北京市典型河湖再生水补水生态环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生水作为一种稳定的再生水源,在维持河湖景观、恢复河湖生态等方面发挥了重要作用。然而,再生水大量补充城市河湖水体必然引起其水质水量快速变化,在高度城市化、人工化背景下对城市水环境和水生态系统产生显著影响,如植被等生物特征的改变。本文以北京市再生水补水典型河段(清河、北小河、坝河、通惠河)和湖区(奥林匹克公园)为研究对象,通过野外监测和资料分析,探讨水质时空分布和变化规律,并利用遥感技术提取地表环境信息,结合实地调查数据,研究区域发展和环境变化对水质时空变异的影响机制;在综合分析再生水补水河湖水质特征和环境背景影响因素的基础上,通过野外监测和室内控制实验,研究再生水补水与植被的相互影响关系,建立生态响应模型,揭示再生水与生态环境作用机制,据此提出北京市再生水补水河湖生态环境恢复对策。本文研究结论如下:
     (1)北京市社会经济发展、水资源短缺而污水处理设施建设滞后是造成城市水环境恶化的重要原因。水质监测数据时间序列分析表明:时问上,再生水补水河湖水质以2008年最优,多数再生水补水河段水质从2005年后呈明显改善趋势,主要污染物得到削减;空间上,与郊区河段相比,城区再生水补水河段水质较好,水环境质量显著提高。
     (2)2011年野外水质监测数据表明:再生水补水河段属于严重污染级别(劣V类)。主要超标指标为TN,是导致水质恶化的首要因子;不同河段相比,北小河水质明显劣于其他河段,通惠河水质最好,再生水补水水质和利用量是造成该结果的重要原因。再生水补水河段TN、NO2--N、NO3--N、COD、TP、NH4+-N这6个水质指标中,除TN、NO2--N外,均与季节相关性显著。采样点水质指标的空间自相关性不大,受局部控制因素影响(人为因素)。再生水排水对COD和NH4+-N含量降低有显著作用。除北小河排水口外,其他河段再生水排水口大部分水质指标较上游采样点相对较好或者基本持平,再生水的补充对河道水质有明显的改善作用。水体含氮水平、有机物水平、含磷水平、含盐水平以及不确定因子共同影响着再生水补水河段的水质。整体上,研究区水质表现为成分复杂、浓度高、人为干扰明显的特征。相比再生水补水河段,再生水补水湖泊水质较好。2010年奥林匹克公园南园湿地水质监测结果表明,除TN外,多数指标均值达到Ⅲ类地表水环境标准。各项水质指标呈现较为明显的季节变化。再生水经再生水处理区和循环湖水处理区的湿地植被和微生物作用之后到达氧化塘,水质明显改善,但是依然处于中等富营养化状态。
     (3)影响再生水补水河湖水质的环境背景因素除了土地利用外,还包括不透水面盖度、河道渠道化、人工闸坝等。大部分水质指标(COD、TP、TN、NO2--N)与近岸边带尺度环境背景因素的相关关系要好于其与远岸边带尺度环境背景因素的相关关系。考虑空间距离权重的影响可以增强对水质空间特征的理解。
     (4)奥林匹克公园南园湿地芦苇和香蒲的叶绿素含量、地上鲜生物量、全氮、全磷指标呈现明显的季节变化。氮磷含量分布的季节差异是氮素、磷素在植株内各个器官分配和转运的综合结果。芦苇和香蒲的生物量随水中营养物质含量的增加而增加,其体内氮磷含量与水体营养盐浓度存在一定的相关性,芦苇和香蒲对不同水处理区氮磷营养盐的去除发挥重要作用。不同季节和不同盖度的芦苇和香蒲冠层反射率不同,不同再生水处理区的芦苇和香蒲的反射率高低有明显差异。利用芦苇和香蒲光谱,应用多种统计回归方法预测水体TN含量和叶片TN含量,建立光谱指数模型,SMLR模型和PLSR模型3种关系模型,并通过交叉验证决定系数和均方根误差对模型精度进行检验。结果表明,同单变量回归模型相比,多变量回归模型的精度较高,其中偏最小二乘法所建模型最优。模型建立时不仅要考虑建模方法,还要兼顾植物类型和其他环境因子的综合影响。
     (5)利用水培芦苇进行氮的室内控制实验。不同N浓度处理下,随着N浓度的升高,芦苇高度、叶绿素含量、各器官生物量和N贮量均呈现上升趋势,有效N的增加促进了各器官生物量的积累。根系N浓度和叶片N浓度具有显著相关关系。不同N营养水平芦苇光谱原始反射率和一阶导数在可见光波段和红边区域有明显表现,且不同N梯度的光谱存在一定的差异,这与N影响下的芦苇叶绿素含量水平不同有关。PRI和CI指数是建立植物光谱与N梯度关系以及植物光谱与理化参数关系的良好高光谱指数形式。
     通过以上研究结论提出:加快再生水处理厂建设,保证再生水出水水质,加大再生水回用量,降低人为因素的负面影响,建立良好的植物水质净化体系,发挥遥感优势,加强监测与管理是北京市再生水补水河湖生态环境恢复的有效途径。本文研究成果能够为再生水补水河湖的监测、管理以及生态恢复提供一定的科学依据和参考借鉴。
Supplying urban rivers and lakes with reclaimed water is recognized as a superior way for ecological restoration and reconstruction. However, tremendous supplement of reclaimed water will bring intense influence to water quality and quantity. Simultaneously, intensive human activities remarkablely influence urban hydrology, water environment and environmental system, such as changes of biology characteristics. We select typical rivers (Qing river, Beixiao river, Ba river, Tonghui river) and a lake (Olympic Park) supplied by recycled water in Beijing as our study areas. The spatial and temporal variations of water quality are investigated through field work; the influence mechanism of social development and environmental change on water environment are researched combined with a variety of surface environmental information. Based on the comprehensive analysis of water quality characteristics and environmental background, we study the characteristics of reclaimed water and vegetation, and thus establish the eco-environment response models to reveal the interaction mechanisms between recycled water and ecological environment. The environment recovery countermeasures for rivers and lakes using reclaimed water in Beijing are proposed in this study. The conclusions are demonstrated as follows:
     1) Water resource shortages and backward construction of sewage treatment facilities are important reasons for water environment deterioration in Beijing. It can be seen the best water quality of rivers and lakes supplied by reclaimed water in2008; The water quality have been significant improved from2005; the construction of the sewage/water recycling plants is of great importance to water environment amelioration.
