长江口排污对上海水源地水质影响的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江是我国的第一大河,径流与潮流相互作用异常明显。河口地区具有独特的地理环境,自徐六泾以下,崇明岛将其分为南支和北支,而南支又被长兴岛和横沙岛分为南港和北港,九段沙将南港分为南槽和北槽,最终形成“三级分汊、四口入海”的格局。
     流域经济的快速发展、人口数量的急剧增加和工农业生产废水的排放造成水环境质量日益恶化,上海的使用水主要取自黄浦江,但无论从水质还是水量上来讲,都不能满足现有的需要,人们目前将长江作为上海的第二水源,如何充分利用长江的淡水资源已成为当务之急。
     宝钢水库、陈行水库以及青草沙大型水库是上海取用长江水的主要水源地。作为上海市规划的战略水源地,青草沙水源地位于长江口南北港分流口的下方,在上海市水资源安全保障以及城市可持续发展中发挥着重要的作用。研究长江口南支南岸排污口排放的污染物扩散状况,对于保证长江口水质安全,为今后进一步开发利用长江口淡水资源提供了一定的科学依据,在理论和实践上都具有极其重要的意义。
     本文运用Delft3D-FLOW建立长江口二维水流和水质数学模型,并利用现场实测流速资料对模型进行率定和验证。结合青草沙水源地工程的建设,模拟计算长江口南支南岸主要排污口排放的污染物在丰水期和枯水期扩散状况。结果显示:污染物在南支南岸近岸带形成高浓度污染区,排污口附近污染物浓度较高,并随涨落潮上下移动,白龙港排放口排放的污染物上溯可到达竹园排放口附近;但在陈行、宝钢和青草沙水库附近污染物浓度较低,不会对上海市水源地水质产生不良影响。
     通过设立的监测点COD浓度变化值显示,丰水期观测点浓度受外海潮流上溯影响,枯水期受上游径流来水影响,除竹园和新河排放口之间的观测点受到排放口污水的影响浓度较高,其余监测点污染物浓度保持较低水平,青草沙水库水域COD浓度为10mg/l,属于Ⅱ类水质,排污口污染物的排放对其水质影响较小。模拟期内,青草沙水质可保证作为上海市水源地饮用水的正常使用。
Changjiang river, one of the longest rivers in China, has the largest runoff,and its estuary has a special geographical environment with the interaction of the runoff and the tidal current. The Yangtze River was bifurcated by Chongming Island to south and north branch from Xuliujing, most of the flow go down through the south branch. The south branch was divided into south and north channel by Changxing Island and Hengsha Island. The south channel was bifurcated by Jiuduansha Shoal to south and north passage, therefore three bifurcation areas and four estuarine outlets were formed.
     With the rapid growth of economy、demand for basin development and the amount of industrial and agricultural wastewater emission increased sharply, the water environment pollution becomes worse and worse.The main water source of Shanghai is from the Huangpu River.Neither the quanlity nor the amount was suitable for drinking, so the Yangtze River was taken as the second water source and how to make full use of that was seriously considered.
     The main water source to Shanghai from the Yangtze River is Baogang、Chenxing and Qingcaosha reservoir.Qingcaosha reservoir is located below the south and north channel bifurcation.As the planned strategy water source of Shanghai, the Qingcaosha reservoir which supported the water resources security and is sustainable for the development of Shanghai which has an important significance.So it has profound influence on the theory and practice, and provided evidence for further utilization of the Yangtze River fresh water resource and safety.
     A 2D current and water quality model was set up with Delft3D-FLOW in this research, which was well calibrated and verified with the observed tidal levels and velocities. Considered with the project of the Qingcaosha Water Source, pollution concentration distribution caused by sewage outfalls in the south bank of the Yangtze River during a dry season and flood season are simulated and the computed results show: a high pollution zone appears near the south shore, and moves upward with flood flow and downward with ebb flow, however, it is bounded a limit region around the outfalls.
     According to the COD concentration of the monitor points in flood and dry season,it can be seen that: the concentration was affected by the tidal current in flood season,and it was affected by the upper runoff in dry season.Since the sewage discharged from the Zhuyuan and Xinhe outfalls,the COD concentration of monitor points,which set between the two outfalls,maintain a high level.And the COD concentration is low in rest of the monitor points.The COD concentration of Qingcaosha is 10mg/l which can be classified as the second class water,and the outfalls has little effect to the water quality. During the tidal period, the water quality of the Qingcaosha water source can ensure the normal water supply as the Shanghai water source.
引文
[1]刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算[J].海洋与湖沼,2002,33(3):332—340.
    [2] HALL E L, DIETRICH A M.A brief history of drinking water[J].Opflow,2000,26(6):8-20.
    [3] CECH T V. Principles of Water Resources: History, Development, Management, and Policy[M]. New York:John Wiley & Sons Inc,2003.
