人工湿地对14种常用抗生素的去除效果及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素主要用于预防治疗人体和动物体疾病,也常作为生长促进剂添加于动物饲料中。由于抗生素的大量使用和滥用,导致病原菌对抗生素产生耐药性,其耐药速度和耐药水平呈逐年上升趋势,已对全球性环境问题构成威胁。为了改善饮用水水质和保护人群健康,提供一种经济高效去除抗生素的生物处理工艺已成为亟待解决的问题。人工湿地在处理药物和个人护理品(PPCPs)及投资运行管理方面相对于其它传统污水处理工艺具有不可比拟的优势,但对利用人工湿地去除生活污水和污水厂尾水中抗生素,以及抗生素去除效果和影响因素的研究在国内外并不多见,可供参考的抗生素去除机理、关键的设计参数等也不多。
     本研究基于试验小试与野外中试、生活污水与污水厂尾水的差异性特点,研究了人工湿地对污水中抗生素的去除效果和影响因素。通过12种构型模拟人工湿地(试验小试)对生活污水中14种抗生素(磺胺类:磺胺嘧啶、磺胺吡啶、磺胺醋酰、磺胺甲噁唑、磺胺二甲嘧啶和甲氧苄啶;喹诺酮类:诺氟沙星、环丙沙星、洛美沙星和氧氟沙星;四环素类:四环素和氧四环素;大环内酯类:脱水红霉素和罗红霉素)的去除效果进行了研究,并通过正交试验分析确定了4类抗生素去除效果的主要影响因素及其影响显著性;同时研究了垂直-水平潜流组合湿地和自然曝气生物滤床(野外中试)对污水厂尾水中14种抗生素的去除效果和影响因素,以及这两种工艺处理效果间的比较。
     本研究得出以下结论:
     (1)试验小试对生活污水中抗生素的去除效果和影响因素
     本试验选取4种工艺(下行垂直流、上行垂直流、表面流、水平潜流)、3种基质(火山石、砾石、沸石)、3种植物(再力花、花叶芦竹、无植物)、3种水力负荷(0.125、0.25、0.5m/d)构建12种构型模拟人工湿地,对生活污水中抗生素的去除效果和影响因素进行研究,结果表明:
     即使在高进水浓度的条件下,不同构型的模拟湿地均能很好的去除生活污水中磺胺类、喹诺酮类、四环素类和大环内酯类。正交试验结果表明,工艺、基质和水力负荷3种因素对磺胺类的去除效率均有显著性影响(P<0.05),但其在任一因素各水平下的去除效率均无显著性差异(P>0.05),而工艺、基质、植物和水力负荷4种因素对喹诺酮类、四环素类和大环内酯类的去除效率均无显著性影响(P>0.05),可见不同构型模拟湿地对这4类抗生素均有很好的去除效果,人工湿地是一种能够经济高效去除生活污水中多种抗生素的生物处理工艺。
     (2)野外中试对污水厂尾水中抗生素的去除效果和影响因素
     为了提高去除负荷、节约占地面积,采用由下行垂直流和水平潜流串联构成的垂直流-水平潜流组合湿地,以及由多种填料(生物陶粒、高炉渣、砾石)组成的自然曝气生物滤床两种工艺对污水厂尾水中抗生素的去除效果和影响因素进行研究,并对两种工艺的去除效果进行比较,结果显示:
     组合湿地和生物滤床均能有效去除污水厂尾水中喹诺酮类、大环内酯类和四环素类抗生素,且有植物的湿地系统比无植物的滤床系统处理效果好,说明占地面积小水力负荷高的人工湿地工艺可以经济高效去除污水厂尾水中多种抗生素。此外,水力负荷对抗生素去除效果有一定的影响,组合湿地和生物滤床的适宜水力负荷分别为1.0~1.5m/d和4.8~6.4m/d。
     结合试验小试和野外中试的讨论结果,总结抗生素可能的去除途径为:喹诺酮类主要通过吸附和光降解而去除,吸附和水解是四环素类的主要去除途径,而磺胺类和大环内酯类的去除则是多种途径共同作用的结果,其中植物的存在有利于大环内酯类的去除。
     以上的研究结果表明采用人工湿地对生活污水中磺胺类、喹诺酮类、四环素类和大环内酯类的处理均能取得理想的去除效果,同时人工湿地对污水厂尾水中喹诺酮类、四环素类和大环内酯类均有较好的去处效果,研究所得出的抗生素的去除效果、影响因素以及人工湿地优化设计参数和可能的去除途径可作为以后利用人工湿地处理污水中抗生素的应用参考依据。
Antibiotics are mainly applied in the prevention and treatment of humans and animals’diseases, and are used as a promoter in animal feeds as well. The development and proliferationof antibiotic resistence in enviromental microorganisms is a major public health concern aroundthe world. For the sake of improve the drinking water quality and prove the health of people, weneed a economical and efficient biological treatment technology to solve the problem.Cconstructed wetland (CW) has unparalleled advantages relative to the traditional sewagetreatment process in pharmaceuticals and personal care products (PPCPs) removal andinvestment, operational management, but the research about that using CW for removal ofantibiotics in domestic sewage and sewage plant effluent and the impact factors which canimpact the antibiotic removal are rare. In addition, the removal mechanism of reference and thekey design parameters are rare, too.