     2) The rivers are all heavily polluted (inferior Class Ⅴ of Environmental quality standards for surface water). The main indicator exceeding the criterion is total nitrogen (TN), which is the primary factor leading to the deterioration of water quality. The water quality of Beixiao river is distinctly worse than the other three rivers, while Tonghui river possesses the best water quality. There is an evident correlation between water quality and seasons except TN and NO2--N. Spatial autocorrelation of water quality indicators is weak, which means they are subject to human activities. The reclaimed water drainage has a distinct effect on reducing COD and NH4+-N content. Majority of water quality values from outfalls in the rivers except for Beixiao river are relatively lower than or basically coincident to that in the up streams. The water quality could be obviously advanced when supplying recycled water to rivers. The nitrogen, organic matter, phosphorus and salinity content, together with uncertainty factors, severely affect the water quality of rivers supplemented by reclaimed water. The water quality in the study is depicted by complex components, high concentrations and intensive anthropogenic interference. The water quality of the recycled water in Olympic Park is much better in comparison with the reclaimed water supplied rivers. However, some indicators, such as TN, TP, beyond the surface water environmental quality standards Grade Ⅲ. Various water quality data show obvious seasonal variations. Water quality of recycled water is improved significantly after the reclaimed water interacts with the wetland vegetation and microorganisms in the water treatment area and circular lake handling area. Nevertheless, it is still in a moderate eutrophication.
     3) The environmental background factors influencing reclaimed water quality in rivers involve land use, impervious surface coverage, floodgates and dams, river vulcanized and so on. Most of the water quality indicators (COD, TP, TN and N02--N) exhibited stronger relationship with environmental background factors in the near-shore scale compared with far-shore scale. Considering the spatial impact can enhance the comprehension of the spatial characteristics of water quality.
     4) The physical and chemical parameters of reed(Phragmites australis) and cattail (Typha angustifolia), including chlorophyll content, ground fresh biomass, total nitrogen content, and total phosphorus content, denote distinct seasonal variations. The seasonal differences of nitrogen and phosphorus content are due to allocation and transport of nitrogen, phosphorus in various organs. Most high values of the physical and chemical indicators of Phragmites australis and Typha angustifolia appear in the circular water treatment area. Phragmites australis and Typha angustifolia biomass are increased by higher nutrition availability in the water, and the overall correlation between nitrogen, phosphorus content of the two species and nutrition in water is obvious. Phragmites australis and Typha angustifolia play an important role in removal of nitrogen and phosphorus. The canopy reflectance of Phragmites australis or Typha angustifolia changes with seasons or coverage. The difference of Phragmites australis or Typha angustifolia reflectance is distinct among reclaimed water treatment areas. The research establishes univariate models involving simple ratio spectral index (SR) model and normalized difference spectral index (ND) model, as well as multivariate models including stepwise multiple linear regression (SMLR) model and partial least squares regression (PLSR) model using the reflectance of Phragmites australis and Typha angustifolia to predict the TN in water and leaves. Moreover, the accuracy of all the models was tested through cross-validated coefficient of determination (R2cv) and cross-validated root mean square error (RMSEcv). The results showed that compared different types of wetland plants, the accuracy of all established prediction models using Phragmites australis reflectance spectra was higher than that using Typha angustifolia reflectance spectra. Compared with univariate techniques, multivariate regressions improved the estimation of TN concentration in water and leaves. Among the various investigated models, the accuracy of PLSR model was the highest. Other environmental factors should also be discreetly considered in modeling exercise.
