基于亚硝化和厌氧氨氧化的新型生物脱氮技术的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的生物技术广泛应用于废水脱氮处理。随着可持续发展理念的提出,对高能耗和药耗的传统生物脱氮技术提出了挑战。开发应用新型高效、低耗的生物脱氮工艺显得尤为重要。亚硝化、厌氧氨氧化、全程自养脱氮、同步硝化反硝化以及好氧反氨化等新型生物脱氮技术的研究成为当前的研究热点。然而,目前的研究成果大多数仅在实验室配水研究阶段,对于实际工业废水的应用研究相当缺乏,特别是新型生物脱氮工艺运行稳定性和可控性还需深入研究。本研究是采用基于亚硝化和厌氧氨氧化技术的新型生物脱氮技术对实际工业废水进行脱氮处理,研究结果如下:
     1.采用常温半亚硝化—厌氧氨氧化联合工艺对淀粉废水好氧处理出水进行脱氮处理,在技术上、经济上是可行的。全流程总氮的去除率维持在80%左右,最高达85.5%。亚硝化单元平均总氮进水负荷0.20kgN/m~3d。厌氧氨氧化单元平均总氮进水负荷和去除负荷分别为1.11kgN/m~3d和0.83kgN/m~3d,最高分别达到1.61kgN/m~3d和1.29kgN/m~3d。
     2.采用常温半亚硝化—厌氧氨氧化联合工艺处理污泥压滤液取得良好的脱氮效果。在稳定运行期间全流程总氮去除率平均为79.15%,最高达88.58%。亚硝化反应器总氮平均进水负荷为1.87kgN/m~3d,最高3.95 kgN/m~3d,最小水力停留时间0.094d。厌氧氨氧化反应器的总氮平均进水负荷和去除负荷分别为0.88kgN/m~3d和0.59kgN/m~3d,最高分别达到1.79 kgN/m~3d、1.34 kgN/m~3d,最小水力停留时间0.15d。
     3.常温半亚硝化—厌氧氨氧化工艺稳定性研究表明:水力冲击与基质浓度冲击对亚硝化反应器稳定运行的影响较小,最高进水总氮负荷分别达到6.06kgN/m~3d和7.44kgN/m~3d,平均亚硝化率仍有42~50%。但基质浓度冲击对厌氧氨氧化反应的影响较大。原水中有机物、pH值和碱度对亚硝化—厌氧氨氧化工艺运行影响较小,但原水中悬浮物和表面活性物质的影响较大。
     4.常温半亚硝化反应器稳定运行期间,发现了显著的自养脱氮现象,平均总氮去除率和去除负荷分别为40.05%、0.65kgN/m~3d,最高分别为72.18%、1.01kgN/m~3d。自养脱氮率随进水总氮负荷的提高而降低,亚硝化性能随进水总氮负荷的提高而提高。亚硝化反应器中自发形成了亚硝化菌与厌氧氨氧化菌共生的棕褐色细小颗粒污泥,其与反应器内壁附着生长红色的自养脱氮生物膜共同对自养脱氮起主要贡献。
     5.单级自养脱氮反应器处理污泥压滤液试验表明:采用原生颗粒污泥启动,处理污泥压滤液可取得良好的效果。在进水平均总氮浓度为355.22mg/L时,进水总氮平均负荷为0.91kgN/m~3d,最高达1.37kgN/m~3d;总氮去除率平均为74.81%,最高86.92%;总氮平均去除负荷为0.68kgN/m~3d,最高达0.90kgN/m~3d。投加粉末活性炭强化单级自养脱氮反应,总氮去除率与总氮去除负荷都得到提高,且运行稳定性得到提高,总氮最高进水负荷与去除负荷分别为1.53kgN/m~3d、1.14kgN/m~3d。
     6.亚硝化反应器的运行条件是自发形成颗粒污泥的关键。细小无机颗粒、水流剪切力以及适量有机物存在有利于颗粒污泥的形成。长污泥龄和低溶解氧使颗粒污泥中生物呈现出多样性,有助于自养脱氮的发生。
     7.光学显微镜和电镜观察结果表明,亚硝化污泥为结构完整、表面光滑的颗粒污泥,以丝状菌为骨架、分布着大量的球菌、椭球菌、杆菌、长杆菌和螺旋菌。而在较低负荷下长期运行的厌氧氨氧化颗粒污泥的结构完全性较差,颗粒表面十分粗糙,没有规则的形态,以长杆菌和球菌为主,大量的丝状菌丝在颗粒中交织;实验后期反应器上部悬浮污泥中出现了较多的原生动物。
     8.污泥龄和溶解氧是实现亚硝化反应稳定运行的关键因素。实验所得到的稳定亚硝化反应的控制条件为:污泥龄SRT≥100d,溶解氧浓度DO≤0.10mg/L,出水剩余碱度200~300mg/L。在SBR反应器中,可以根据pH、ORP值以及dpH/dt、dORP/dt值进行半亚硝化反应的过程控制。
     9.基于亚硝化和厌氧氨氧化的生物脱氮单元可以与现有的废水处理单元组合成多种形式的生物脱氮工艺,根据含氨废水的浓度可以选择不同的适用工艺形式,以实现高效低耗脱氮。新型生物脱氮技术较传统硝化反硝化以及短程硝化反硝化工艺有着明显的经济性。
The classical biotechnology has been widely applied in biological nitrogen removel process of wastewater. But the concept of continuable development has challenged the classical biotechnology of removel nitrogen which energy and motivity consume is very high. Therefore it is important that researching and delevoping new nitrogen removal biotechnology.In resent years,the new biotechnologies such