ACFs负载TiO_2及其CdS改性复合材料的制备及光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化氧化技术在处理气相有机污染物方面表现出优异的性能,但粉体型纳米TiO2在实际应用中存在光谱响应范围窄(光吸收仅局限于紫外光区域)、光量子效率偏低、难于回收等缺点,因此,纳米TiO2固定化和可见光改性成为光催化领域的两个研究热点。将TiO2负载于多孔性载体上,利用吸附和光催化的协同作用可实现有机污染物的快速降解。本文选择孔径分布窄、吸附容量大的活性炭纤维(ACFs)为载体,优化了Ti02/ACFs复合光催化材料的制备方法;选择甲苯和甲醛为模型有机污染物,分别系统考察了Ti02/ACFs对流动态甲苯、甲醛气体的光催化降解性能,并分析了其光催化反应动力学行为。为了改善纳米TiO2对可见光的响应性,采用能带较窄的半导体硫化镉(CdS)对其进行修饰改性,制备了CdS/TiO2复合半导体,将其负载于ACFs上得到CdS/TiO2/ACFs复合光催化材料,在可见光下分别考察了CdS/TiO2和CdS/TiO2/ACFs对亚甲基蓝溶液和甲苯气体的光催化降解性能,并初步探讨了其光催化降解机理及反应动力学过程。针对制药企业废水普遍存在恶臭及异味污染问题,其有机成分主要为挥发性有机物(VOCs),采用TiO2/ACFs复合材料对该类废气进行现场净化研究,旨在对TiO2/ACFs的实际应用效果进行初步评价。论文研究成果如下:
     1.兼顾浸渍提拉法工艺简单及粘结法结合牢固的优点,选择性能良好的羧甲基纤维素钠(CMC)作为粘结剂,提出制备TiO2/ACFs的新方法—浸渍-粘结法。SEM、EDS、BET和XRD等表征结果表明,该法对原始ACFs的比表面积及孔结构参数影响小,能够保持TiO2原有的锐钛晶型。正交实验结果得出,当TiO2悬浮液浓度为5 mg·mL-1,烘干温度为100℃,烘干时间为3 h,CMC添加比为0.25%时,制得的TiO2/ACFs复合材料性能较佳。与溶胶-凝胶法相比,浸渍-粘结法操作简单、温度温和、成本低廉。
     2.UV照射下,TiO2/ACFs复合光催化材料对流动态甲苯气体的降解性能曲线表现为:先快速降低,约60min后开始逐步升高,至最高点后略有下降,最后趋于稳定。不同CMC添加比(0.15%、0.25%、0.35%)下制得的TiO2/ACFs对甲苯的最高降解率分别为66.8%、70.4%和59.9%。所考察的实验条件下,TiO2/ACFs对甲苯的降解率随光强的增大而增大;随甲苯初始浓度的增加而逐渐降低;随甲苯气量的增加而下降;增加催化剂用量可改善甲苯的降解性能,但用量太大时,对甲苯的降解性能影响变得不明显。TiO2/ACFs光催化氧化低浓度甲苯气体动力学过程符合Langmuir-Hinshelwood准一级动力学方程。
     3.对酚试剂法测定甲醛的实验条件进行优化。当甲醛浓度较高时,可采用去离子水或吸收液进行稀释,从经济的角度,首选去离子水。UV照射初期,溶胶-凝胶法制备的TiO2/ACFs对流动态甲醛气体的净化率高于浸渍-粘结法,而80min后前者对甲醛的净化率略低于后者。所考察的实验条件下,紫外光持续照射一定时间后,甲醛的降解率随光强的增加而增加:随甲醛初始浓度的增加而增加;随甲醛气量的增加而下降;随催化剂装填量的增加而增加。TiO2/ACFs光催化降解低浓度甲醛气体符合Langmuir-Hinshelwood准一级动力学反应方程。
     4.采用溶胶-凝胶法和化学沉积法将CdS修饰在P25 TiO2,制备得到CdS/TiO2纳米复合体,并采用浸渍-粘结法将其负载于ACFs上,制得CdS/TiO2/ACFs复合光催化材料。通过XRD、UV-vis、SEM、EDS及BET等手段表征结果表明,CdS/TiO2复合体仍以TiO2为主体,仅有少量的CdS修饰在TiO2表面,对TiO2原有的晶型组成和平均粒径未造成显著影响;CdS实现了TiO2的吸收光谱向可见光区发生迁移;CdS/TiO2以分子簇形式负载在ACFs表面,但分布较不均匀;CdS/TiO2/ACFs复合材料的比表面积及孔容较原始ACFs轻微减少,而平均孔径没有明显变化。太阳光下CdS/TiO2与CdS/TiO2/ACFs对亚甲基蓝的光降解反应均遵从Langmuir-Hinshelwood动力学模型,测得CdS/TiO2对应的表观一级反应速率常数较P25 TiO2提高了1.3-1.4倍,CdS/TiO2/ACFs较TiO2/ACFs提高了1.2-1.7倍,且化学沉积法制备的复合光催化材料的光降解性能略优于溶胶-凝胶法。
     5.CdS/TiO2/ACFs复合光催化材料于太阳光下对静态体系下甲苯气体以及日光灯下对流动态甲苯气体的光降解率明显高于TiO2/ACFs,表明CdS明显改善了TiO2对可见光的利用效率。复合材料上吸附态有机物的气相色谱-质谱(GC-MS)定性分析结果显示,除了未反应掉的甲苯外,还发现了十四烷、十五烷、十六烷等几种直链烷烃,而未检出苯甲醇、苯甲醛、苯甲酸等中间产物。CdS/TiO2被不同能量的紫外光和可见光激发时,其电荷传输机理有所不同。基于可见光CdS/TiO2/ACFs对甲苯气体的光催化反应动力学过程可分为7个连续的步骤。
     6.以河北省某制药企业废水处理站散发的恶臭及异味气体为研究对象,气样采用真空不锈钢苏码罐采集,经三级预浓缩处理后,导入气相色谱-质谱仪进行定性及定量分析。测得该企业废水恶臭及异味中主要的VOCs为酯类、硫醇、硫醚及酮类等,其中乙酸丁酯含量最高,浓度达890mg/m3以上。将TiO2/ACFs复合材料应用于该类废气的净化处理,初步评价结果表明,该方法对恶臭及异味中VOCs可实现不同程度的净化,运行初期的净化效率介于47.4%-98.7%之间。实验过程中,紫外灯开启初始30mmin内,光催化反应器内的温度迅速增加,而湿度则迅速降低;光照30min后,反应器内温湿度趋于稳定。因此,考虑到实际工程应用的经济性,采用TiO2/ACFs吸附-光催化净化VOCs气体时,可不增加恒温恒湿装置。
Photocatalytic oxidation shows excellent performance in cleaning gaseous organic pollutants. However, nano-TiO2 powder has some disadvantages in the practical applications, such as a narrow spectral response range (light absorption is only limited to UV region), lower optical quantum efficiency and difficult to recycling. So immobilizing and visible-modifying nano-TiO2 become two research hotspots in the photocatalysis fields. When TiO2 was loaded on the porous carriers, the synergies of adsorption and photocatalysis helped to realize the rapid degradation of the organic pollutants. In this paper, activated carbon fibers (ACFs) with narrow pore size distribution and high absorption capacity were selected as carrier, the preparation method of TiO2/ACFs composite photocatalyst material was optimized; toluene and formaldehyde were selected as model organic pollutant, the photodegradation activities and dynamic behaviories of gaseous flowing toluene and formaldehyde by TiO2/ACFs were studied; for improving the responsibility to visible-light of nano-TiO2, CdS/TiO2 composite photocatalysts was prepared by using semiconductor CdS with narrow enegy band modifying TiO2; CdS/TiO2/ACFs composite photocatalysts were prepared by loading CdS/TiO2 on the ACFs, then their photodegradation performance, mechanism and reaction dynamic process were studied under visible-light irradiation. The pollution of malodour and offensive odour from wastewater were common in the pharmaceutical companies, and the organic component in the odour were mainly VOCs, so TiO2/ACFs composites was used to clean the odour in the field experiment, the aim was to preliminarily estimate the application effect of TiO2/ACFs. The results were as follows.