     5) Phragmites australis are used to conduct the control experiment. The nitrogen treatment are0,1,2,5,20mg/L. Height, chlorophyll content, biomass, and N concentration of Phragmites australis all illustrate a rising trend with increasing N concentration. The increase of available N promotes the biomass accumulation for each organ. N concentration in root and leaf display a positive relationship. Reflect spectra and1st spectra of Phragmites australis across five fertilization levels have evident performance in the visible and red edge regions; the differences of the reflectance show the effect of N treatment concentration. PRI and CI are most optimal indices to establish the relation between Phragmites australis spectra and N treatment levels, also the relationship between Phragmites australis spectra and chlorophyll content.
     According to the results mentioned above, we propose that:speed up the construction of recycled water treatment plants, increase the reuse of wastewater reclamation, decrease the negative influence of human beings, establish a favorable plant water purification system, make full use of remote sensing to strengthen monitoring and management are effective ways to restore ecological environment of reclaimed water replenishment rivers and lakes in Beijing. The research results from this study can provide a strong scientific basis for monitoring, management and ecological recovery of lakes and rivers using recycled water.
引文
[1]中华人民共和国国家质量监督检验总局,GB/T 18921-2002,中华人民共和国国家标准,北京:中国标准出版社,2002-12-20.
    [2]Crook J, Surampalli R Y. Water reclamation and reuse criteria in the U.S.. Water Science and Technology, 1996,33(1):451-462.
    [3]Asano T, Maeda M, Takaki M. Wastewater reclamation and reuse in Japan:Overvier and implementation examples. Water Science and Technology,1996,34(11):219-226.
    [4]European Environment Agency, Sustainable water reuse in Europe, Environment Issue Report,2001,9.
    [5]郭茹,贾海峰,井艳文,等.污水回用大势所趋——关于北京市污水回用的思考.北京水利,2001,(5):42-44.
    [6]John A D.国际水回用实例研究.21世纪国际城市污水处理及资源化发展战略研讨会论文集,2001,11:41-49.
    [7]鞠宇平,郑兴灿,孙永利,等.城市污水再生利用于市政景观环境的典型工程实践.全国城市污水再生利用经验交流和技术研讨会,2003.
    [8]张韵,曲际水.北京市水资源可持续利用的重大举措——城市污水资源化示范工程.新世纪中-欧大城市发展学术研讨会,2001.
    [9]江雄志,李超,姜立安.石家庄市污水回用现状及发展构想.中国给水排水,2001,17(9):62-64.
    [10]冯萃敏,李莹,张雅君,等.以再生水为水源的封闭景观水体营养状态分析.天津大学学报,2010,43(8):727-732.
    [11]黄伟伟,郑兴灿,廖飞风,等.再生水景观水体富营养化因素的垂直变化特征.中国给水排水,2008,24(1):65-68.
    [12]丁国际,何星海,高士荣,等.再生水补充人工湖水对藻类生长影响的试验研究.给水排水,2005,31(12):48-50.
    [13]周律,霍振远,甘一萍,等.以二级出水作为景观补水和冷却水源效益分析.环境工程,2006,24(5):16-18.
    [14]吴薇薇,周律,邢丽贞,等.再生水回用人工景观水体优势藻和水华指示指标的研究.给水排水,2007,33(增刊):72-74.
    [15]杨英杰,王明智,李谦,等.再生水回用于景观水体磷营养盐对叶绿素a和藻密度的影响研究.给水排水,2009,35(增刊):112-115.
    [16]王明智,李谦,范改娜,等.再生水回用于景观水体氮营养盐对叶绿素a和藻密度的影响研究.给水排水,2010,36(1):117-121.
    [17]周律,刘晶晶,甘一萍,等.再生水回用中氮磷对两种典型水华藻类生长影响研究.给水排水,2009, 35(6):39-42.
    [18]Asano T, Maeda M, Takaki M. Wastewater reclamation and reuse in Japan:Overview and implementation Examples. Water Science and Technology,1996,34(11):219-226.
    [19]Lewis M A, Quarles R L, Dantin D D. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants. Marine Pollution Bulletin,2004,48:254-262.
    [20]付春平,唐运平,陈锡剑,等.3种植物对泰达高盐再生水景观河道水质的净化.重庆大学学报(自然科学版),2006,29(10):118-120.
    [21]付春平,唐运平,张志扬,等.美人蕉对泰达高含盐再生水景观河道水体净化效果研究.灌溉排水学报,2005,24(5):70-73.