as ANAMMOX,SHARON—ANAMMOX,CANON process have been the focus of research all around the world.Whereas the most new nitrogen removal processes have been limited in laboratory scale,it has been many problems in those processes when it was applied in practical wastewater.The problems include lower stability and the difficulty of controlling.This report adopted the new biotechnology of nitrogen removal based on the nitrosation technology to treatment the actual wastewater.The conculsion are as follows:
     1. It’s possible on technological as well as economic that biological nitrogen removal treat the efflux of aerobic biological treatment of starch wastewater with Semi-Nitrosation—ANAMMOX process at normal temperature , and the process has excellent treatment ability of nitrogen . The average remavol rate of totle nitrogen achieved 80% in the integration process, and the maximum removal rate of total nitrogen was 85.5%. Volumetric total nitrogen load of inflow in airlift nitrosation bioreactor was 0.20kgN/m~3d.In ANAMMOX reactor, the volumetric total nitrogen load of inflow and the volumetric total nitrogen removal load were 1.11kgN/m~3d and 0.83kg/m~3d,and the maximum loads were 1.61kgN/m~3d and 1.29kgN/m~3d.
     2.It has been obtained sastisfactory result that biological nitrogen removal treat the sludge dewatering effluent with Semi-Nitrosation—ANAMMOX process at normal temperature.During the stable experiment,the average remavol rate of totle nitrogen was 79.15% in the whole process,and the maximum removal rate was 88.58%. In Semi-Nitrosation reactor, the volumetric total nitrogen load of inflow and the maximum load were 1.87 kgN/m~3d and 3.95kgN/m~3d ,it’s minimum HRT was 0.094d.In ANAMMOX reactor , the volumetric total nitrogen load of inflow and the total nitrogen removal load were 0.88 kgN/m~3d and 0.59kgN/m~3d , the maximum load were 1.79 kgN/m~3d and 1.34kgN/m~3d ,it’s minimum HRT was 0.094d.
     3.The influence of the impact of hydraulic load and the matrix concentration load to Semi-Nitrosation reactor were acceptable.In those conditions ,the maximum total nitrogen removal load of inflow in Semi-Nitrosation reactor achieved 6.06 kgN/m~3d and 7.44kgN/m~3d,and the drgree of nitrosation still were 42~50%.However the impact of matrix concentration load was obviously influented the ANAMMOX reactor.