     1. Considering the advantages of simplicity of the dip-coating method and firmness of the adhesive cohering method, using the sodium carboxymethyl cellulose (CMC) with good performances as the adhesive, a new preparation method of TiO2/ACFs-'Dip-cohering method'was proposed. The surface morphology, microstructure and crystal structure of TiO2/ACFs photocatalyst were characterized by SEM, EDS, BET and XRD. The results showed that the surface area and pore volume of TiO2/ACFs decreased slightly, and the original anatase crystal form of TiO2 could be kept. By orthogonal experiments the better preparation conditions were determined:TiO2 suspension concentration was 5 mg-mL-1, drying temperature was 100℃, drying time was 3 h, the amount of the added CMC was 0.25%. Compared with sol-gel method, the dip-cohering method was simple, moderate preparation temperature and low cost.
     2. With UV irradiation, the photodegradation rate curve of the gaseous flowing toluene by TiO2/ACFs composite showed that it firstly rapidly reduced, after 60min gradually increased to a maximum of points, then decreased and stabilized. The highest removal rate of toluene by TiO2/ACFs prepared with different amount of the added CMC (0.15%、0.25%、0.35%) were 66.8%、70.4% and 59.9%, respectively. Under experimental conditions, the photodegradation rate of toluene by TiO2/ACFs increased with the increasing of light intensity, while it decreased with the increasing of toluene initial concentration or gas flow, and increasing photocatalyst amount could improve the photodegradation performances of toluene, however if the amount was too much, the effect became unsignificant. The photocatalytic reaction kinetic process of the gaseous flowing low-concentration toluene by TiO2/ACFs fitted Langmuir-Hinshelwood pseudo-first-order kinetic equation.
     3. The experimental conditions of the phenol reagent spectrophotometric determining formaldehyde were optimized. When the concentration of formaldehyde was higher, phenol reagent or deionized water should be selected to dilute the absorption solution to appropriate volume, however, taking into account the economy, the deionized water was preferred. At the initial stage of UV irradiation, the photodegradation rate of the gaseous flowing formaldehyde by TiO2/ACFs prepared by the sol-gel method was higher than that of the dip-cohering method, while after 80min the degradation rate of the former was slightly lower than that of the latter. Under experimental conditions, the photodegradation rate of formaldehyde by TiO2/ACFs increased with the increasing of light intensity or photocatalyst amount, while it decreased with the increasing of formaldehyde initial concentration or gas flow. The photocatalytic reaction kinetic process of the gaseous flowing low-concentration formaldehyde by TiO2/ACFs fitted Langmuir-Hinshelwood pseudo-first-order kinetic equation.
     4. Degussa P25 TiO2 modified CdS (CdS/TiO2) composites were prepared by two methods, sol-gel method and precipitation method, then CdS/TiO2 loaded on ACFs composites (CdS/TiO2/ACFs) were prepared by dip-cohering method. The composites were characterized by XRD, UV-vis, SEM, EDS and BET. The results showed that in the CdS/TiO2 composites TiO2 was still main and only modified by a small amount of CdS on the surface, which caused a little impact on the crystal structure and average particle size of P25 TiO2; the absorption edge of CdS/TiO2 had a pronounced'red shift'. on the ACFs CdS/TiO2 were in the form of small clusters, but not very uniform; compared with the original ACFs, the surface area and pore volume of CdS/TiO2/ACFs decreased slightly, respectively, while the average pore diameter was not changed. The photodegradation kinetics of methylene blue by CdS/TiO2 or CdS/TiO2/ACFs composites under sunlight fitted with the Langmuir-Hinshelwood equation. The apparent first-order rate constant of CdS/TiO2 was about 1.3-1.4 times as large as that of P25 TiO2, and the apparent first-order rate constant of CdS/TiO2/ACFs was about 1.2-1.7 times as large as that of P25-TiO2/ACFs. The photocatalytic activities of the composites prepared by the sol-gel method were better than that of precipitation method.
     5. The photodegradation rates of toluene by the CdS/TiO2/ACFs composite was significantly higher than that of TiO2/ACFs both in a static system under sunlight irradiation and in a dynamic system under fluorescent light irradiation. It was obvious that CdS enhanced the utilization efficiency of TiO2 to the visible light. The adsorbed organic matter in the composite materials were qualitatively analysed by GC-MS, the results showed that besides unreacted toluene out, several straight-chain alkanes, such as tetradecane, pentadecane and hexadecane, were found, without benzyl alcohol, benzaldehyde, benzoic acid and other intermediates were detected. When CdS/TiO2 was irradiated by UV or visible-light with different energy, the charge-transfer mechanism was different. Based on visible-light, the photocatalytic reaction kinetics of gaseous toluene by CdS/TiO2/ACFs could be divided into seven consecutive steps.