     This paper has researched the benefit and discipline of antibiotics removal and impactfactors of CW in the pilot test and field test, domestic sewage and sewage plant effluent. We hasstudied the removal of14antibiotics (sulfonamides: sulfadizine, sulfapyridine, sulfacetamide,sulfamethazine, sulfamethoxazole, trimethoprim; quinolones: norfloxacin, ciprofloxacin,lomefloxacin, ofloxacin; tetracyclines: oxytetracycline, tetracycline; macrolides: roxithromycin,erythromycin) in domestic sewage by12kinds of configuration simulation constructed wetlands(SCWs, pilot test), and determined the main factors and their significant by the orthogonal testwhich concluded that four classes antibiotics removal effect; Meanwhile, we has studied theremoval and impact factors of14antibiotics in sewage plant effluent by the vertical-horizontalsubsurface-flow complex constructed wetland and natural biological aerated filter (field test),and compared the removal of the two processes.
     Analyses of the conclusions of the study are as follows:
     (1) The removal and impact factors of antibiotics in domestic sewage by pilot test
     We has studied the removal and impact factors of antibiotics in domestic sewage by12kinds of configuration simulation constructed wetland which consist of four processes (verticalsubsurface-flow CW (VFCW), upward vertical subsurface-flow CW (UVFCW), surface flowCW (SFCW), horizontal subsurface-flow CW (HFCW)), three substrates (vesuvianite, gravel, zeolite), three plants (Thalia dealbata, Arundo donax var. versicolor, unplant), three hydraulicloading rate (HLR,0.125,0.25,0.5m/d), the results shows that:
     Although the concentration of some antibiotics are very high,12kinds of configurationSCWs have high removal efficiencies for sulfonamides, quinolones, tetracyclines and macrolides.The process, substrate and HLR have significant effect on the removal of sulfonamides in SCW,whose shuiping have no significant difference (P>0.05), and the process, substrate, plant andHLR have no significant effect on the removal of quinolones, tetracyclines, macrolides in SCW(P <0.05), which mean these antibiotics could be removed effectively by SCW.
     (2) The removal and impact factors of antibiotics in domestic sewage by field test
     For the sake of enhance the removal load and save the floor space, we has studied theremoval and impact factors in the vertical-horizontal subsurface-flow complex constructedwetland (CCW) which consist of VFCW and HFCW in series, and the natural biological aeratedfilter (BAF) with Bio-ceramic, blast furnace slag and gravel, to remove the antibiotics. Theremoval efficiency was compared, and the results shows that:
     Quinolones, tetracyclines and macrolides could be eliminated effectively by CCW and BAF,and the removal of antibiotics by planted CCW system is more effective than the unplanted BAFsystem, which mean that CWs with limited area and high HLR could remove antibiotics insewage plant effluent. The treatment of antibiotics could be affected by the HLR, and the optimalHLR for the removal of antibiotics in the CCW and BAF were1.0~1.5m/d and4.8~6.4m/d,respectively.