    [4] PIRES M. Watershed protection for a world city: the case of New York[J]. Land Use Policy,2004,21(1):161-175
    [5]顾玉亮,乐勤,金迪惠.青草沙—上海百年战略水源地[J]上海建设科技,2008(1):66-69
    [6]车越,杨凯,吴阿娜.上海城市水源战略与水源地保护:格局、问题与展望[J].自然资源学报,2005,20(5):651-659.
    [7]陈希,刘花璐.基于BP网络方法的长江水质综合评价[J].黄石理工学院学报. 2009,25(4):11-15
    [8]李伯昌,施慧燕.长江口河段水环境现状分析[J].水资源保护,2005,21(1):39-44
    [9]吴新华长江口南支河段水质污染特性分析[J].水利水电快报2001,8(22):5
    [10]苏畅,沈志良,姚云,曹海荣.长江口及其邻近海域富营养化水平评价[J].水科学进展, 2008,19(1):99-105
    [11]余国安,王兆印,谢小平.长江口水质空间分布现状评价[J].人民长江,2007,38(1):81-83
    [12]胡雪峰,方圣琼,秦荣,袁俊峰,贺宝根,许世远.长江口南槽水域污染物迁移和分布规律[J].环境污染与防治,2004,26(3):179-181
    [13]屠建波,王保栋.长江口及其邻近海域富营养化状况评价[J].海洋科学进展, 2006,24(4):532-534
    [14]刘启贞,李九发,李为华,李道季,付桂.长江口南槽水域营养盐分布特征[J].中国环境监,2006,22(1):76-80
    [15]全为民,沈新强,韩金娣,陈亚瞿.长江口及邻近水域富营养化现状及变化趋势的评价与分析[J].海洋环境科学,2005,24(3):13-16
    [16]王丽莎,石晓勇,祝陈坚,韩秀荣,王修林.春季长江口邻近海域营养盐分布特征及污染状况研究[J].海洋环境科学,2008,10(27):5
    [17]刘成,李行伟,韦鹤平.长江口水动力及污水稀释扩散模拟[J].海洋与湖沼,2003, 5(34):474-483
    [18]刘成,何耕,李行伟.上海市污水排放口污染物运动轨迹模拟[J].水利学报,2003, 114-118
    [19] DAVIES A M. Review of recent developments in tidal hydrodynamic modeling[J]. J Hydr Engrg,1997,123(4): 278-292
    [20]李霁,刘征涛,李捍东,方征,王婉华,李政,周俊丽.长江口水体中半挥发性有机污染物的分布特征[J].环境科学研究,2007,20(1):12-17
    [21]王芳,康建成,周尚哲.春秋季长江口及其邻近海域营养盐污染研究[J].生态环境, 2006,15(2):276-283
    [22]毕春娟,陈振楼,许世远.上海白龙港排污口附近潮滩沉积物中重金属总量及其化学形态分析[J].海洋环境科学,2002,21(4):1-5
    [23]徐高田,韦鹤平.污水在水体中的稀释扩散及稀释度的计算[J].环境污与防治,1997,19(3):42-44
    [24]丁峰元,贺宝根,左本荣,袁峻峰.排污对长江口南汇边滩湿地污水处理系统的影响[J].环境科学技术. 2004,27(5):85-88
    [25]黄菊文,徐连军,韦鹤平.污水海洋处置稀释扩散河工模型试验装置[J].同济大学学报, 2002,30(12):1447-1491
    [26]顾友直,戴维明.应用物理和数值模型预测竹园排放口的污水扩散[J].上海环境科学, 1990,9(10):8-13
    [27]崔莹,吴莹,张国森,张莹莹.盐水入侵下长江口南港水域COD和营养盐分布[J].海洋环境科学,2009,28(5):449-553
    [28]孟伟,秦延文,郑丙辉.长江口水体中氮、磷含量及其化学耗氧量的分析[J].环境科学,2004,25(6):65-68
    [29] YANG M L,LIN Q,HUANG H H. Distribution characteristics of COD in the waters of Pearl River Estuary[J]. Marine science bulletin,2006,8(1): 68-74
    [30]姚野梅,金有坤.长江口水质污染及生物残毒状况调查[J].水产学报,1995,19(3): 280-287
    [31]王芳,康建成,周尚哲.春秋季长江口及其邻近海域营养盐污染研究[J].生态环境, 2006,15(2):276-283
    [32]刘成,王兆印,何耘.上海污水排放口水域水质和底质分析[J].中国水利水电科学研究院学报,2003,1(4):275-285
    [33]林卫强,李适宇.珠江口水域化学耗氧量、溶解氧、无机磷与有机磷的三维水质数学模拟[J].海洋学报,2003,25(3):129-137
    [34]刘桦河口潮流和水质数值模拟研究[J].上海环境科学,1997,7(16):20-23
    [35]江霜英,王雨,张海平.上海市竹园第一污水处理厂升级改造工程对长江口水体环境的影响[J].环境科学研究,2008,1(21):159-167
    [36]严以新,张素香,李熙.长江口南港化学需氧量动力学模型的应用[J].水道港口2007,28(4):278-281
    [37]曹祖德,李炎宝.水动力数值模拟的发展方向[J].海洋学报, ,1995,17(4):142
    [38]周毓麟一维非定常流体力学[M].北京:科学出版社,1998
    [39]李德元,徐国荣,水鸿寿.二维非定常流体力学数值方法[M].北京:科学出版社,1998:Ⅷ-ⅩⅩ
    [40] DAVIES A M. Review of recent developments in tidal hydrodynamic modeling[J]. J Hydr Engrg,1997,123(4): 278-292
    [41] RALPHT , SMITHP E . A survey of three-dimensional numerical estuarine models[J]. Estuarine and coastal modeling,1989
    [42] LEENDERTSE J J. A water quality simulation model for well-mixed estuaries and coastalsea.,Principle of computation,Vol.1[A].Report R-708-NYC[C]. Santa monica California:CARand Corp RM-6230,1970.15-37
    [43] YANEKO N N. The method of fractional steps[M]. Berlin &New York: Springer-Verleg, 1971
    [44] Leendertse J J. A three-dimensional model for estuaries and coastal seas[M]. The Rand Corporation 1973
    [45] Kim C,Lee J. A three-dimensional PC-based hydrodynamic model using an ADI scheme[J]. Coastal Engineering,23,1994,271-287
    [46] Mellor, G. L. A three-Dimensional Primitive equation numerical ocean model Users Guide for POM, Princeton University, 1996.