    [22]付春平,唐运平,邢国政,等.湿地生态修复工程对高盐再生水氮磷去除研究.灌溉排水学报,2006,25(4):93-96.
    [23]付春平,唐运平,闫玉荣,等.水葱对高盐再生水的净化效果研究.中国给水排水.2006,22(5):40-42.
    [24]付春平,唐运平,陈锡剑,等.香蒲湿地对泰达高盐再生水景观河道水质净化效果的研究.农业环境科学学报,2006,25(增刊):186-190.
    [25]鞠瑾,张志扬,唐运平,等.不同植物湿地系统对高盐再生水的除氮能力比较.中国给水排水.2006,22(19):56-58.
    [26]王卫红,季民.滨海再生水河道中沉水植物的恢复对水质的改善.农业环境科学学报,2007,26(6):2292-2298.
    [27]王卫红,季民,薛玉伟,等.川蔓藻(Ruppia maritime)对滨海城市再生水的净化作用.农业环境科学学报,2005,24(4):775-779.
    [28]王卫红.川蔓藻对滨海景观再生水河道水质富营养化的控制机制研究.天津:天津大学,2006.
    [29]王卫红,季民薛玉伟.川蔓藻和蓖齿眼子菜对再生水中盐度的响应机制.天津大学学报,2007,40(7):804-810.
    [30]王卫红,季民.滨海再生水河道中川蔓藻的季节生长变化.天津大学学报,2008,41(4):488-493.
    [31]王卫红,季民,薛玉伟,等.利用耐盐沉水植物控制滨海再生水景观河道的富营养化研究.海洋通报,2007,26(1):73-77.
    [32]赵乐军,刘琳,唐福生,等.关于现行再生水水质标准和规范执行情况的讨论.给水排水,2007,33(12):120-125.
    [33]21世纪初期首都水资源可持续利用规划子报告之一:北京市地表水资源分析及预测,北京市水利局,2001.
    [34]北京市水资源公报(2002-2009),北京市水务局.
    [35]邓卓智.北京奥林匹克公园水系及雨洪利用系统研究、设计与示范.北京市水利规划设计研究院.北京:中国水利水电出版社,2009:54-88.
    [36]牛建宏.再生的水源—北京市再生水利用走访.中国建设报,2002(12):4.
    [37]北京市统计年鉴(2004-2011),北京市统计局.
    [38]贾玉霞.环境质量综合指数评价方法的应用.城市环境与城市生态,2003,16(6):10-11.
    [39]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准.中国环境监测,2002,18(5):47-49.
    [40]金相灿,等.中国湖泊环境.北京:海洋出版社,1995.
    [41]梁二,王小彬,蔡典雄,等.河南省土壤有机碳分布空间自相关分析.应用生态学报,2007,18(6):1305-1310.
    [42]Kannel P R, Lee S, Kanel S R, et al. Chemometric application in classification and assessment of monitoring locations of an urban river system. Analytica Chimica Acta,2007,582(2):390-399.
    [43]Pekey H, Karakas D, Bakoglu M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin,2004,49(9-10):809-818.
    [44]Fung Y S, Wong L W Y. Apportionment of air pollution sources by receptor models in Hong Kong. Atmospheric Environment,1995,29(16):2041-2048.
    [45]Swietlicki E, Krejei R. Source characterization of the Central European atmosphere aerosol using multivariate statistical methods. Nuclear Instrumental Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1996,109/110:519-525.
    [46]Guo H, Wang T, Louie P K K. Source apportionment of ambient non-methane hydrocarbons in Hong Kong:Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environmental Pollution,2004,129(3):489-498.
    [47]Singh K P, Malik A, Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques-A case study. Analytica Chimica Acta,2005, 538(1-2):355-374.
    [48]Song Y, Xie S D, Zhang Y H, et al. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment,2006, 372(1):278-286.
    [49]Zhou F, Huang G H, Guo H C, et al. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Research,2007,41(15):3429-3439.
    [50]Wold S, Albano C, Dunn M, et al. Pattern regression finding and using regularities in multivariate data, In Martens J. In Proc. IUFOST Conf. "Food Research and Data", London. Analysis Applied Science Publication,1983.
    [51]朱立安,继增,卓慕宁。等.广东省土壤侵蚀宏观区域差异分析.水土保持通报,2003,23(3):36-38.
    [52]史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国亚热带土壤的可蚀性.水土保持学报,1995,9(3):38-42.
    [53]迟光宇,刘新会,刘素红,等.环境污染监测中的植物光谱效应研究.环境科学与技术,2005,28(增 刊):16-20.
    [54]北京市环境保护局网站,http://www.bjepb.gov.cn/porta10/tab205/
    [55]地表水环境质量标准(GB3838-2002),国家环境保护总局,2002
    [56]城镇污水处理厂污染物排放标准(GB18918-2002),国家环境保护总局,2002.