     4.During the stable operating of the Semi-Nitrosation reactor, it has been found that the the phenomenon of autotrophic nitrogen removal significant generated, the average total nitrogen removal rate and the volumetric total nitrogen removal load were 40.05% and 0.65 kgN/m~3d,the maximum rate and load were 72.18% and 1.01 kgN/m~3d.At the same time, it has been found that the autotrophic nitrogen removal rate reduced as the total nitrogen load of inflow.However the performance of nitrosation increased as the total nitrogen load of inflow.The brown small granule sludge which spontaneous formatted in the Semi-Nitrosation reactor which consisted of the nitrosobacteria and the anammox bacterias as well as the red biomembrane which adhered to inwall of reactor contributed the autotrophic nitrogen removal.
     5.The single autotrophic nitrogen removal reactor (SANR) was successfully stated up with the protogenesis granule sludge.It has been obtain very well result that removal nitrogen of the sludge dewatering effluent with the SANR . when the total nitrogen concentration was 355.22mg/L and the average total nitrogen load of inflow was 0.91 kgN/m~3d,the maximum total nitrogen loads of inflow achieved 1.37 kgN/m~3d, the SANR’s average total nitrogen removal rate was 74.81% and the maximum rate achieved 86.92%; the average total nitrogen removal load and the maximum load were 0.68 kgN/m~3d and 0.90 kgN/m~3d.The performance of SANR was been reinforced through add powder activated carbon.The total nitrogen removal rate and load were increased and the operation stability was improved, the maximum total nitrogen load of inflow and the removal load achieved 1.53 kgN/m~3d and 1.14 kgN/m~3d.
     6.The operation conditions of the Semi-Nitrosation reactor were the keys of the spontaneous formation of the granule sludge.It was in favor of the formation of granule sludge that small inorganic granule, the current shearing force and organic matter moderately existed.Longer SRT and lower DO were in favor of biological multiplicity in the granule sludge which helped to occurrence of autotrophic nitrogen removal.
     7. The observation results of optical microscope and SEM showed that, the nitrosation sludge was all the small granule sludge which structure was completed and which surface was smooth, and in those granules, many filamentous bacteric growed as the granules’frame, there were so many coccuse, ellipsoidal bacteric, bacillus and spiral bacteric on the granules. Howere the structure of anammox granule sludge was uncompleted, and the surface of the granule was coarseness.There were many bacillus and coccuse on the granules,and many filamentous bacteric existed in the granule.At the end of the experiment, many potozans appeared in the suspension sludge of the ANAMMOX which related to the long term lower nitrogen load.
     8.SRT and DO were the keys of the stability of nitrosation. According to the experiment, the operating conditions of stability of nitrosation were SRT≥100d, DO≤0.10mg/L,ALK of effluent= 200~300mg/L。The process control of semi-nitrosation could be realized in SBR which based on the variation of pH, ORP,dpH/dt and dORP/dt.
     9.To achieve properer operation of biological nitrogen removal process, different process would be adopted according to the different concentrate of nitrogen.The new biotechnologies of nitrogen removal were more economical than traditional nitrification and denitrification and short nitrification and denitrification.