     6. The malodour and offensive odour from wastewater treatment station of a pharmaceutical company in Hebei province was selected as the research object, gaseous samples were collected by vacuum stainless steel SUMMA canisters, then they were preconcentrated for three times, finally they were taken into GC-MS for qualitative and quantitative analysis. The results showed that the major VOCs in the odour were ester, mercaptan, sulfide, ketone and so on, in which the concentrations of butyl acetate was the highest, up to 890 mg-m-3. TiO2/ACFs composites were used to purify such waste gas. The results showed that the method could purify the malodour and offensive odour in varying degrees, in the initial operation stage the removal efficiency ranged between 47.4%-98.7%. During the experiment, in the initial 30min after turning on UV, the temperature in the photocatalytic reactor increased rapidly, while the relative humidity rapidly reduced, after 30min, the temperature and relative humidity gradually became stable. So taking into account of the economy, when TiO2/ACFs were used to adsorb and photodegrade VOCs, temperature and humidity controller may be not added in practical application.
引文
[1]WHO Regional Office for Europe. Indoor air quality:organic pollutants. Environmental Technology,1989,10(9):855-858.
    [2]Weetman D F. Volatile organic chemicals in the environment[J]. Indoor Environment, 1994,3(1):55-57.
    [3]Molhave L. Volatile organic compounds, indoor air quantity and health[J]. Indoor Air, 1991,1(1):357-376.
    [4]Zhang J F, Smith K R. Indoor air pollution:a global health concern. British Medical Bulletin,2003,68(1):209-225.
    [5]白志鹏,韩肠,袭著革编.室内空气污染与防治.北京:化学工业出版社.2006.
    [6]Molhave L, Clausen G, Berglund B, et al. Total volatile organic compounds(TVOC) in indoor air quality investigations. Indoor Air,1997,7(4):225-240.
    [7]郝吉明,马广大主编.大气污染控制工程(第二版).北京:高等教育出版社,2004.
    [8]张宇峰,邵春燕,张雪英等.挥发性有机化合物的污染控制技术.南京工业大学学报(自然科学版),2003,25(3):89-92.
    [9]Kim K J, Kung C S, You Y J, et al. Adsorption-desorption characteristics of VOCs over impregnated activated carbons. Catal Today,2006,111(3):223-228.
    [10]李守信,宋剑飞,李立清,等.挥发性有机化合物处理技术的研究进展.化工环保,2008,28(1):1-7.
    [11]王宝庆,马广大,陈剑宁.挥发性有机废气净化技术研究进展.环境污染治理技术与设备,2003,4(5):47-51.
    [12]Kang M, Kim B J, Cho S M, et al. Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system. Molecular Catalysis A:Chemical.2002,180(1-2): 125-132.
    [13]Lu C, Chu W C, Lin M R. Removla of BTEX vapor from waste gases by a tricklie bed biofilter. J. of the Air and Waste Management Assoc..2000,50(3):411-417.
    [14]Lu C, Lin M R, Wey I. Removal of EATX from waste gases by a trickle-bed air biofilter. Journal of Environmental Engineering,2001,127(10):946-951.
    [15]柳知非,盖丽娜,卫静,等.生物法净化底浓度苯乙烯有机废气填料的选择及运行功效.污染防治技术,2007,20(2):18-20.
    [16]Dibble L A, Gregory B R. Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams. Environ Sci Technol,1992,26(3):492-495.
    [17]Obee T N, Brown R T. TiO2 photocatalysis for indoor air applications:effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ Sci Technol,1995,29(5):1223-1231.
    [18]Ao C H, Lee S C, Zou S C, et al. Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion(ppb) level by TiO2 Applied Catalysis B:Environmental,2004,49(3):187-193.
    [19]Bouzaza A, Vallet C, Laplanche A. Photocatalytic degradation of some VOCs in the gas phase using an annular flow reactor determination of the contribution of mass transfer and chemical reaction steps in the photodegradation process. Journal of Photochemistry and Photobiology A:Chemistry,2006,177(2-3):212-217.
    [20]Zou L, Luo Y G, Hooper M, et al. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chemical Engineering and Processing,2006,45(11): 959-964.
    [21]苏文悦;付贤智;魏可镁.溴代甲烷在TiO2上的光催化降解研究.高等学校化学学报,2001,22(2):272-275.
    [22]古政荣,陈爱平,戴智铭,等.活性炭-纳米二氧化钛复合光催化空气净化网的研制.华东理工大学学报,2008,26(4):367-371.
    [23]Guo Y F, Ye D Q, Chen K F. Toluene removal characteristics by a superimposed wire-plate dielectric barrier discharge plasma reactor. Journal of Environmental Sciences-China, 2006,18(2):276-280.
    [24]Chiper A S. Simiand N B, Jorand F, et al. Influence of water vapour on acetaldehyde removal efficiency by DBD [J]. Journal of Optoelectronics and Advanced Materials,2006,8(1): 208-211.
    [25]He Z H, Ding L H, Deng D, et al. Application of dielectric barrier discharge in decomposing formaldehyde gas [J]. High Voltage Engineering,2005,31(12):37-38.
    [26]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37-38.
    [27]孙晓君,蔡伟民,等.二氧化钛半导体光催化技术研究进展.哈尔滨工业大学学报,2001,33(4):534-541.
    [28]Serpone N. Brief introductory remarks on heterogeneous photocatalysis. Solar Energy Materials and Solar Cell,1995(38):369-379.
    [29]Mo J H, Zhang Y P, Xu Q J, et al. Photocatalytic purification of volatile organic compounds in indoor air:A literature review.Atmospheric Environment,2009,43(14): 2229-2246.
    [30]Obee T N, Hay S O. Effects of moisture and temperature on the photooxidation of ethylene on titania. Environ. Sci. Technol.1997,31(7):2034-2038.
    [31]Florence B M, Uwe W, Simon V, et al. VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst-Part I:1-butanol and 1-butylamine. Journal of Photochemistry and Photobiology A-Chemistry,2000,132(3):225-232.
    [32]Chen D H, Ye X J, Li K Y. Oxidation of PCE with a UV LED photocatalytic reactor. Chemical Engineering and Technology,2005.28(1):95-97.
    [33]Egerton T A. King C J. The influence of light intensity on photoactivity on TiO2 pigmented systems. Journal of the Oil and Colour Chemists Association,1979,62(10):386-391.
    [34]Okamoto K I, Yamamoto Y, Tanaka H, et al. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bulletin of the Chemical Society of Japan,.1985, 58(7):2015-2022.
