retention Time on Microbial Beheviorin a Submerged Membrane Bioreactor. Process Biochemistry, 2001.36:1001-1006
    [63] A. Brookes, S.Judd. E.Reld, et al., Biomass Characterisation in Membrane Bioreactors.IMSTEC’03 5th International Membrane Science and Technology ConferenceSydeney Australia, November 10-14,2003.
    [64] Y.Lee, J.Cho, Y.Seo, et al., Modeling of Submerged Membrane Bioreactor Processfor Wastewater Treatment. Desalination, 2002. 146: 451-457.
    [65] D.J.Barker and D.C. Stuckey, A Review of Soluble Microbial Products (SMP) inWastewater Treatment Systems. Water Research, 1999.33: 3063-3082.
    [66] B.E.Rittmann, W.Bae, E. Namkung, et.al, A Critical Evaluation of Microbial ProductFprmation in Biological Processes. Water Science and Technology, 1987,19:517-528.
    [67] K.Yamamoto, M.H., T.Mahmood, and T.Matsuo, Direct Solid-Liquid SeparationUsing hollow Fiber Membrane in an Activated Sludge Aeration Tank.Water Scienceand Techology 1989.21.43-54.
    [68] T.Murakami, J.Usui, K.Takamura,et.al, Application of Immersed-Type MembraneSeparation Activated Sludge Process to Municipal Wastewater Treatment. WaterScience and Technology, 2000.41:295-301
    [69] H.M. Zhang, J.N. Xiao, Y.J. Cheng, L.F. Liu, X.W. Zhang,F.L. Yang. Comparisonbetween a sequencing batch membrane bioreactor and a conventional membranebioreactor. Process Biochemistry.2006,41(1): 87-95.
    [70] Visvanathan C,Yang B S,Muttamara S,et.Application of air back flushingtechnique in membrane bioreactor[J].Water Science and Technology, 1997.36(12):259-266.
    [71]张绍园。王菊思.膜生物反应器水力停留时间的确定及其影响因素分析.环境科学,1997,18(6):35—38.
    [72] I.S. Chang, S.N. Kim, Wastewater treatment using membrane filtration—effect ofbiosolids concentration on cake resistance, Process Biochem. 40 (2005) 1307–1314.
    [73] N. Cicek, J.P. Franco, M.T. Suidan,V. Urbain, J. Manem, Characterization andcomparison of a membrane bioreactor and a conventional activatedsludge system inthe treatment of wastewater containing high-molecularweight compounds, WaterEnviron. Res. 71 (1999) 64–70.
    [74] A. Brookes, B. Jefferson, G. Guglielmi, S.J. Judd, Sustainable flux fouling in amembrane bioreactor: impact of flux and MLSS, Sep. Sci. Technol. 41 (2006)1279–1291.
    [75] S.P. Hong, T.H. Bae, T.M. Tak, S. Hong, A. Randall, Fouling control in activatedsludge submerged hollow fiber membrane bioreactors, Desalination 143 (2002)219–228.
    [76] B. Lesjean, S. Rosenberger, C. Laabs, M. Jekel, R. Gnirss, G. Amy, Correlationbetween membrane fouling and soluble/colloidal organic substances in membranebioreactors for municipal wastewater treatment, Water Sci. Technol. 51 (2005) 1–8.
    [77] S. Lubbecke, A. Vogelpohl,W. Dewjanin,Wastewater treatment in a biologicalhigh-performance system with high biomass concentration,Water Res. 29 (1995)793–802.
    [78] S. Rosenberger, H. Evenblij, S. te Poele, T. Wintgens, C. Laabs, The importance ofliquid phase analyses to understand fouling in membrane assisted activated sludgeprocesses-six case studies of different European research groups, J. Membr. Sci. 263(2005) 113–126.
    [79] T. Itonaga, K. Kimura, Y. Watanabe, Influence of suspension viscosity and colloidalparticles on permeability of membrane used in membrane bioreactor (MBR), WaterSci. Technol. 50 (2004) 301–309
    [80] E. Germain, T. Stephenson, Biomass characteristics, aeration and oxygen transfer inmembrane bioreactors: their interrelations explained by a review of aerobic biologicalprocesses, Rev. Environ. Sci. Bio/Technol.4 (2005) 223–233.