     The results about pilot test and field test also shows that, adsorption and photodegradationappears to be the most important pathways for quinolones; Tetracyclines removed by means ofadsorption processes and hydrolysis; The elimination of sulfonamides and macrolides could bethe combined action of several pathways.
     The above results shows that: The CW can be used to deal with the sulfonamides,quinolones, tetracyclines and macrolides in domestic sewage, and the effluent of sulfonamidesand tetracyclines can reach the level of tertiary sewage treatment process. And the CW also canbe used to deal with the quinolones, tetracyclines and macrolides in sewage plant effluent. Theremoval efficiencies of antibiotics, the impact factors, the key design parameters of CW and thepossible elimination pathways all can be used in the CW system to deal with the antibiotics treatment in the future.
引文
[1] Adams, C., Wang, Y., Loftin, K., Meyer, M.,2002. Removal of antibiotics from surface and distilledwater in conventional water treatment processes. Journal of Environmental Engineering–ASCE128(3),253–260.
    [2] American Chemical Society,2009. SciFinder Scholar.
    [3] Boreen, A.L., Arnold, W.A., Mcneill, K.,2003Photodegradation of pharmaceuticals in the aquaticenvironment: A review. Aquatic Sciences65(4),320–341.
    [4] Boreen, A., Arnold, W.A., McNeill, K.,2004. Photochemical fate of sulfa drugs in aquatic environment:sulfa drugs containing five-membered heterocyclic groups. Environmental Science&Technology38,3933–3940.
    [5] Bruce, J.R., Paul, K.S.L., Michael, M.,2005. Emerging chemicals of concern: Pharmaceuticals andpersonal care products (PPCPs) in Asia, with particular reference to Southern China. Marine PollutionBulletin50,913–920.
    [6] Carberry, J., Englande, A.,1983. Sludge Characteristics and Behavior. Martinus Nijhoff Publishers,Boston, The Hague, Dordrecht, Lancaster.
    [7] Choi, K.J., Son, H.J., Kim, S.H.,2007. Ionic treatment for removal of sulfonamide and tetracyclineclasses of antibiotic. Science of the Total Environment387(1–3),247–256.
    [8] Christian, T., Schneider, R.J., F rber, H.A., Skutlarek, D., Goldbach, H.E.,2003. Determination ofantibiotic residues in manure, soil and surface waters. Acta Hydrochimica et Hydrobiologica31:36–44.
    [9] Conkle, J.L., Lattao, C., White, J.R., Cook, R.,2010. Competitive sorption and desorption behavior forthree fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere80,1353–1359.
    [10] Dietz, A.C., Schnoor, J.L.,2001. Advances in Phytoremediation. Environmental Health Perspectives99,163–168.
    [11] Gobel, A., McArdell, C.S., Suter, M.J.F., Giger, W.,2004. Trace determination of macrolide andsulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater usingliquid chromatography coupled to electrospray tandem mass spectrometry. Analytical Chemistry76(16),4756–4764.
    [12] Gobel, A., Athomsen, A., McArdell, C.S., Joss, A., Giger, W.,2005. Occurrence and sorption behavior ofsulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science&Technology39(11),3981–3989.
    [13] Gobel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W.,2007. Fate of sulfonamides, macrolides, andtrimethoprim in different wastewater treatment technologies. Science of the Total Environment372(2–3),361–371.
    [14] Golet, E., Xifra, I., Siegrist, H., Alder, A.C., Giger, W.,2003. Environmental exposure assessment offluoroquinolone antibacterial agents from sewage to soil. Environmental Science&Technology37(15),3243–3249.
    [15] Grady, C.P.L., Daigger, G.T., Henry, C.,1999. Biological Wastewater Treatment. New York: MarcelDekker Inc.478–512.
    [16] Gulkowska, A., Leung, H.W., So, M.K., Taniyasu, S., Yamashita, N., Yeung, L.W.Y., Richardson, B.J., Lei,A.P., Giesy, J.P., Lam, P.K.S.,2008. Removal of antibiotics from wastewater by sewage treatmentfacilities in Hong Kong and Shenzhen, China. Water Research42,395–403.