    [35]D'Oleivera J C, Al-Sayyed G., Pichat P. Photodegradation of 2-and 3-chlorophenol in titanium dioxide aqueous suspension.Environ. Sci. Technol.1990,24(7):990-996.
    [36]Emeline A V, Ryabchuk V, Serpone N. Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions:Prospect of distinguishing between two kinetic models. Journal of Photochemistry and Photobiology A:Chemistry,2000,133(1-2): 89-97.
    [37]Yang L P, Liu Z Y. Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energy Conversion and Management,2007, 48(3):882-889.
    [38]Tompkins D T. Evaluation of photocatalytic air cleaning capability:a literature review and engineering analysis. ASHARE Research Project 1134-RP,2001.
    [39]Ameen M M, Raupp G B.Reversible Catalyst Deactivation in the Photocatalytic Oxidation of Diluteo-Xylene in Air. Journal of Catalysis,1999,184(1):112-122
    [40]Ao C H, Lee S C, Yu J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO, SO2 and VOCs. Applied Catalysis B-Environmental,2004, 54(1):41-50.
    [41]Kim S B, Hong S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B-Environmental,2002, 35(4):305-315.
    [42]Obee T N, Hay S O. Effects of moisture and temperature on the photooxidation of ethylene on titania. Environmental Science & Technology,1997,31(7):2034-2038
    [43]Mendez-Roman R, Cardona-Martinez N. Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene. Catal Today,1998,40(4):353-365.
    [44]郭婷,白志鹏,吴灿.环境湿度对TiO2/活性炭纤维气-固光催化氧化甲苯的影响,催化学报,2008,28(12):1089-1094
    [45]Serpone N, Pelizzetti E. Adsorption-desorption, related mobility and reactivity in photocatalysis. Photocatalysis:Fundamentals and Applications. Wiley, New York,1989,217-250.
    [46]Sano T, Negishi N. Takeuchi K, et al. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator. Solar Energy,2004,77(5):543-552.
    [47]Fu X Z, Clark L A, Zeltner W A,et al. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Journal of Photochemistry and Photobiology A-Chemistry,1996,97(3):181-186.
    [48]Yang R, Zhang Y P, Xu Q J, et al. A mass transfer based method for measuring the reaction coefficients of a photocatalyst. Atmospheric Environment,2007,41(6):1221-1229.
    [49]胡将军,李英柳,彭卫华.吸附-光催化氧化净化甲醛废气的试验研究.化学与生物工程,2004,21(1):39-41
    [50]Maira A J, Yeung K L, Soria J. Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Applied Catalysis B:Environmental,2001,29(4):327-336.
    [51]Wang K H, Hsieh Y H. Heterogeneous photocatalytic degradation of trichloroethylene in vapor phase by titanium dioxide. Environ. Int.,1998,24(3):267-274.
    [52]Shiraishi F., Toyoda K., Miyakawa H. Decomposition of gaseous formaldehyde in a photocatalytic reactor with a parallel array of light sources:2. Reactor performance. Chem. Eng. J.,2005,114(1-3):145-151.
    [53]Hossain M M, Raupp G B, Hay S O, et al. Three-dimensional developing flow model for photocatalytic monolith reactors. AlChE Journal,1999,45(6):1309-1321.
    [54]Hall R T, Bendfeldt P, Obee T N,et al. Computational and experimental studies of UV/titania photocatalytic oxidation of VOCs in honeycomb monoliths. Journal of Advanced Oxidation Technologies,1998,3:243-251.
    [55]Zhang Y P, Yang R, Zhao R Y. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment,2003.37(24): 3395-3399
    [56]Yang R, Zhang Y P, Zhao R Y. An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application. J Air Waste Manag Assoc.,2004.54(12):1516-1524.
    [57]Mo J H, Zhang Y P, Yang R. Novel insight into VOC removal performance of photocatalytic oxidation reactors. Indoor Air,2005,15(4):291-300.
    [58]Salvado-Estivill I, Brucato A, Puma G L. Two-dimensional modeling of a flat-plate photocatalytic reactor for oxidation of indoor air pollutants.Industrial and Engineering Chemistry Research,2007,46(23):7489-7496.
    [59]Chen F, Zhao J C, Hidaka H. Adsorption factor and photocatalytic degradation of dye-constituent aromatics on the surface of TiO2 in the presence of phosphate anions. Research on Chemical Intermediates,2003,29(7-9):733-748.
    [60]Raupp G B, Nico J A, Annangi S, et al. Two-flux radiation-field model for an annular packed-bed photocatalytic oxidation reactor. AlChE J.,1997,43(3):792-801.
    [61]Jacoby W A, Blake D M, Noble R D, et al. Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Journal of Catalysis,1995,157(1):87-96.
    [62]Doucet N, Bocquillon F, Zahraa O, et al. Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere,2006,65(7):1188-1196.
    [63]Mo J H, Zhang Y P. Yang R. et al. Influence of fins on formaldehyde removal in annular photocatalytic reactors. Building and Environment,2008,43(3):238-245.
    [64]Choi W, Ko J Y, Park H. et al. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B-Environmental,2001.31(3):209-220.
    [65]Riff at S B, Zhao X. Preliminary study of the performance and operating characteristics of a mop-fan air cleaning system for buildings. Building and Environment,2007,42(9): 3241-3252.
    [66]Shiraishi F, Yamaguchi S, Ohbuchi Y. A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus. Chemical Engineering Science,2003,58(3-6):929-934.
    [67]Ao C H, Lee S C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chemical Engineering Science,2005,60(1): 103-109
    [68]Wang W, Ku Y, Ma C M, et al. Modeling of the photocatalytic decomposition of gaseous benzene in a TiO2 coated optical fiber photoreactor. Journal of Applied Electrochemistry, 2005,35(7-8):709-714.
    [69]Chen D H, Ye X J, Li K Y. Oxidation of PCE with a UV LED photocatalyticreactor. Chemical Engineering & Technology,2005,28(1):95-97.
    [70]Wang S B, Ang H M, Tade M O.Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art. Environment International.2007,33(5):694-705
    [71]Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Applied catalysis A,2000, 20(2):275-283
    [72]Ishibai Y C, Sato J, Akita S, et al. Photocatalytic oxidation of NOX by Pt-modified TiO2 under visible light irradiation Journal of Photochemistry and Photobiology A:Chemistry,2007, 188(1):106-111
    [73]Denny F, Scott J, Chiang K. Insight towards the role of platinum in the photocatalytic mineralisation of organic compounds. Journal of Molecular Catalysis A:Chemical,2007, 263(1-2):93-102.
    [74]Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis A; General,2002,228(1-2):15-27.