    [81] C. Cabassud, A. Mass′e, M. Espinosa-Bouchot, M. Sp′erandio, Submerged membranebioreactors: interactions between membrane filtration and biological activity, in:Proceedings of the Water Environment-Membrane Technology Conference, Seoul,Korea, 2004.
    [82] M.Rosenberg, D. Gutnick, E.Rosenberg, 1980. Adherence of bacteria to hydrocarbons:a simple method for measuring cellsurface hydrophobicity. FEMS MicrobiologyLetters 9 (1), 29–33.
    [83] H.Y. Yu, M.X. Hu, Z.K. Xu, J.L.Wang, S.Y.Wang, Surface modification ofpolypropylene microporous membranes to improve their antifouling property in MBR:NH3 plasma treatment, Sep. Purif. Technol. 45 (2005) 8–15.
    [84] N. Jang, X. Ren, K. Choi, I.S. Kim, Comparison of membrane biofouling innitrification and denitrification for the membrane bio-reactor (MBR), in: Proceedingsof the IWA on Aspire, Singapore, 2005.
    [85] N.J. Jang, R.S. Trussell, R.P. Merlo, D. Jenkins, S.W. Hermanowicz, I.S. Kim,Exocellular polymeric substances molecular weight distribution and filtrationresistance as a function of food to microorganism ratio in the submerged membranebioreactor, in: Proceedings of the International Congress on Membranes andMembrane Processes (ICOM), Seoul, Korea, 2005.
    [86] Y. Liu, H.H.P. Fang, Influences of extracellular polymeric substances (EPS) onflocculation, settling, and dewatering of activated sludge, Crit. Rev. Environ. Sci.Technol. 33 (2003) 237–273.
    [87] W. Lee, S. Kang, H. Shin, Sludge characteristics and their contribution tomicrofiltration in submerged membrane bioreactors, J. Membr. Sci. 216 (2003)217–227.
    [88] H.C. Flemming, J.Wingender, Relevance of microbial extracellular polymericsubstances (EPSs). Part I. Structural and ecological aspects,Water Sci. Technol. 43(2001) 1–8
    [89] C.S. Laspidou, B.E. Rittmann, A unified theory for extracellular polymeric substances,soluble microbial products, and active and inert biomass, Water Res. 36 (2002)2711–2720.
    [90] I.S. Chang, C.H. Lee. Membrane filtration characteristics in membrane-coupledactivated sludge system -- the effect of physiological states of activated sludge onmembrane fouling. Desalination.1998,120(3): 221-233.
    [91] C.A. Ng, D. Sun, J. Zhang, H.C. Chua, W. Bing, S. Tay, A. Fane, Strategies toimprove the sustainable operation of membrane bioreactors, in: Proceedings of theInternational Desalination Association Conference, Singapore, 2005.
    [92] S. Rosenberger and M. Kraume, Filterability of Activated Sludge in MembraneBioreactors. Desalination, 2002: 195-200
    [93] E. Tardieu, A.Grasmick, V. Geaugey, et al., Hydrodynamic Control of BioparticleDeposition in a MBR Applied to Wastewater Treatment. Journal of MembraneScience, 1998.147: 1-12
    [94] Y. X.Jiang, J. Dodds, D. Leclerc,M. Lenoel. A technique for the study of the fouling ofmicrofiltration membranes using two membranes in series. Journal of MembraneScience.1995,105(1-2): 23-30.
    [95] Y. He, P. Xu, C. Li,B. Zhang. High-concentration food wastewater treatment by ananaerobic membrane bioreactor. Water Research.2005,39(17): 4110-4118.
    [96] H. Peng, A.Y. Tremblay,D.E. Veinot. The use of back flushed coalescingmicrofiltration as a pretreatment for the ultrafiltration of bilge water.Desalination.2005,181(1-3): 109-120.
    [97] G. Zhang,Z. Liu. Membrane fouling and cleaning in ultrafiltration of wastewater frombanknote printing works. Journal of Membrane Science.2003,211(2): 235-249.