    [17] Halling-S rensen, B., Nielsen, S.N., Lanzky, P.F., Ingerslev, F., Lützh ft, H.C.H, J rgensen, S.E.,1998.Occurrence, fate and effects of pharmaceutical substances in the environment–a review. Chemosphere36(2),357–393.
    [18] Hijosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Martín-Villacorta, J., Bécares, E., Bayona, J.M.,2010. Comprehensive assessment of the design configuration of constructed wetlands for the removal ofPharmaceuticals and personal care products from urban wastewaters. Water Research44,3669–3678.
    [19] Hijosa-Valsero, M., Fink, G., Schlüsener, M.P., Sidrach-Cardona, R., Martín-Villacorta, J., Ternes, T.,Bécares, E.,2011. Removal of antibiotics from urban wastewater by constructed wetland optimization.Chemosphere83,713–719.
    [20] Hirsch, R., Ternes, T., Haberer, K., Kratz, K.,1999. Occurrence of antibiotics in the aquatic environment.Science of the Total Environment225(1–2),109–118.
    [21] Hong, M.S., Farmayan, W.F., Dortch, I.J., Chiang, C.Y.,2001. Phytoremediation of MTBE from agroundwater plume. Environmental Science&Technology35,1231–1239.
    [22] Huang, C.H., Renew, J.E., Smeby, L.K., Pinkston, K., Sedlak, L.D.,2001. Assessment of potentialantibiotic contaminants in water and preliminary occurrence analysis. Water Resources Update120,30–40.
    [23] Huber, M.M., Gobel, A., Joss, A., Hermann, N., Loffler, D., McArdell, C.S., Ried, A., Siegrist, H., Ternes,T.A., von Gunten, U.,2005. Oxidation of pharmaceuticals during ozonation of municipal wastewatereffluents: A pilot study. Environmental Science&Technology39(11),4290–4299.
    [24] Imfeld, G., Braeckevelt, M., Kuschk, P., Richnowa, H.H.,2009. Monitoring and assessing processes oforganic chemicals removal in constructed wetlands. Chemosphere74,349–362.
    [25] Kadlec, R.H.,1992. Hydrological factors in wetland water treatment. In: Hammer, D.A.(Ed.),Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. Lewis Publishers,Chelsea (MI), USA, pp.25–29.
    [26] Kadlec, R.H., Knight, R.L., Vymazal, J., Brix, H., Cooper, P., Haberl, R.,2000. Constructed wetlands forpollution control: processes, performance, design and operation. IWA specialist group on use ofmacrophytes in water pollution control; Scientific and Technical Report No.8; IWA Publishing: London,U.K., pp52–53.
    [27] Karthikeyan, K.G., Meyer, M.T.,2006. Occurrence of antibiotics in wastewater treatment facilities inWisconsin. USA. Science of the Total Environment361(1–3),196–207.
    [28] Kim, S., Eichhorn, P., Jensen, J.N., Webber, A.S., Aga, D.,2005. Removal of antibiotics in wastewater:effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludg eprocess.Environmental Science&Technology39(15),5816–5823.
    [29] Kim, S.C., Carlson, K.,2007. Temporal and spatial trend in the occurrence of human and veterinaryantibiotics in aqueous and river sediment matrices. Environmental Environmental Science&Technology41,50–57.
    [30] Kobayashi, Y., Yasojima, M., Komori, K., Suzuki, Y., Tanaka, H.,2006. Removal characteristics ofhuman antibiotics during wastewater treatment in Japan. Water Practice&Technology1(3),1–9.
    [31] Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zarugg, S.D., Barber, L.B., Buxton, H.T.,2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams,1999-2000:A national reconnaissance. Environmental Science&Technology36,1202–1211.
    [32] Kümmerer, K., Al-Ahmad, A., Mersch-Sundermann, V.,2000. Biodegradability of some antibiotics,elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere40(7),701–710.
    [33] Kümmerer, K.,2003. Significance of antibiotics in the environment[J]. J Antimicrobial Chemotherapy52,5–7.
    [34] Kümmerer, K.,2009. Antibiotics in the aquatic environment-A review-Part I. Chemosphere75,417–434.