    [75]Amy D, Kamat P V. Semiconductor-metal nanocomposites. photoinduced fusion and photocatalysis of gold-capped TiO2(TiO2/gold) nanoparticles. J Phys Chem B,2001,105(5): 960-966.
    [76]Miner O C. Kinetic Analysis of Photoinduced Reactions at the Water Semiconductor Interface. Catalysis Today,1999,57(3):205-213.
    [77]吴树新,马智,秦永宁,等.过渡金属掺杂二氧化钛光催化性能的研究.感光科学与光化学,2005,2(23):94-101.
    [78]Srinivasan S S, Wade J, Stefanakos E K. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2 JournaL of Alloys and Compounds,2006,424(1-2): 322-326.
    [79]钱东,闫早学,石毛,等.溶胶凝胶法制备Ti02纳米颗粒及其光催化性能.中国有色金属学报,2005,5(15):817-822.
    [80]Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mercap tobenzothiazole in aqueous La3+-TiO2 suspension for odor control. J Available Catalysis B:Environmental,2004 48(3):185-194.
    [81]Yuan J, Chen M X, Shi J W, et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. International Journal of Hydrogen Energy, 2006,31(10):1326-1331
    [82]Yin S, Ihara K, Aita Y, et al. Visible-light induced photocatalytic activity of TiO2-xAy (A =N, S) prepared by precip itation route. Journal of Photochemistry and PhotobiologyA:Chemistry, 2006,179(1-2):105-114.
    [83]Madhusudan R K, Baruwati B, Jayalkshmi M, et al. S-, N- and C-doped titanium dioxide nanoparticles:synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry,2005,178(11):3352-3358.
    [84]Janus M, Inagaki M, Tryba B, et al. Carbon-modified TiO2 photocatalyst by ethanol carbonization. Applied CatalysisB:Environmental,2006,63(3-4):272-276.
    [85]So W W, Kim K J, Moon S J. Photo-production of hydrogen over the CdS/TiO2 nano-composite particulate films treated with TiCl4. Hydrog Energy,2004.29(3):229-234
    [86]Bessekhouada Y, Chaouib N, Trzpitb M, et al. UV-vis versus visible degradation of Acid Orange Ⅱ in a coupled CdS/TiO2 semiconductors suspension. Photochemistry and Photobiology A:Chemistry,2006,183(1-2):218-224.
    [87]Kristof D, Jo D, Teruhisa O, et al. Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Applied Catalysis B: Environmental,2005,61 (1-2):140-149.
    [88]Tristao J C, Magalhaes F, Corio P, et al. Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. Photochemistry and Photobiology A: Chemistry,2006,181 (2-3):152-157.
    [89]Yu X D, Wu Q Y, Jiang S C. Nanoscale ZnS/TiO2 composites:preparation characterization, and visible-light photocatalytic activity. Materials Characterization, 2006,57(4-5):333-341.
    [90]Yang H M, Shi R R, Zhang K. Synthesis of WO3/TiO2 nanocomposites via sol-gel method. Journal of Alloys and Compounds,2005,398(1-2):200-202.
    [91]Zang L,Lange C,Abraham I, et al. Amorphous microporous titania modified with platinum(Ⅳ) chloride-A new type of hybrid photocatalyst for visible light detoxification. J. Phys. Chem. B,1998,102(52):10765-10771.
    [92]Espinosa R, Zumeta I, Santana J L, et al. Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600nm. Solar Energy Materials and Solar Cells,2005,85(3):359-369.
    [93]Wang B Q, Jing L Q, Qu Y C, et al. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-caping DBS groups. Applied Surface Science,2006,252(8):2817-2825.
    [94]Hiromasa N. Nobuaki T, Toru K T. et al. Photocurrent observed in dye-doped titania gel. Journal of Photochemistry and Photobiology A:Chemistry,2006.179(1-2):125-129.
    [95]Wang K. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Applied Catalysis B:Environmental,1998,17(4):313-320
    [96]Akihiko H, Yoshifutions T, Hiroaki Tada, et al. Acceleration of oxidations and etardation of reductions in photocatalysis of a TiO2-SnO2 bilayer-type catalyst. J. Electrochem. Soc.,2000,147 (6):2279-2283
    [97]Hiroaki T, Akihiko H. A patterned-Ti02-Sn02 bilyer type photocatalyst. J. Phys. Chem: B,2000,104 (19):4585-4587
    [98]Turchi C., Ollis D. Photocatalytic reactor design:an example of mass-transfer limitations with an immobilized catalyst. J. Phys. Chem,1998,92(23):6852-6853.
    [99]Wang R, Hashimoto K, Fujishima A, et al. Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater,1998,10(2):135-138.
    [100]刘平,王心晨,付贤智.光催化自清洁陶瓷的制备及其特性.无机材料学报,2000,5(1):88-92.
    [101]Moazzem Hossain M, Raupp G B. Polychromatic radiation field model for a honeycomb monolith photocatalytic reactor. Chem. Eng. Sci.,1999,54(15-16):3027-3034.
    [102]张彭义,余刚,蒋展鹏.固定化二氧化钛膜的制备及其光催化性能.中国环境科学,2000,20(5):436-440.
    [103]Herrmann J M, Tahiri H, Guillard C, et al. Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water. Catalysis Today,1999,54(1):131-141.
    [104]Mazzarino I, Piccinini P. Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst. Chem. Eng. Sci.,1999,54(15):3107-3111
    [105]Arana J, Dona-Rodriguez J M, Rendon E T, et al. TiO2 activation by using activated carbon as a support. Part 1:Surface characterization and decantability study. Appl. Catal. B, 2003,44(2):161-172.
    [106]El-Sheikh A H, Newman A P, Al-Daffaee H, et al. Deposition of anatase on the surface of activated carbon. Surf.Coat. Technol,2004,187(2-3):284-292.
    [107]Matos J, Laine J, Herrmann J M, et al. Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenols photodegradation. Appl. Catal. B:Environ, 2007,70(1):461-469.
    [108]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995.113.
    [109]Yuan R, Guan R, Zheng J. Effect of the pore size of TiO2-loaded activatedcarbon fiber on its photocatalytic activity. Scr.Mater,2005,52(12):1329-1334.
    [110]Jia B Y, Duan L Y, Ma C L, et al. Characterization of TiO2 loaded on activated carbon fibers and its photocatalytic reactivity. Chin.J. Chem.,2007,25(4):553-557.
    [111]Yuan R, Guan R, Liu P, et al. Photocatalytic treatment of wastewater from paper mill by TiO2 loaded on activated carbon fibers. Colloids Surf.A,2007,293(1):80-86.