    [98]耿文燕,投加混凝剂对膜-生物反应器膜污染控制机理研究,2006,北京,中国地质大学。
    [99]曹效鑫,魏春海,黄霞.投加粉末活性炭对一体式膜生物反应器污染的影响研究[J].环境科学学报,2005(11);1443-1447
    [100]张凤君,等.投加粉末活性炭对MBR运行性能的影响。吉林大学学报(地球科学版),2007,37(2):350~354
    [101]罗虹,顾平,杨造燕等。应用投加粉末活性炭的膜生物反应器处理生活污水的研究。重庆环境科学,2002(3):28~31
    [102] J.L.Wu , F.Chen , X.Huang , W.Geng , X.When , Using inorganic coagulants tocontrol membrane fouling in a submerged membrane bioreactor. Desalination2006.197 (1–3):124–136.
    [103]董秉直,夏丽华,范瑾初等.混凝处理防止膜污染的作用与机理。环境科学学报,2005,25(4):530~534
    [104]董秉直,曹达文,管晓涛等,混凝对膜过滤的影响,中国给水排水。2002,18::4~36
    [105] I.Roux , H.M. Krieg, C.A.Yeates , J.C.Breytenbach , Use of chitosan as anantifouling agent in a membrane bioreactor. Journal of Membrane Science 2005,248(1–2), 127–136.
    [106]J.H.Collins, S.H.Yoon,D.Musale, et al., Membrane performance enhancer evaluationson polot-and full-scale membrane bioreactors. Water and Enviroment Journal,2006.20:43-47
    [107]S.H.Yoon, J.H.Collins, D.Musale et al, Effects of flux enhancing polymer on thecharacteristics of sludge in membrane bioreactor process. Water Science andTechnology, 2005.51(6-7): 151-157.
    [108]H.Y.Seong, J.Collins, D.musale et al., Improving Throughput of MBR UsingPplyelectrolytes. International Desalination Association World Congress OnDesalination and Water Reuse, Singapore September 11-16,2005.
    [109] B.Bolto, J.Gregory, Organic polyelectrolytes in water treatment. Water Research2007.41 (11), 2301–2324.
    [110] L. Spinosa and A. Veselind,2001 Sludge into Biosolids.
    [111] Meng, F.G., Zhang, H.M., Yang, F.L., Zhang, S.T., Li, Y.S., Zhang, X.W., 2006.Identification of activated sludge properties affecting membrane fouling in submergedmembrane bioreactors.Separation and Purification Technology 51 (1), 95–103.
    [112] J.Guan,T.D.Waite,R.Amal.Rapid structure charaeterization of baeterialaggregates.Environmental Science & Technology.1998,32(23):3735一3742.
    [113] P.T. Spicer, S.E. Pratsinis, J. Raper, R. Amal, G. Bushell,G. Meesters. Effect of shearschedule on particle size, density, and structure during flocculation in stirred tanks.Powder Technology.1998,97(1): 26-34.
    [114] G.R.Chang, J.C.Liu, and D.J. Lee, Co-conditionning and dewatering of chemicalsludge and waste activated sludge. Water Research 2001,35(3):786-794
    [116] Zhou Jian,Luo Yong,Long Tengrui, Miao Lili.Effects of extracelluar polymericsubstances,Ca2+ and pH on bioflocculation.China Environmental Science, 2004,24(4): 437—441
    [117] Bo Frolund,Rikke Palmgren,Kristian Keiding,Per Halkjaer Nielsen.Extraction ofextracellular polymers from activated sludge using a cation exchange resin,WaterResearch,1996,30(8):1749—1758
    [118] H. Liu and H. H. P. Fang. Extraction of extracellular polymeric substances(EPS) ofsludge. Biotechnology,2002,95:249—256
    [119]张宏伟,雷鸣,李莹,张雪花,王捷,膜生物反应器中污泥EPS的提取方法,化工学报,2008,59(6)1531-1534.
    [120] APHA, 1998. Standard Methods for the Examination of Water and Wastewater,twentieth ed.. American Public Health Association, Washington DC, USA
    [121]樊青娟,刘广立水污染控制工程实验教程,北京:化学工业出版社,2009。
    [122] M. Cheryan, Ultrafiltration and Microfiltration Handbook. 1996.Technomic,Landaster, PA.
    [123] M.W.Chudacek, A.G.Fane , The dynamics of polarization in stirred and unstirredultrafiltration. Journal of Membrane Science 1984.21, 145–160.