    [57]张军,周冬梅,芩国璋.黄河兰州段水质现状及污染趋势分析.安徽农业大学,2008,36(18):7886-7888.
    [58]李娟英,赵庆祥.低浓度氨氮硝化过程中影响因素的研究.环境污染与防治,2006,28(1):11-14.
    [59]李志博,王起超,陈静.农业生态与环境系统的氮素循环研究进展.土壤与环境,2002,11(4):417-421.
    [60]Vega M, Pardo R, Barrado E, et al. Assessment of seasonal and polluting effects on the quality of river waters by exploratory data analysis. Water Research,1998,32(12):3581-3592.
    [61]Bouza D R, Ternero R M, Fernandez E A. Trend study and assessment of surface water quality in the Ebro River (Spain). Journal of Hydrology,2008,361(3-4):227-239.
    [62]Wunderlin D A, Pilar D M D, Valeria A M, et al. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study:Suquia River Basin (Cordoba-Argentina). Water Research.2001,35(12):2881-2894.
    [63]Simeonov V, Stratis J A, Samara C, et al. Assessment of the surface water quality in Northern Greece. Water Research,2003,37(17):4119-4124.
    [64]Pekey H, Karakas D, Bakoglu M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin,2004,49(9):809-818.
    [65]Liu C W, Lin K H, Kuo Y M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment,2003,313(1-3):77-89.
    [66]万咸涛,雷斌.采用统计检验方法判断水质监测断面的代表性.水利水电技术,1991,(8):19-24.
    [67]周群英,高廷耀.环境工程微生物学.北京:高等教育出版,2004.
    [68]黄岁樑,臧常娟,杜胜蓝,等.pH、溶解氧、叶绿素a之间相关性研究Ⅰ:养殖水体.环境工程学报,2011,5(6):1201-1208.
    [69]张平,沈志良.营养盐限制的水域性特征.海洋科学,2001,25(6):16-19.
    [70]高玉荣.北京四海浮游藻类叶绿素含量与水体营养水平的研究.水生生物学报,1992,16(3):237-244.
    [71]Shresth S, Kazama F. Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin, Japan. Environmental Modelling & Software,2007,22(4):464-475.
    [72]成水平,况琪军,夏宜.香蒲、灯心草人工湿地的研究:Ⅰ.净化污水的效果.湖泊科学,1997,9(4):351-358.
    [73]吴振斌,陈辉蓉,成水平,等.人工湿地磷的去除研究.水生生物学报,2001,25(1):28-35.
    [74]李科德,胡正嘉.人工模拟芦苇床系统处理污水的效能.华中农业大学学报,1994,13(5):511-517.
    [75]Stottmeister U, WieSner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances,2003,22(1-2):93-117.
    [76]汤显强,黄岁樑.人工湿地去污机理及国内外应用现状.水处理技术,2007,33(2):9-13.
    [77]Reddy K R, D'Angelo E M. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Science and Technology,1997,35:1-10.
    [78]Pantip K, Suwanchai N. Constructed treatment wetland:a study of eight plant species under saline conditions.Chemosphere.2005,58(5):585-593.
    [79]Thomas G H, el- Karyony, Hassan A H. phosphorus-nitrogen loaing and trend of fish catch as index of lake Mariut eutrophication. The Journal of Egypt Public Health Association,1993,68(5-6):593-615.
    [80]秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用.科学通报,2006,51(16):1857-1866
    [81]Rhodes A L, Newton R M, Pufall A. Influences of land use on water quality of a diverse new England watershed. Environmental Science & Technology,2001,35(18):3640-3645.
    [82]陈利顶,傅伯杰,赵文武.“源”“汇”景观理论及其生态学意义.生态学报,2006,26(5):1444-1449.
    [83]岳文泽.基于混合光谱分解的城市不透水面分布估算.遥感学报,2007,11(6):915-922.
    [84]Jat M K, Garg P K, Khare D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation,2008,10(1):26-43.
    [85]Xian G, Crane M, Su J. An analysis of urban development and its environmental impact on the Tampa Bay watershed. Journal of Environmental Management,2007,85(4):965-976.
    [86]Conway T M. Impervious surface as indicator of pH and specific conductance in the urbanizing coastal zone of New Jersey, USA. Journal of Environmental Management,2007,85(2):308-316.
    [87]Brabec E, Schulte S, Richards P L. Impervious surfaces and water quality:A review of current literature and its implications for watershed planning. Journal of Planning Literature,2002,16(4):499-514.
    [88]Xian G. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. International Journal of Remote Sensing,2007, 28(24):5427-5445.
    [89]Gillies R R, Box J B, Symanzik J, et al. Effects of urbanization on the aquatic fauna of the Line Creek watershed, Atlanta:A satellite perspective. Remote Sensing of Environment,2003,86(3):411-422.
    [90]Alberti M, Booth D, Hill K, et al. The impact of urban patterns on aquatic ecosystems:An empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning,2007,80(4):345-361.