    [112]Liu J H, Yang R, Li S M, Preparation and application of efficient TiO2/ACFs photocatalyst.J. Environ. Sci,2006,18(5):979-982.
    [113]Hu C, Tang Y C, Tang H X. Characterization and photocatalytic activity of transition-metal-supported surface bond-conjugated TiO2/SiO2. Cataly Today,2004,90(3-4): 325-330.
    [114]Vohra M S, Lee J S, Choi W Y. Enhanced photocatalytic degradation of tetramethylammonium on silica-loaded titania. J. Appl. Electrochem.,2005,35(7):757-763.
    [115]Ooka C, Yoshida H, Suzuk K, et al. Effect of surface hydrophobicity of TiO2-pillared clay on adsorption and photocatalysis of gaseous molecules in air. Appl. Catal. A Gen.,2004, 260(1):47-53
    [116]Hirano M, Nakahara C, Ota K, et al. Direct formation of zirconia-doped titanic with stable anatase-type structure by thermal hydrolysis. J. Am. Ceram. Soc.,2002,85(5):1333-1335
    [117]Li Y, Li X, Li J, et al. Photocatalytic degradation of methyl orange by TiO2-coated ctivated carbon and kinetic study. Water Res.2006,40(6):1119-1126.
    [118]Kubo M, Fukuda H, Chua X J, et al. Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon, Ind. Eng. Chem. Res. 2007,46 (3):699-704.
    [119]余家国,赵修建.TiO2光催化薄膜的XPS研究.材料研究学报.2000,14(2):203-209
    [120]朱永法,张利,姚文清,等.溶胶-凝胶法制备薄膜型TiO2光催化剂.催化学报,1999,20(3):362-364
    [121]邱健斌,曹亚安,马颖等.担载材料对Ti02薄膜光催化活性的影响.物理化学学报.2000,16(1):1-4
    [122]Sopyan I, Watanabe M, Murasawa S, et al. An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A:Chemistry,1996,98(1-2):79-86
    [123]员汝胜,吴保朝,王占义等.不同有机化合物在Ti02负载活性炭纤维上的光降解-分子尺寸的影响.工业催化,2007,15(12):52-57
    [124]Matsumoto Y, Ishikawa Y, Nishida M, et al. A new electrochemical method to prepare mesoporous titanium(IV) oxide photocatalyst fixed on Alumite substrate. J. Phys. Chem.:B,2000, 104:4204-4209
    [125]Byme J A, Eggins B R, Brown N M D, et al. Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B. Environm.,1998,17:25-36
    [126]Takeda S, Suzuki S, Odaka H, et al. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering, Thin Solid Films,2001,392(2):338-344.
    [127]Eufinger K, Janssen E N, Poelman H, et al. The effect of argon pressure on the structural and photocatalytic characteristics of TiO2 thin films deposited by d. c. magnetron sputtering. Thin Solid Films,2006,515(2):425-429.
    [128]Makiko Y, Kuriki S, Song P K, et al. Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering.Thin Soli d Films,2003,442:227-231.
    [129]Wang X X, Chen X. Xu H B, et al. Advance in modification method of zeolite molecular sieve surface. Chi nese Journal of Inorganic Chemistry,2002.18(6):541-549.
    [130]Duminica F D, Maury F, Senocp F. Atmospheric pressure MOCVD of TiO2 thin films using various reactive gas mixtures. Surf ace and coatings Technology,2004,188-189:255-259.
    [131]Ager F J, J usticia 1, Gerbasi R, et al. RBS analysis of substoichiometric TiO2 anatase thin films for visible light photocatalysis. Nuclear Instruments and Methods in Physics Research B,2006,249:490-492.
    [132]Karches M, Morstein M, Philipp R R, et al. Plasma CVD-coated glass beads as photocatalyst for water decontamination. Catalysis Today,2002,72(3-4):267-279.
    [133]Chang J S, Kim S K. Proceedings of Third International Symposium on Non-Thermal Plasma Technology for Pollution Control, KIMM Press, Daejon,2001
    [134]王惠敏,刘博.低温等离子体发生片替代纳米光催化催化光源的实验分析,青岛大学学报,2003,18(4):51-54
    [135]Sun R B, Xi Z G, Chao F H, et al. Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor, Atmospheric Environment,2007,41(32): 6853-6859.
    [136]刘守新,刘鸿编著.光催化及广电催化基础与应用.北京:化学工业出版社,2006.
    [137]Horikoshi S, Hojo F, Hidaka H, et al. Environmental Remediation by an ltegrated Microwave/UV Illumination Technique.8. Fate of Carboxylic Acids. Aldehydes, Alkoxycarbonyl and Phenolic Substrates in a Microwave Radiation Field in the Presence of TiO2 Particles under UV Irradiation. Environ. Sci. Technol.,2004,38(7):2198-2208.
    [138]李旦振,郑宜,付贤智.微波-光催化耦合效应及其机理研究.物理化学学报,2002.18(4):332-335
    [139]Falconer J L, Magrini B, Kimberley A. Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2.J.Catal.,1998,179(2):171-178.
    [140]Fu X Z, Zeltner W A, Anderson M A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl. Catal. B,1995,6(3):209-224.
    [141]崔鹏,范益群,徐南平,等.TiO2负载膜的制备、表征及光催化性能.催化学报,2000,21(5):494-496.
    [142]Monneyron P, Manero M H, Foussard J N, et al. Hetergeneous photocatalysis of butanol and methyl ethyl ketone-characterization of catalyst and dynamic study. Chem. Eng. Sci.,2003, 58(3-6):971-978.
    [143]侯一宁,王安,王燕.二氧化钛-活性炭纤维混合材料净化室内甲醛污染.四川大学学报(工程科学版),2004,36(4):41-44
    [144]许德平,黄正宏,王永刚,等.活性炭纤维布担载纳米TiO2的三种方法.炭素技术,2001,3(5):12-16
    [145]员汝胜,郑经堂,关蓉波.活性炭纤维负载TiO2薄膜的制备及对亚甲基蓝的光催化降解.精细化工,2005,22(]0):748-751.
    [146]Yuan R S, Guan R B, Shen W Z, et al. J. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers. Colloid Interf. Sci.,2005,282(1):87-91.
    [147]Yamashita H, Harada M, Tanii A, et al. Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purification of water. Catalysis Today,2000,63(1):63-69.