    [35] Le-Minh, N., Khan, S.J., Drewes, J.E., Stuetz, R.M.,2010. Fate of antibiotics during municipal waterrecycling treatment processes. Water Research44,4295–4323.
    [36] Lindberg, R.H., Wennberg, P., Johansson, M.I.,2005. Screening of human antibiotic substances anddetermination of weekly mass flows in five sewage treatment plants in Sweden. Environmental Scienceand Technology39(10),3421–3429.
    [37] Loftin, K.A., Adams, C.D., Meyer, M.T., Surampalli, R.,2008. Effects of ionic strength, temperature, andpH on degradation of selected antibiotics. Journal of Environmental Quality37(2),378–386.
    [38] Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L., Alvarez, J.J.P.,2010. Trends in antibioticresistance genes occurrence in the Hai River, China. Environmental Science&Technology44,7220–7225.
    [39] Matamoros, V., Bayona, J.M.,2006. Elimination of Pharmaceuticals and personal care products inSubsurface Flow Constructed Wetlands. Environmental Science&Technology40,5811–5816.
    [40] Matamoros, V., Arias, C., Brix, H. Bayona, J.M.,2007. Removal of Pharmaceuticals and personal careproducts (PPCPs) from Urban Wastewater in a Pilot Vertical Flow Constructed Wetland and a Sand Filter.Environmental Science&Technology41,8171–8177.
    [41] Matamoros, V., Caselles-Osorio, A., García, J., Bayona, J.M.,2008. Behaviour of pharmaceuticalproducts and biodegradation intermediates in horizontal subsurface flow constructed wetland. Amicrocosm experiment. Science of the Total Environment394,171–176.
    [42] Matamoros, V., Arias, C., Brix, H. Bayona, J.M.,2009. Preliminary screening of small-scale domesticwastewater treatment systems for removal of Pharmaceuticals and personal care products. Water Research43,55–62.
    [43] Mcardell, C.S., Molnar, E., Suter, M.J.F., Giger, W.,2003. Occurrence and fate of macrolide antibiotics inwastewater treatment plants and in the Glatt Valley Watershed Switzerland. Environmental Science&Technology37(34),5479–5486.
    [44] Miao, X.S., Bishay, F., Chen, M., Metcalfe, C.D.,2004. Occurrence of antimicrobials in the final effluentsof wastewater treatment plants in Canada. Environmental Science&Technology38,3533–3541.
    [45] Newman, L.A., Reynolds, C.M.,2004. Phytodegradation of organic compounds. Curr. Opin. Biotechnol15,225–230.
    [46] Pailler, J.Y., Krein, A., Pfister, L., Hoffmann, L., Guignard, C.,2009. Solid phase extraction coupled toliquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracycline, analgesics andhormones in surface water and wastewater in Luxembourg. Science of the Total Environment407,4736–4743.
    [47] Paul, T., Miller, P.L., Strathmann, T.J.,2007. Visible-light-mediated TiO2photocatalysis offluoroquinolone antibacterial agents. Environmental Science&Technology41,4720–4727.
    [48] Pouliquen, H., Le, Bris, H.,1996. Sorption of oxolinic acid and oxytetracycline to marine sediments.Chemosphere33(5),801–815.
    [49] Pouliquen, H., Delépée, R., Larhantec-Verdier, M., Morvan, M.L., Bris, H.L.,2007. Comparativehydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine andflorfenicol) in deionised water, freshwater and seawater under abiotic conditions. Aquaculture262,23–28.
    [50]Qiang, Z., Adams, C.,2004. Potentiometric determination of acid dissociation constants(pKa) for human and veterinary antibiotics. Water Research38,2874-2890.
    [51] Quiang, Z., Adams, C.,2004. Potentiometric determination of acid dissociation constants (pK(a)) forhuman and veterinary antibiotics. Water Research38(12),2874–2890.
    [52] Ryan, J.A., Bell, R.M., O′Connor, G.A.,1988. Plant uptake of non-ionic organic chemicals from soils.Chemosphere17,2299–2323.
    [53] Ryan, C.C., Tan, D.T., Arnold, W.A.,2011. Direct and indirect photolysis of sulfamethoxazole andtrimethoprim in wastewater treatment plant effluent. Water Research45,1280–1286.