引文
1 张自杰 .排水工程 . 北京:中国建筑工业出版社,1996
    2 郑兴灿,李亚新. 污水除磷脱氮技术. 北京:中国建筑工业出版社,1998
    3 吴婉娥,等. 废水生物处理技术. 北京:化学工业出版社,2003,2
    4 张忠祥,钱易. 城市可持续发展与水污染防治对策. 北京:中国建筑工业出版社,1998
    5 赵庆良,等.废水脱氮工艺的原理特征与应用 J.黑龙江大学自然科学学报,2005,22(5):580~587
    6 郝晓地. 可持续污水-废物处理技术. 北京: ,2005
    7 郑平,徐向阳,等.新型生物脱氮理论与技术.北京:科学出版社,2004
    8 废水脱氮处理技术,北京,
    9 郝醒华,等.氨氮水处理技术研究 J.黑龙江大学自然科学学报,2001,18(1):95~97
    10 张树德,等.废水生物脱氮新技术及问题 J.河北理工学院学报,2005,27(1),145~150
    11 Votes J p. Removal of nitrogen from highly nitrogenous wastewater. JWPCF,1975,47:394~398
    12 Sutherson S, Ganczarczyk J. J. Inhibition of nitrite oxidation during nitrification: some observation. Wat.Poll.Res.J.Can, 1986,21:257~266
    13 宋学起,等.投加抑制剂实现短程硝化反硝化 J.水处理技术,2005,31(4):38~42
    14 高大文,等.SBR 法短程硝化-反硝化生物脱氮工艺的研究 J.环境污染治理技术与设备,2003,4(6):1~4
    15 邱立平,等. 曝气生物滤池的短程硝化反硝化机理研究 J.中国给水排水,2002,18(11):1~4
    16 林丰,等.MBR 脱氮工艺的研究进展 J.污染防治技术,2003,16(4):42~44
    17 Hellinga C. Schellen A A J J, Mulder J W, et al. The SHARON process: an innovative method for nitrogen removal from a ammonium rich wasterwater . Water Sci. Tech. ,1998,37(9):135~142
    18 Mulder JM , Van loosdrecht MCM and van Kempen R . Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering . Wat. Sci. Tech.,2004,43(11):127~134
    19 Van Kempen R , Mulder JW. Overview: full scale experience of the SHARON process fro treatment of rejection water of digested sludge dewatering. Wat. Sci. Tech. , 2001,44(1):145~152
    20刘秀红,等.短程硝化的实现维持与过程控制的研究现状 J.环境污染治理技术与设备,2004,5(12):7~10
    21 Mulder A, Van de Graaf A A. Et al .Anaerobic ammonium oxidaton discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Lett. , 1995,16:177~184
    22 Van de Graaf A A , Mulder A ,et al. Autotrophic growth of anaerobic ammonium-oxidation microorganism in a fluidized bed reactor. Mitrobiology. ,1997,143:2415~2421
    23 M Strous, J.J.Heijnen,J.G.Kuenen.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms.Applied Microbial Biotechnol.1998,50:589~596
    24 Astrid A, van de Graaf, Peter de Bruijn,et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142:2187-2196.
    25 Mike S M Jetten,et al.The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews ,1999 ,22 :421~437.
    26 郑平.厌氧氨氧化技术的研究[D].浙江大学,1999.
    27 Marc Strous,Eric van Gerven,et al.Effect of Aerobic and Microaerobic Aonditions on Anaerobic Ammonium-Oxidizing (Anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 2446-2448.
    28 Fux C , Boehler M.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation ( anammox ) in a pilot plant . Journal of Biotechnology , 2002,99:295~306
    29 梁辉强,等.厌氧序批式反应器的厌氧氨氧化工艺启动运行 J.工业用水与废水,2005,36(5):39~44
    30 康晶,等.EGSB 反应器中厌氧颗粒污泥的脱氮特性研究 J.环境科学学报,2005,25(2):208~213
    31 Strous M, et al. Key physiology of anaerobic ammonia oxidation . Applied and Environment Microbiology , 1999,65(7):3248~3250
    32 胡宝兰,等.两种 ANAMMOX 反应器性能的对比研究 J.环境科学学报,2005,25(4):545~551
    33 张龙,等.厌氧氨氧化菌混培物的培养及上流式厌氧污泥床反应器运行 J.华东理工大学学报(自然科学版),2005,31(1):99~102
    34 Marc Strous, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidiation (Anammox) process in different reactor configurations. Wat. Res. 1997,31(8):1955~1962