    [124]谢敏,施周,李淑展,污泥脱水性能参数——比阻检测的若干问题探讨,环境科学与技术,2006,29(3)15-16
    [125] D.N. Petsev , V.M. Starov, I.B. Ivanov, Concentrated dispersions of charged colloidalparticles: sedimentation, ultrafiltration and diffusion. Colloids and Surfaces. A,Physicochemical and Engineering Aspects 1993.81: 65–81.
    [126] R.W.Field, D.Wu, J.A. Howel, Critical Flux Concept for Microfiltration Fouling.Jounal of Membrane Seicnce,1995,100,259-272.
    [127] J. S. Zhang , H. C. Chua, J.Zhou, , A.G. Fane, , 2006. Factors affecting the membraneperformance in submerged membrane bioreactors. Journal of Membrane Science 284(1), 54–66.
    [128] B. Zhang, K. Yamamoto, S. Ohgaki, et al., Floc size distribution and bacterialactivities in membrane separation activated sludge processes for small- scale wastewater treatment/reclamation. Water Seience and Technology,1997.35(6):37-44.
    [129] K. J. Kim, V. Chen and A.G. Fane, Characterization of clean and fouled membraneusing metal colloids. Journal of Membrane Science, 88(1994),93-101
    [130] L. Seminario, R. Rozas, R. Borquez, et al., Pore blocking and permeability reductionin cross-flow microfiltration. Journal of Membrane Science, 2002.209(1):121-142
    [131] H.C. Flemming, G. Schaule, T. Griebe, et al., Biofouling—the Achilles heel ofmembrane processes. Desalination, 1997.113(2-3): 215-225
    [132] S. Ognier, C.Wisniewski, A. Grasmick, Membrane bioreactor fouling in sub-criticalfiltration conditions: a local critical flux concept, J. Membr. Sci. 229 (2004) 171–177.
    [133] Y. Ye, P. Le-Clech, V. Chen, A.G. Fane, Evolution of fouling during crossflowfiltration of model EPS solutions, J. Membr. Sci. 264 (2005) 190–199.
    [134] S. Chang, T.G. Fane, T.D. Waite, Effect of coagulation within the cakelayer onfouling transitions with dead-end hollow fiber membranes, in: Proceedings of theInternational Congress on Membranes and Membrane Processes (ICOM), Seoul,Korea, 2005.
    [135] F. Meng, H. Zhang, Y. Li, X. Zhang, F. Yang, Application of fractal permeationmodel to investigate membrane fouling in membrane bioreactor, J. Membr. Sci. 262(2005) 107–116.
    [136] S.W. Hermanowicz, Membrane filtration of biological solids: a unified frameworkand its applications to MBR, in: Proceedings of the Water Environment-MembraneTechnology Conference, Seoul, Korea, 2004.
    [137] A.P.S. Yeo, A.W.K. Law, A.G. Fane, Factors affecting the performance of asubmerged hollow fiber bundle, J. Membr. Sci. 280 (2006) 969–982.
    [138]纪磊,膜生物反应器中微生物聚合物的代谢与膜污染。大连:大连理工大学,2006。
    [139] E.H. Bouhabila, R.B. Aim and H. Buisson, Fouling characterization in MembraneBioreactors. Separation and Purification Technology, 2001, 22-23:123-132
    [140] L.Defrance, M.Y.Jaffrin, B.B. Gupta, et al., Contribution of Various Constituents ofActivated Sludge to Membrane Bioreactor Fouling. Bioresource Technology,2000,73:105-112.
    [141] C. Wisniewski and A. Grasmiek, Floc Size Distribution in a Membrane Bioreactorand Consequences for Membrane Fouling Colloids and Surfaces A.Physicochemicaland Engineering Aspects,1998,138:403-411.
    [142] K.J.Hwang, C.L. Hsueh, Dynamic analysis of cake properties in microfiltration ofsoft colloids. Journal of Membrane Science 2003,214 (2), 259–273.
    [143] T. Itonaga, K. Kimura, Y. Watanabe, Influence of suspension viscosity and colloidalparticles on permeability of membrane used in membrane bioreactor (MBR), WaterSci. Technol. 50 (2004) 301–309.
    [144] Namkung E, Rittmann B,E, Effects of SMP on biofilm·reactor performance, J.Environ.Eng.Div.ASCE,1988,l14(1):l99-210.