    [54] Sarmah, A.K., Meyer, M.T., Boxall, A.B.A.,2006. A global perspective on the use, sales, exposurepathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere65,725–759.
    [55] Senta, I., Terzic, S., Ahel, M.,2008. Simultaneous determination of sulfonamides, fluoroquinolones,macrolides and trimethprim in wastewater and river water by LC-tamdem-MS. Chromatographia68,747–758.
    [56] Sithole, B.B., Guy, R.D.,1987. Models for tetracycline in aquatic environments. Water, Air,&SoilPollution32(3–4),303–314.
    [57] S ren, T.,2000. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-termdifferently fertilized loess Chernozem. Journal of Plant Nutrition and Soil Science163(6),589–594.
    [58] Susarla, S., Medina, V.F., McCutcheon, S.C.,2002. Phytoremediation: an ecological solution to organicchemical contamination. Ecological Engineering18,647–658.
    [59] Tamtam, F., Mercier, F., Bot, B.L., Eurin, J., Dinh, Q.T., Clément, M., Chevreuil, M.,2008. Occurrenceand fate of antibiotics in the Seine River in various hydrological conditions. Science of The TotalEnvironment393,84–95.
    [60] Thiele-Bruhn, S.,2003. Pharmaceutical antibiotic compounds in soils-a review. Journal of Plant Nutritionand Soil Science166,145–167.
    [61] Tolls, J.,2001. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science&Technology35(17),3397–3406.
    [62] Truu, M., Juhanson, J., Truu, J.,2009. Microbial biomass, activity and community composition inconstructed wetlands. Science of the Total Environment407(13),3958–3971.
    [63] Turiel, E., Bordin, G., Rodríguez, A.R.,2005. Study of the evolution and degradation products ofciprofloxacin and oxolinic acid in river water samples by HPLC-UV/MS/MS-MS. Journal ofEnvironmental Monitoring7,189–195.
    [64]USEPA,2007. Method1694: Pharmaceuticals and personal care products in water, soil,sediment, and biosoilids by HPLC/MS/MS. Washington, DC, USA.
    [65] Volmer, D.A., Hui, J.P.,1998. Study of erythromycin A decomposition products in aqueous solution bysolid-phase microextraction/liquid chromatography/tandem mass spectrometry. Rapid Commun MassSpectrom12(3),123–129.
    [66] Vymazal, J.,2005. Horizontal Subsurface-flow and hybrid constructed wetlands systems for wastewatertreatment. Ecological Engineering25(5),478–490.
    [67] Wang, Q.Q., Bradford, S.A., Zheng, W., Yates, S.R.,2006. Sulfadimethoxine degradation kinetics inmanure as affected by initial concentration, moisture, and temperature. Journal of Environmental Quality35,2162–2169.
    [68] Watkinson, A.J., Micalizzi, G.B., Graham, G.M., Bates, J.B., Costanzo, S.D.,2007. Antibiotic-resistantEscherichia coli in wastewaters, surface waters, and oysters from an urban riverine system. AppliedEnvironmental Microbiology73,5667–5670.
    [69] Xian, Q.M., Hu, L.X., Chen, H.C., Chang, Z.Z., Zou, H.X.,2010. Removal of nutrients and veterinaryantibiotics from swine wastewater by a constructed macrophyte floating bed system. Journal ofEnvironmental Management91,2657–2661.
    [70] Xu, W.H., Zhang, G., Li, X.D., Zou, S.C., Li, P., Hu, Z.H., Li, J.,2007. Occurrence and elimination ofantibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research41,4526–4534.
    [71] Xu, W.H., Zhang, G., Zou, S.C., Ling, Z.H., Wang, G.L., Yan, W.,2009. A preliminary investigation on theoccurrence and distribution of antibiotics in the Yellow River and its tributaries, China. WaterEnvironment Research81,248–254.
    [72] Yang, S., Cha, J., Carlson, K.,2005. Simultaneous extraction and analysis of11tetracycline andsulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquidchromatography-electrospray ionization tandemmass spectrometry. Journal of Chromatography A1097(1–2),40–53.