    [148]徐安武,刘汉钦,李玉光,等.NOx气相光催化氧化降解研究.高等学校化学学报,2000,21(08):1252-1256
    [149]Fu P F, Luan Y, Dai X G. Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity. Journal of Molecular Catalysis,2004, 221(1-2):81-88.
    [150]张继南.我国室内空气污染现状分析及污染预防措施.中国科技信息,2006(9):117-119
    [151]白志鹏,韩旸,袭著革编.室内空气污染与防治.北京:化学工业出版社,2006.
    [152]张胜军,姚晓青,蒋欣.室内装修后苯、甲苯、二甲苯和甲醛污染调查.中国环境监测.2004,20(4):23-24.
    [153]Zhang J F, Kirk R S. Indoor air pollution:a global health concern. British Medical Bulletin,2003,68(1):209-225.
    [154]钟天翔,刘谡帆,刘刚.等.杭州市居室空气中挥发性有机物污染研究.环境科学与技术.2005,28(6):45-47
    [155]蒋励,张卫国,宁贵华,等.新装修居室空气中甲醛、苯及总挥发性有机物浓度检测.环境与健康杂志,2006,23(3):266
    [156]王玲玲.运用热脱附/GC/MS分析研究室内空气中TVOC浓度及种类分布.中国环境监测,2005.21(6):7-10.
    [157]王现.吕春梅,李玉华,等.不同时段室内空气甲醛浓度波动及预测模型.哈尔滨工业大学学报,2005,37(11):1492-1495.
    [158]魏学锋,苗娟,白志鹏.新装修居室中大芯板释放甲醛的研究.环境污染与防治,2006,28(9):662-665.
    [159]刘建华,杨蓉,李松梅,等.TiO2/ACF光催化再生复合材料的研究进展.材料工程,2006.(8):61-65.
    [160]Sun R B, Xi Z G, Chao F H, et al. Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor. Atmospheric Environment,2007,41(32): 6853-6859.
    [161]Guo T, Bai Z P, Wu C, et al. Influence of relative humidity on the photocatalytic oxidation (PCO)of toluene by TiO2 loaded on activated carbon fibers:PCO rateand intermediates accumulation. Applied Catalysis B:Environmental,2007,79 (2):71-178
    [162]Ao C H, Lee S C, Mak C L, et al. Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2:promotion versus inhibition effect of NO. AppliedCatalysis B:Environmental,2003a,42,119-129.
    [163]Zhang P Y, Liang F Y, Yu G, et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. Journal of Photochemistry and Photobiology A: Chemistry,2003,156(1-3):189-194
    [164]Herrmann J M. Heterogeneous photocatalysis:state of the art and present applications. Top Catal,2005,34(1-4):49-65.
    [165]Obuchi E., Sakamoto T., Nsalsno K. Photocatalytic decomposition of acetaldehyde over TiO2/SiO2.catalyst.Chem. Eng. Sci.,1999,54(10):1525-1530.
    [166]Coronado J M, Zorn M E, Tejedor I. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films:a kinetic study on the influence of water vapor. Appl. Catal. B Environ. 2003,43(4):329-344.
    [167]Wiltowski T S, Howerton R D, Lalvani S B. Photocatalytic oxidation of trichloroethylene and carbon tetrachloride using titanium dioxide filter as a catalyst. Energy Science,2001,23(9):845-852.
    [168]Liu H M, Lian Z W, Ye X J, et al. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide. Chemosphere,2005,60 (5):630-635.
    [169]Bouzaza A, Laplanche A. Photocatalytic degradation of toluene in the gas phase:comparative study of some TiO2 supports. Journal of Photochemistry and Photobiology A: Chemistry.2002,150 (1):207-212.
    [170]Matthews R W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. J. Catal.1988,111(2):264-272.
    [171]宿燕兵,李韵谱.室内甲醛污染状况分析.中国环境卫生,2007,10(2):137-139.
    [172]石碧清,刘湘,闾振华.室内甲醛污染现状及其防治对策,环境科学与技术,2007,30(6):49-51.
    [173]庚晋,周洁.甲醛污染的危害、米源及预防.吉林建材,2004(5):49-51.
    [174]干争,林永娟.室内空气中甲醛的测定方法选择探讨.上海计量测试,2003,30(5):17-19
    [175]胡冠九,尹卫萍.室内空气中甲醛的测定方法.环境监测管理与技术,2002,14(6):12-13
    [176]国家环保总局.公共场所空气中甲醛的测定方法(GBT18204.26-2000)
    [177]Obee T.N. Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environmental Science & Technology,1996,30,3578-3584.
    [178]Wang K H, Hsieh Y H, Lin C H, et al. The study of the photocatalytic degradation kinetics for dichloroethylene in vapor phase. Chemosphere,1999,39,1371-1384.
    [179]Ralph W M. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. J. Catal.,1988,111,264-272.
    [180]Xu Y, Langford C H. J. Photochem. Photobiol. A 133 (2000):67.
    [181]Chen P H., Jenq C.H. Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide. Environ. Int,1998,24(8):871-879.
    [182]Liu H M, Lian Z W, Ye X J. et al. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide.Chemosphere,2005,60():630-635.
    [183]Romero M, Blanco J, Sanchez B, et al. Solar photocatalytic degradation of water and air pollutants:Challenges and perspectives. Solar Energy,1999,66 (2) 169-182.
    [184]Paola A D, Marci G, Palmisano L, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:Characterization and photocatalytic activity for the degradation of 4-Nitrophenol. Phys. Chem. B,2002,106 (3),637-645.
    [185]Paola A D, Garcia-Lopeza E, Ikedab S, et al. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2.Catalysis Today. 2002,75(1-4):87-93.
    [186]Chatterjee D, Mahata A. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. Photochemistry and Photobiology A:Chemistry.2002,153(1-3): 199-204.
    [187]Cho Y M, Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol.,2001,35(5):966-970.
    [188]Su H L, Xie Y, Gao P, et al. Synthesis of MS/TiO2 (M=Pb, Zn, Cd) nanocomposites through a mild sol-gel process. Mater. Chem.,2001,11:684-686
    [189]Yoon K H, Cho J, Kang D H. Physical and photoelectrochemical properties of the TiO2-ZnO system. Materials Research Bulletin,1999,34(9):1451-1461.
    [190]Stengl V, Bakardjievaa S, Nataliya M, et al. Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous and Mesoporous Materials,2008,110(2-3):370-378.
    [191]So W W, Kim K J, Moon S J. Photo-production of hydrogen over the CdS/TiO2 nano-composite particulate films treated with TiCl4. Hydrog Energy,2004,29:229-234.