    [91]Small C. Multitemporal analysis of urban reflectance. Remote Sensing of Environment,2002,81(2-3): 427-442.
    [92]Chander G, Markhan B. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2674-2677.
    [93]Zhang M, Qin Z, Liu X, et al. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geriformation,2003,4(4):295-310.
    [94]Emma U, Susan U, Deanne D. Mapping nonnative plants using hyperspectral imagery, Remote Sensing of Environment,2003,86(2):150-161.
    [95]Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment,2003,84(4):493-505.
    [96]Weng Q, Lu D, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment,2004,89(4):467-483.
    [97]岳文泽.基于遥感影像的城市景观格局及其热环境效应研究.北京:科学出版社,2008,50-51.
    [98]Small C. The Landsat ETM+spectral mixing space. Remote Sensing of Environment,2004,93(1-2): 1-17.
    [99]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报,2005,9(5):589-595.
    [100]Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:comparative anatomy for cities. International journal of remote sensing,1995, 16(12):2165-2185.
    [101]王秀兰,包玉海.土地利用动态变化研究方法探讨.地理科学进展,1999,18(1):81-87.
    [102]朱鹏,张雷.城市化与水资源相互关系研究评述城市问题.城市问题,2008,(11):26-30.
    [103]高超,朱继业,窦贻俭,等.基于非点源污染控制的景观格局优化方法与原则.生态学报,2004,24(1):109-116.
    [104]Yin Z Y, Walcott S, Kaplan B, et al. An analysis of the relationship between spatial patterns of water quality and urban development in Shanghai, China. Computers, Environment and Urban Systems,2005, 29(2):197-221.
    [105]Johnson L B, Richards C, Host G E, et al. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology,1997,37(1):193-208.
    [106]Sliva L, Williams D D. Buffer zone versus whole catchment approaches to land use impact on river water quality. Water Research,2001,35(14):3462-3472.
    [107]Buck O, Niyogi D K, Townsend C R. Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environmental Pollution,2004,130(2):287-299.
    [108]常智慧.北京七家高尔夫球场地表水水环境状况调查.草地学报,2007,15(5):473-478.
    [109]Johnson L, Richards C, Host G, et al. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology,1997,37:193-208.
    [110]Lenat D R, Crawford J K. Effects of land use on water quality and aquatic biota of three North Carolina Piemont streams. Hydrobiologia,1994,294:185-199.
    [111]Fedorko E, Pontius Jr R G, Aldrich S P, et al. Spatial distribution of land type in regression models of pollutant loading. Journal of Spatial Hydrology,2005,5(20):60-80.
    [112]Bahar M M, Ohmori H, Yamamuro M. Relationship between river water quality and land use in a small river basin running through the urbanizing area of Central Japan. Limnology,2008,9:19-26.
    [113]周婷,彭少麟,任文韬.东江河岸缓冲带景观格局变化对水体恢复的影响.生态学报,2009,29(1):231-239.
    [114]罗晓娟,余勇利.植被缓冲带结构与功能对水质的影响.水土保持应用技术,2006,(4):1-3.
    [115]Chang H. Spatial analysis of water quality trends in the Han River basin, Water Research,2008.42(13): 3285-3304.
    [116]Wassen M J, Baraendregt A.Topographic position and water chemistry of fens in a Dutch river plain. Journal of Vegetation Science,1992,3:447-456.
    [117]刘颖,工德利,韩士杰.不同放牧率下羊草和芦苇可溶性碳水化合物和氮素含量的变化.应用生态学报,2003,14(12):2167-2170.
    [118]Ennabili A, Ater M, Radoux M. Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquatic Botany,1998,62:45-56.
    [119]蒋高明,黄银晓,高雷明,等.海河流域61种植物磷元素化学特征及地理分异.植物资源与环境,1995,4(1):47-53.
    [120]Hosoi Y, Kido Y, Miki M, et al. Field examination on reed growth, harvest and regeneration for nutrient removal. Water Science and Technology,1998,38(1):351-359.
    [121]Peterson S B, Teal J M. The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering,1996,6(1-3):137-148.
    [122]Horler D N H, Dockray M, Barber J. The Red Edge of Plant Leaf Reflectance. International Journal of Remote Sensing,1983,4(2):273-288.
    [123]Koerselman W, Meuleman A F M. The vetetation N:P ratio:a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology,1996,33(6):1441-1450.
    [124]Romero J A, Brix H, Comin F A. Interactive effects of N and P on growth, nutrient allocation and NH4 uptake kinetics by Phragmites autralis. Aquatic Botany,1999,64(3-4):369-380.
    [125]王庆改,白军红,张勇,等.湿地植物对土壤生态系统中氮含量变化的响应.水土保持研究,2007,14(4):164-167.
    [126]吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系.水生生物学报,2005,29(4):406-412.