    [145] B.E .Rittmann, W. Bae,E .Namkung,et a1.A critical evaluation of microbial productformation in biological processes.Water Sci. Tech., 1987,19(3.4):517-528.
    [146] Yonghun L, Jinwoo C, Youngwoo S,et al., Modeling of submerged membranebioreactor process for wastewater treatment.Desalination,2002,146:451-457
    [147] S.Hang, T. Seok, Characteristics and fate of soluble microbial products in ceramicmembrane bioreactor at various sludge retention times. Water Res., 2003, 37(1):121-127
    [148]张海丰,孙宝盛,赵新华,齐庚申,膜生物反应器中溶解性微生物代谢产物的产出,中国环境科学,2007,27(4):539-542
    [149] S.Kim , N.Jang, The effect of calcium on the membrane biofouling in the membranebioreactor (MBR). Water Research,2006,40 (14), 2756–2764.
    [150] A.W.Zularisam, A.F.Ismail, M.R.Salim, M.Sakinah, O.Hiroaki , Fabrication, foulingand foulant analyses of asymmetric polysulfone (PSF) ultrafiltration membrane fouledwith natural organic matter (NOM) source waters. Journal of Membrane Science,2007,299 (1–2), 97–113.
    [151]陈坚.环境生物技术.第一版.北京:中国轻工业出版社,1999.
    [152] C. Nuengjamnong, J.H. Kweon, J. Cho, C. Polprasert,K.-H. Ahn. Membrane foulingcaused by extracellular polymeric substances during microfiltration processes.Desalination. 2005, 179 (1-3): 117-124.
    [153] B. Jin, B.-M. Wilen,P. Lant. Impacts of morphological, physical and chemicalproperties of sludge flocs on dewaterability of activated sludge. ChemicalEngineering Journal.2004,98(1-2): 115-126.
    [154] F. Meng, F. Yang, J. Xiao, H. Zhang,Z. Gong. A new insight into membrane foulingmechanism during membrane filtration of bulking and normal sludge suspension.Journal of Membrane Science.2006,285(1-2): 159-165.
    [155] S.A. Lee, A.G. Fane,T.D. Waite. Impact of natural organic matter on floc size andstructure effects in membrane filtration. Environmental Science andTechnology.2005,39(17): 6477-6486.
    [156] T.D. Waite. Measurement and implications of floc structure in water and wastewatertreatment. Colloids and Surfaces A: Physicochemical and EngineeringAspects.1999,151(1-2): 27-41.
    [157] B.-M. Wilen, B. Jin,P. Lant. Impacts of structural characteristics on activated sludgefloc stability. Water Research.2003,37(15): 3632-3645.
    [158] T.D. Waite, A.I. Schafer, A.G. Fane,A. Heuer. Colloidal Fouling of UltrafiltrationMembranes: Impact of Aggregate Structure and Size. Journal of Colloid and InterfaceScience.1999,212(2): 264-274.
    [159] R.M. Wu, D.J. Lee, T.D. Waite,J. Guan. Multilevel Structure of Sludge Flocs.Journal of Colloid and Interface Science.2002,252(2): 383-392.
    [160] Q.Jiang, B.E.Logan , Fractal dimensions of aggregates determined from steady-statesize distributions. Environmental Science and Technology 1991, 25:2031–2038.
    [161]P.K. Park, C.H. Lee,S. Lee. Permeability of Collapsed Cakes Formed by Depositionof Fractal Aggregates upon Membrane Filtration. Environ. Sci. Technol.2006,40(8):2699-2705.
    [162] K.J.Hwang, H.C.Liu, Cross-flow microfiltration of aggregated submicron particles.J.Membr. Sci. 201(2002),137-148
    [163] W.N.Lee , I.S.Chang , B.K. Hwang, P.K. Park, C.H. Lee, X.Huang, Changes inbiofilm architecture with addition of membrane fouling reducer in a membranebioreactor. Process Biochemistry 2007,42 (4), 655–661.
    [164] B.K. Hwang, W.N. Lee, P.K. Park, C.H. Lee, I.S. Chang, Effect of membranefouling reducer on cake structure and membrane permeability in membrane bioreactor.Journal of Membrane Science 288 (2007) 149–156
    [165]张志勇,Matlab教程,北京:北京航空航天大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700