    35 陈旭良.短程硝化_厌氧氨氧化工艺处理味精废水的研究 D.浙江大学,2006
    36 U Van Dongen . M S M Jetten. The SHARON-ANAMMOX process fro treatment of ammonium rich wastewater. Wat. Sci. Tech. ,2001,44(1):153~160
    37 叶建锋. 亚硝酸型硝化_厌氧氨氧化脱氮技术研究 D.河海大学,2005
    38 卢竣平. 亚硝化_厌氧氨氧化生物脱氮工艺研究 D. 中国农业大学,2004
    39 李娟英,等.氨氮生物硝化过程影响因素研究 J.中国矿业大学学报,2006,35(1):120~124
    40 左剑恶,等.高氨氮浓度下的亚硝化过程及其影响因素研究 J.环境污染与防治,2003,25(6):332~335
    41 王志盈,等.低溶氧下生物流化床内亚硝化过程的选择特性研究 J.西安建筑科技大学学报,2000,32(1):4~7
    42 Villaverdes. Nitrifying biofilm acclimation to free ammonia in submerged biofliters. Start-up influence J.Wat.Res. 2000,34(2):602~610
    43 魏琛,等.长泥龄 SBR 亚硝化系统的污泥适应性 J.重庆大学学报,2004,27(4):111~113
    44 张小玲,等.低溶解氧下活性污泥法的短程硝化研究 J.中国给水排水,2003,19(7):1~4
    45 李斌.序批式活性污泥 SBR 系统内的短程硝化及特性试验研究 D.西安建筑科技大学,2004
    46 陈立伟,等.V_E 生产废水的短程硝化反硝化研究 J.环境工程,2004,22(4):7~10
    47 宋学起,等.投加抑制剂实现短程硝化反硝化 J.水处理技术,2005,31(4):38~42
    48 吴永明,等.亚硝化-厌氧氨氧化作用机理的研究 J.工业用水与废水,2005,36(1):5~8
    49 张小玲,等.短程硝化-反硝化技术经济特性分析 J.西安建筑科技大学学报(自然科学版),2002,34(3):239~242
    50 Dijkman H, Strous M. Process for ammonium removal from wastewater. Patent 1999; PCT/NL99/00446
    51 Strous M. Missing lithotroph identified as new planctomycete . Nature, 1999,400:446~449
    52 Third K A. et al. The CANON system ( completely autotrophic nitrogen removal over nitrite ) under ammonia limitation: Interaction and competition between three groups of bacteria . Syst. Appl. Microbial,2001,24:588~596
    53 Jetten M.S.M. Anaerobic ammonium oxidation by marina and freshwater planctomycele-like bacteria. Appl. Microbiology and Biotechnology. 2003,63:107~114
    54 Xiaodi Hao,et al. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process. Wat. Res. 2002,4839~4849
    55 Helmer C,et al. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems [J]. Wat.Sci.Tech. ,2001,43(1):311~320
    56 廖德祥,等.单 SBR 生物膜中全程自养脱氮的研究 J.中国环境科学,2005,25(2):222~225
    57 Olav Sliekers A, Third K A,et al. CANON and Anammox in a gas-lift reactor [J]. FEMS Microbiology Letters,2003,(218):339-344
    58 Kuai L,Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Applied & Environmental Microbiology,1998(11):4500~4506
    59董远湘,等.溶解氧对 OLAND 生物膜反应器硝化性能的影响及其微生物种群动态研究 J.环境污染与防治,2005,27(8):561~565
    60 Jetten M S M. Towards a more sustainable wastewater treatment system[J]. Wat.Sci.Tech,1997,35(9):171~180
    61 Mike S M. Jetten , et al. Noval principle in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek,1997,71(1~2):75~93
    62刘军,等.SBR 工艺中 DO 和 C/N 对同步硝化反硝化的影响 J.北京工商大学学报(自然科学版),2003,21(2):7~10
    63 马勇,等.AO 生物脱氮工艺处理生活污水中试二系统性能和 SND 研究 J.环境科学学报,2006,26(5):710~715
    64 Klangduen Pochana,et al. Study of factors affecting simulataneous nitrification and denitrification (SND) . Wat. Sci. Tech. ,1999,39(6):61~68
    65 Andreadakis A.D. et al. Simulataneous nitrification and denitrification in bench-scale sequencing batch reactors. Sci. Tech.,1996,30(2):227~284
    66 熊振湖,等.溶解氧和 pH 值对 CAST 工艺脱氮效果的影响 J。环境工程,2003,21(6):14~17
    67 D Zhang. The anaerobic treatment of nitrite containing wastewater using an expanded granular sludged bed (EGSB) reactor. J.Environ Technol,2001,22:905~913.