    [127]Mandi L, Houhoum B, Asmama S, et al. Wastewater treatment by reed beds:an experimental approach. Water Research,1996,30(9):2009-2016.
    [128]曲向荣,贾宏字,张海荣,等.辽东湾芦苇湿地对陆源营养物质净化作用的初步研究.应用生态学报,2000,11(2):270-272.
    [129]Torbick N, Hu F, Zhang J Y, et al. Mapping Chlorophyll-a concentrations in West Lake, China using Landsat 7 ETM+. Journal of Great Lakes Research,2008,34(3):559-565.
    [130]乔平林,张继贤,林宗坚.石羊河流域水质环境遥感监测评价研究.国土资源遥感,2003,(4):39-45.
    [131]Hakvoort H, de Haan J, Jordans R, et al. Towards airborne remote sensing of water quality in the Netherlands-validation and error analysis. ISPRS Journal of Photogrammetry and Remote Sensing,2002, 57(3):171-183.
    [132]Matthews M W, Bernard S, Winter K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sensing of Environment,2010,114(9):2070-2087.
    [133]Le C F, Li Y M, Zha Y, et al. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes:the case of Taihu Lake, China. Remote Sensing of Environment,2009,113(6):1175-1182.
    [134]杜为静,李淑敏,李红,等.汉石桥湿地水质参数光谱分析与遥感反演.光谱学与光谱分析,2010,30(3):757-761.
    [135]Hardisky M A, Smart R M, Klemas V. Growth response and spectral characteristics of a short Spartina alterniflora salt marsh irrigated with freshwater and sewage effluent. Remote Sensing of Environment, 1983,13(1):57-67.
    [136]Tilley D R, Ahmed M, Son J H, et al.Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh. Journal of Environmental Quality,2007,36(3):780-789.
    [137]周冬琴,田永超,姚霞,等.水稻叶片全氮浓度与冠层反射光谱的定量关系.应用生态学报,2008,19(3):337-344.
    [138]Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry,1964,36(8):1627-1638.
    [139]杨杰,田永超,姚霞,等.水稻上部叶片叶绿素含量的高光谱估算模型.生态学报,2009,29(12):6561-6571.
    [140]王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社,2000,178-234.
    [141]Efron B, Gong G. A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician,1983,37(1):36-48.
    [142]Osborne S L, Schepers J S, Francis D D, et al. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agronomy Journal,2002,94(6):1215-1221.
    [143]任红艳,庄大方,潘剑君,等.磷营养胁迫对冬小麦冠层光谱的影响.土壤通报,2008,39(6):1326-1330.
    [144]Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment,1995, 53(3):199-211.
    [145]刘福江,吴信才,郭艳,等.招远金矿区植被异常及遥感找矿意义.吉林大学学报,地球科学版,2007,37(3):444-449.
    [146]Strachan I B, Pattey E, Boisvert J B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sensing of Environment,2002,80(2):213-224.
    [147]Wang D, Wilson C, Shannon M C. Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near-infrared spectrum domain. International Journal of Remote Sensing,2002, 23(5):811-824.
    [148]Lee K S, Cohen W B, Kennedy R E, et al. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment,2004,91(3-4):508-520.
    [149]沈掌泉,王珂,Huang X W.用近红外光谱预测士壤碳含量的研究.红外与毫米波学报,2010,29(1):31-37.
    [150]张玉森,姚霞,田永超,等.应用近红外光谱预测水稻叶片氮含量.植物生态学报,2010,34(6):704-712.
    [151]Kawamura K, Watanabe N, Sakanoue S, et al. Estimating forage biomass and quality in a mixed sown pasture based on partial least squares regression with waveband selection. Grassland Science,2008,54(3): 131-145.
    [152]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86(4):542-553.
    [153]Miao Y X, Mulla D J, Randall G W, et al. Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precision Agriculture,2009,10(1):45-62.
    [154]Chen P F, Haboudane D, Tremblay N, et al. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of Environment,2010,114(9):1987-1997.
    [155]潘文超,李少昆,王克如,等.基于棉花冠层光谱的土壤氮素监测研究.棉花学报,2010,22(1):70-76.
    [156]薛利红,卢萍,杨林章,等.利用水稻冠层光谱特征诊断土壤氮素营养状况.植物生态学报,2006,30(4):675-681.
    [157]Cochrane M A. Using vegetation reflectance variability for species level classification of hyperspectral data. International Journal of Remote Sensing,2000,21(10):2075-2087.
    [158]陈永华,吴晓芙,蒋丽鹃,等.处理生活污水湿地植物的筛选与净化潜力评价.环境科学学报, 2008,28(8):1549-1554.
    [159]Gersberg R M, Elkins B V, Lyon S R, et al. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research,1986,20(3):363-368.