    [192]Bessekhouada Y, Chaouib N, Trzpitb M, et al. UV-vis versus visible degradation of Acid Orange 11 in a coupled CdS/TiO2 semiconductors suspension. Photochemistry and Photobiology A:Chemistry,2006,183(1-2):218-224.
    [193]Kristof D, Jo D, Teruhisa O, et al. Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Applied Catalysis B: Environmental,2005,61 (1-2):140-149.
    [194]苏碧桃,董娜,慕红梅,等.Fe3+-CdS/TiO2复合半导体光催化剂的制备与表征.精细化工,2007,24(9):856-859
    [195]Tristao J C, Magalhaes F, Corio P, et al. Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. Photochemistry and Photobiology A: Chemistry.2006,181 (2-3):152-157.
    [196]Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Mol Catal A:Chem.,2006, 244(1-2):25.
    [197]万李,冯嘉猷.CdS/TiO2复合半导体薄膜的制备及其光催化性能.环境科学研究,2009,22(1):95-98.
    [198]Ding Z, Hu X J, Yue P L, et al. Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition, Catal. Today.2001,68 (1-3):173-182.
    [199]Xu Y M, Zheng W. Liu W P. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. J. Photochem. Photobiol. A:Chem.,1999,122(1):57-60.
    [200]Bhattacharyya A, Kawi S, Ray M B. Photocatalytic degradation of orange Ⅱ by TiO2 catalysts supported on adsorbents. Catal. Today.2004,98(3):431-439.
    [201]Leng W H, Liu H,.Cheng S A, et al. Kinetics of photocatalytic degradation of aniline in water over TiO2 support on porous nickel. J. Photochem. Photobiol. A:Chem.2000,131(2): 125-132.
    [202]徐占霞,崔冠军,张敏,等.新型纳米复合材料的制备及其可见光催化性能研究.影像科学与光化学,2008,26(6):489-498.
    [203]Demeestere K, Dewulf J, Ohno T, et al. Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Applied Catalysis B:Environmental,2005,61 (1-2):140-149.
    [204]Zhu K R, Zhang M S, Hong J M, et al. Size effect on phase transition sequence of TiO2 nanocrystal. Materials Science and Engineering:A,2005,403(1-2):87-93.
    [205]陈达美,钟建军,汪言满.TiO2悬浮体系光催化降解染料动力学研究.精细化工,2002,19(1):55-58.
    [206]M. Lewandowski and D. F. Ollis. Extension of a Two-Site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics:concentration variations and catalyst regeneration studies. Applied Catalysis B:Environmental,2003,45(3):223-238
    [207]郭婷.TiO2/ACFs复合材料吸附-光催化去除甲苯的机理与技术研究.南开大学[博士论文],2007.
    [208]Luo Y, Ollis D F. Heterogeneous Photocatalytic Oxidation of Trichloroethylene and Toluene Mixtures in Air:Kinetic Promotion and Inhibition, Time-Dependent Catalyst Activity. Journal of Catalysis,1996,163(1):1-11.
    [209]Mendez-roman R, Cardona-martinez N. Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene. Catalysis Today,1998,40(4):353-365.
    [210]D'Hennezel O, Pichat P, Ollis D F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCl pretreated TiO2:by-products and mechanisms. Journal of Photochemistry and Photobiology A:Chemistry,1998,118(3):197-204.
    [211]Cao L, Gao Z, Suib S L, et al. Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts:Studies of Deactivation and Regeneration. Journal of Catalysis,2000,196(2):253-261.
    [212]Larson S A, Falconer J L. Initial Reaction Steps in Photo catalytic Oxidation of Aromatics. Catalysis letters,1997,44(1-2):57-65.
    [213]孙如宝.低温等离子体驱动纳米光催化室内低浓度甲苯新技术研究.军事医学科学院卫生学环境医学研究所[硕士论文],2006.
    [214]刘守新,刘鸿编著.光催化及光电催化基础与应用.北京:化学工业出版社,2006.1
    [215]吴霞.CdS-TiO2/AC和CdO-TiO2纳米复合光催化剂性能和机理研究.北京化工大学[硕十论文],2007.
    [216]Srinivasan S S, Wade J, Stefanakos E K.. Visible light photocatalysis via Nanocomposite CdS/TiO2 materials. Journal of Nanomaterials, Doi 10.1155/JNM/2006/87326
    [217]Kaneko M. Okura I (Eds.).Photocatalysis, Science and Technology,Springer,2002
    [218]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95(1):69-96.
    [219]Serpone N, Khairutdinov R F, Kamat P V, et al. Semiconductor nanoclusters-physical, chemical, and catalytic aspects. Studies in surface science and catalysis,1997,103:474
    [220]Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A-Chem.,244 (2006) 25-32.
    [221]西田耕之助.微生物脱臭法の现状と今后の课题.资源环境对策,1994,30(13):23-33.
    [222]Water Environment Federation (1995). Odor control in wastewater treatment plants.manual of Practice No 22. New York, USA.
    [223]Stuetz R., Franz-Bernd F. Odors in Wastewater Treatment. IWA Publishing, Alliance House,12 Caxton Street, London SW1H0QS, UK.2001.
    [224]Sui G H, Li J J, Sun G P. Investigation of odor pollution in a municipal wastewater treatment plant. Chinese Journal of Environmental Engineering,2008,2(3):399-402.
    [225]加藤龙夫等著.恶臭的仪器分析.北京:中国环境科学出版社,1992.3
    [226]Jefferson B, Hurst A, Stuetz R, et al. A comparison of chemical methods for the control of odours in wastewater. Process Safety and Environmental Protection,2002,80(2):93-99
    [227]Yan R, Chin T, Ng Y L, et al. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons. Environ Sci Technol,2004,38 (1):316-323.
    [228]Burgess J E, Parsons S A, Stuetz R M. Developments in odour control and waste gas treatment biotechnology:a review. Biotechnology Advances,2001,19(1):35-63
    [229]Ruan J J. Li W, Shi Y, et al. Decomposition of simulated odors in municipal wastewater treatment plants by a wire-plate pulse corona reactor. Chemosphere.2005,59(3):327-333.
    [230]Easter C, Quigley C, Burrowes P. Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chemical Engineering Journal,2005,113 (2-3):93-104
    [231]Huang Z H, Kang FY, Liang K M, et al. Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds. Jonunrnal of Hazardous Materials,2003,98(3):107-115.
    [232]杨莉萍.集中空调系统中光催化降解室内甲醛的研究.上海交通大学[博士论文],2007.
    [233]张殿印,张学义,编著.除尘技术手册.北京:冶金工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700