    [47] Wang, K. H. Characteriztion on circulation and salinity change in Galveston Bay [J]. J. engrg. Mechanics, 1994, 120(3):557-559.
    [48]汪德计算水力学理论与应用[M].南京:河海大学出版社, 1989
    [49]韩国其,汪德.取水池内三维流场的数值计算[J].河海大学学报, 1992, 20(1): 23-29
    [50]胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究—1.风生流和风涌增减水的三维数值模拟[J].湖泊科学,1998,10(4): 17-25
    [51] Sanjiv K Sinha,Fotis Sotiropoulos,A Jacob Odgaard.Three-dimensional numerical model for flow through natural rivers[J].Journal of Hydraulic Engineering,1998, 124(1): 13-24
    [52] Sanjiv K Sinha, Fotis Sotiropoulos, A Jacob Odgaard. Three-dimensional numerical model for flow through natural rivers[J]. Journal of Hydraulic Engineering,1998,124(1): 13-24
    [53]孔祥谦有限单元法在传热学中的应用[M].北京:科学出版社, 1998: 45-78
    [54]金忠青N-S方程的数值解和紊流模型[M].南京:河海大学出版社, 1989: 92-97, 179-248,57-63
    [55]周思平三维含自由水面紊流流动的数值模拟[D]南京:河海大学, 1989
    [56]丁道扬,吴时强.一种新的三维水流孔口水流数值解法[J].水利学报, 1996, 8: 16-24
    [57]张锡文,姚朝晖,牛风雷.容器中自由液面波动的三维数值模拟[J].清华大学学报,1996,36(3): 23-28
    [58]沈焕庭潘定安,长江河口最大混浊带,北京:海洋出版社,2001
    [59]沈焕庭,茅志昌,朱建荣.长江河口盐水入侵[M].北京,海洋出版社, 2003.
    [60]黄惠明长江河口盐水入侵一、二维数值计算研究硕士学位论文,河海大学,2006年4月
    [61] 2010年上海市海洋环境质量公报.上海市海洋局. 2011.
    [62]张全,顾玉亮,林卫青,乐勤.青草沙水库环境关键问题研究[J],上海科技建设,2008(2):40-43.
    [63]莫敖全,陈海英.青草沙水源地开发研究[J].上海科技建设,2004.(3):7-9.
    [64]张宏伟,吴健,车越,李巍,童春富长江口青草沙水源地开发的生态环境影响[J].华东师范大学学报(自然科学版), 2009, 3:(38-47).
    [65]周金金,高乃云,赵世嘏,顾玉亮,乐勤,王小鹏.青草沙水库投入运行前原水中氮和磷动态变化特征研究[J].上海青草沙水源地原水工程专栏,给水排水,2010,36(12):49-52.
    [66]乐勤,关许为,刘小梅,王志林,刘新成.青草沙水库取水口选址与取水方式研究[J].上海青草沙水源地原水工程专栏,给水排水, 2009, 35(2):46-51.
    [67]丁远静长江口拟建工程队枯季水动力环境的影响研究[学位论文].河海大学硕士学位论文,2007.
    [68] Delft3D使用手册
    [69]黄静,顾杰,韩冰.长江口河口段重大工程的建设对水动力的影响[J].第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研
    [70]矫吉珍,林卫青,卢士强.上海市截流外排工程污水扩散影响数值研究[J].环境污染与防治,2005,27(6)448-456.
    [71] GU Jie, LI Wen-ting , HUANG Jing, HAN Bing Numerical Study on the Impact of the Sewage Drainage on Water Quality of Shanghai Water Sources[J].2010 International Conference on Electrical Engineering and Automatic Control (ICEEAC2010),V3:564-568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700