    [73] Yang, J.F., Ying, G.G., Zhao, J.L., Tao, R., Su, H.C., Chen, F.,2010. Simultaneous determination of fourclasses of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. Science of the TotalEnvironment408,3424–3432.
    [74] Y Yang, J.F., Ying, G.G., Zhao, J.L., Tao, R., Su, H.C., Liu, Y.S.,2011. Spatial and seasonal trends ofselected antibiotics in Pearl Rivers, South China. Journal of Environmental Science and Health, Part B46,272–280.
    [75] Zhou, L.J., Ying, G.G., Zhao, J.L., Yang, J.F., Wang, L., Yang, B., Liu, S.,2011. Trends in the occurrenceof human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River innorthern China. Environmental Pollution159,1877–1885.
    [76] Zorita, S., Martensson, L., Mathiasson, L.,2009. Occurrence and removal of pharmaceuticals in amunicipal sewage treatment system in the south of Sweden. Science of the Total Environment407(8),2760–2770.
    [77]国家环境保护总局.2002.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社.88–285.
    [78]蒋林时,王磊,李靖平,曹喜瑞,张洪林.砾石填料床预处理沈抚灌渠污水的试验研究[J].中国给水排水,2010,26(7):77–79.
    [79]凌婉婷,朱利中,高彦征,熊巍.植物根对土壤中PAHs的吸收及预测[J].生态学报,2005,25(9):2320–2325.
    [80]刘锋,陶然,应光国,杨基峰,张丽娟.抗生素的环境归宿与生态效应研究进展[J].生态学报,2010,30(16):4503–4519.
    [81]刘佳,隋铭皓,朱春艳.水环境中抗生素的污染现状及其去除方法研究进展[J].四川环境,2011,30(2):111–114.
    [82]刘伟,王慧,陈小军,扬大为,匡光伟,孙伟良.抗生素在环境中降解的研究进展[J].动物医学进展,2009,30(3):89–94.
    [83]卢建,杨,扬,尹振娟,钟铮,潘鸿.生物法-人工湿地组合工艺处理小城镇混合污水研究[J].环境工程学报,2010,4(6):1262–1266.
    [84]聂风,熊正为,黄建洪,虢清伟,彭福全.改性火山石—PAC复合絮凝剂处理城镇生活污水试验研究[J].水处理技术,2012,38(4):87–90.
    [85]孙桂琴,董瑞斌,潘乐英,王见华.人工湿地污水处理技术及其在我国的应用[J].环境科学与技术,2006,29(S):144–150.
    [86]王全金,李忠卫,李芳,李丽.复合垂直流人工湿地除磷正交试验研究[J].环境污染与防治,32(6):1–3,26.
    [87]吴建强,王敏,吴健,蒋跃,孙从军,曹勇.4种浮床植物吸收水体氮磷能力试验研究[J].环境科学,2011,32(4):995–999.
    [88]吴振斌,张晟,张金莲,成水平,贺锋.人工湿地组合系统除磷的净化空间研究[J].环境科学与技术,2007,30(11):77–80.
    [89]谢龙,汪德爟.花叶芦竹潜流人工湿地处理生活污水的研究[J].中国给水排水,2009,25(5):89–91.
    [90]徐维海,张干,邹世春,李向东,李平,胡朝晖,李军.典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征[J].环境科学,2007,28(8):1779–1783.
    [91]尹振娟,杨扬,卢建,陈纯兴,戴玉女.生物法-人工湿地组合工艺对小城镇混合污水氮素去除效果研究[J].生态环境学报,2010,19(5):1044–1049.
    [92]张翔凌,张晟,贺锋,袁莉英,成水平,吴振斌.不同填料在高负荷垂直流人工湿地系统中净化能力的研究[J].农业环境科学学,2007,26(5):1905–1910.
    [93]赵玉华,邢国印,赵杰.人工湿地填料对氮磷的静态吸附筛选实验[J].辽宁化工,2009,38(11):773–776.
    [94]朱文玲,郑离妮,崔理华,欧阳颖,骆世明,汤仲恩.不同碳氮比条件下4种可控因素对垂直流人工湿地总氮去除的影响[J].农业环境科学学报,2010,29(6):1187–1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700