    [160]Yue Y M, Wang K L, Zhang B, et al. Exploring the relationship between vegetation spectra and eco-geo-environmental conditions in karst region, Southwest China. Environmental Monitoring and Assessment,2010,160(1-4):157-168.
    [161]王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社,2000,178-234.
    [162]Efron B, Gong G. A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician,1983,37(1):36-48.
    [163]万余庆,谭克龙,周日平.高光谱遥感应用研究.北京:科学出版社,2006,132-173.
    [164]姚霞,朱艳,冯伟,等.监测小麦叶片氮积累量的新高光谱特征波段及比值植被指数.光谱学与光谱分析,2009,29(8):2191-2195.
    [165]朱西存,赵庚星,王凌,等.基于高光谱的苹果花氮素含量预测模型研究.光谱学与光谱分析,2010,30(2):416-420.
    [166]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000,52-78.
    [167]宋晓东,江洪,余树全,等.亚热带典型常绿阔叶树种叶片叶绿素含量的高光谱研究.生态学报,2008,28(5):1959-1963.
    [168]Farrar J F, Jones D L. The control of carbon acquisition by roots. New Phytol,2000,147(1):43-53.
    [169]Hendricks J J, Nadelhoffer K. J, Aber J D. Assessing the role of fine roots in carbon and nutrient cycling. Trends Ecol Evol,1993,8(5):174-178.
    [170]Burton A J, Pregitzer K S, Zogg G P, et al. Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research,1996,26(10):1761-1768.
    [171]Nadelhoffer K J. Potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol,2000,147(1):131-139.
    [172]Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia,2000,125(3):389-399.
    [173]Adamas M B, Campbell R G, Allen H L, et al. Root and foliar nutrient concentrations in loblolly pine: Effects of season, site and fertilization. Forest Science,1987,33(4):984-996.
    [174]Hogberg P, Hogbom L, Schinkel H. Nitrogen related root variables of trees along an N deposition gradient in Europe. Tree Physiol,1998,18(2):823-828.
    [175]Evans J R. Photosynthesis and nitrogen relationship in leaves of C3 plants. Oecologia,1989,78(1):9-19.
    [176]Reich P B, Grigal D F, Aber J D, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology,1997,78(2):335-347.
    [177]Chapin F S, Vitousek P M, Van C K. Plant response to multiple environmental factors. BioScience,1987, 37(1):49-57.
    [178]Knipling E B. Physical and physiological basis for the reflectance of visible an d near-infrared radiation from vegetation. Remote Sensing of Environment,1970,1(3):155-159.
    [179]蒋金豹,陈云浩,黄文江.用高光谱微分指数监测冬小麦病害的研究.光谱学与光谱分析,2007,27(12):2475-2479.
    [180]Zarco-Tejada P J, Miller J R, Mohammed G H, et al. Vegetation stress detection through chlorophyll a+b estimation and fluorescence effects on hyperspectral imagery. Journal of Environmental Quality,2002,31: 1433-1441.
    [181]Zarco-Tejada P J, Pushnik J C, Dobrowski S, et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sensing of Environment, 2003,84(2):283-294.
    [182]CarterG A, KnappA K. Leaf optical properties in higherplants:linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany,2001,88(4):677-684.
    [183]SmithK L, StevenM D, Colls J J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sensing of Environment,2004,92(2):207-217.
    [184]Richard J. E, PeterW. S. Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall UK. Remote Sensing of Environment, 2004,93(1-2):118-130.
    [185]Gamon J A, Penuelas, J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment,1992,41(1):35-44.
    [186]Rouse J W, Haas R H, Schell, et al. Monitoring vegetation systems in the Great Plains with ERTS. Mendeley,1973,1:309-317.
    [187]Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves:spectral features and relation to chlorophyll estimation. Journal of Plant Physiology,1994,143:286-292.
    [188]Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra:algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology,1996,148:494-500.
    [189]刘克,赵文吉,郭逍宇,等.基于湿地植物光谱的水体总氮估测研究.生态学报(In Press)
    [190]吴朝阳,牛铮.基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进.植物学通报,2008,25(6):714-721.
    [191]Gamon J A, Serrano L, Surfus J S. The photochemical reflectance index:an optical indicatior of photosynthetic radiation use efficiency across species, functional tyes, and nutrient levels. Oecologia, 1997,112(4):492-501.
    [192]吴朝阳,牛铮,汤泉,等.不同氮、钾施肥处理对小麦光能利用率和光化学植被指数(PRI)关系的影 响.光谱学与光谱分析,2009,29(2):455-458.
    [193]Daria S, Kerstin W, Donald C. P, et al. Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment. Remote Sensing of Environment,2008,112(11):4020-4033.
    [194]Naumann J C,Anderson J E, Young D R. Linking physiological responses, chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using the physiological reflectance index in the coastal shrub, Myrica cerifera. Remote Sensing of Environment,2008,112(10):3865-3875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700