    68 迟文涛,等.厌氧同时反硝化产甲烷工艺研究进展 J.中国沼气,2006,24(4):6~8
    69 Mellor R B,et al. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature,1992,355:717~719
     70 王海燕,等.介质粒径对复三维电极-生物膜脱硝反应器的影响研究.环境科学学报,2003,23(1):64~68
    71 Le-hua Zhang , et al. Electrochemical effection denitrification in different microenvironments around anodes and cathodes [J]. Research in Microbiology,2005,156(1):88~92
    72 范彬,等. 复三维电极-生物膜反应器脱除水中的硝酸盐[J],环境科学学报,2001,21(1):39~43
     1 贾海江,傅云鹤,等.淀粉废水处理工艺选择[J] .环境污染治理技术与设备,2003,4(2):66~69.
    2 张泽俊,苏春元,等.马铃薯淀粉厂工艺废水的综合处理及利用研究[J],2004,25(增刊):134~137
    3 殷永泉,单文坡,等.淀粉废水处理方法综述[J] .环境污染与防治,2005,27(8):625~629.
    4 刘耕耘,李亚威,等.淀粉废水的絮凝沉淀及生物处理[J] .内蒙古大学学报,2002,33(2):230~235
    5 杨丽娟.用石灰、聚丙烯酰胺处理淀粉生产废水[J].江宁城乡环境科技,2001,21(2):52~53
    6 戴建强,郑敏.厌氧—好氧生物法处理玉米淀粉生产废水[J] .中国资源综合利用,2004,2:6~7.
    7 缪凯,俞南强等.高效厌氧反应器与生物接触氧化工艺处理玉米淀粉生产中的废水[J] .粮食与食品工业,2005,12(6):22~24.
    8 皇甫浩,罗德春. 玉米淀粉废水处理工艺的研究[J] .西安公路交通大学学报,1999,19(3):139~142.
    9 胡威夷.常温 UASB 反应器在淀粉废水处理中的应用[J].工业用水与废水,2000,31(2):31~33
    10 沈耀良,王惠民,赵丹.厌氧折流板反应器处理淀粉废水及污泥特性[J].上海环境科学,2002,21(3):139~142 .
     11 Van de Graaf A A,De Bruijn P,Robertson L A,Jetten M S M,R,Kuenen J G. Autotrophlic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J],Microbiology,1996,142(8):2187~2196
    12 Hellinga C,Schellen AAJC , Mulder J W, Van Loosdrecht M C M ,Heijnen J J . The SHARON process:an innovative method for nitrogen removal from ammonium-rich waster water[J].Wat Sci Tech ,1998,37(9):135~142
    13 Schimdt I,Sliekers O,Schimd M,Bock E,Fuerst J,Kuenen JG,Jetten M S M, Strous M.New concepts of microbial treatment processes for the nitrogen removal in wastewater[J].FEMS Microbiol Rev,2003,27(4):481~492.
    14 Van kempen R,Mulder J W,Uijterllnde C A ,Loosdrecht MCM.Overview:fullscale experience of the SHARON process for treatment of rejection water of digested sludge dewatering[J].Wat Sci Tech ,2001,44(1):145~152
    15 国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,1997,252~274
     1 P.Battistoni, et al.Phosphorus removal in real anaerobic supermatants:modeling and performance of a fluidized bed reactor. Wat.Sci.Tech. ,1998,38(1):275~283
    2 胡颖华,等.污水厂剩余污泥的厌氧、微氧与好氧消化研究 J.中国给水排水,2006,22(5):71~74
    3 H.Siegrist. Nitrogen removal from digester supermatants-comparison of chemical and biological methods. Wat.Sci.Tech.,1996,34(1~2):399~406.
    4 陈洪斌,等.市政污水处理厂工艺运行探讨[J].环境工程,2006,24(6):19~23
    5 U Van Dongen . M S M Jetten. The SHARON-ANAMMOX process fro treatment of ammonium rich wastewater. Wat. Sci. Tech. ,2001,44(1):153~160
    6 张少辉. 厌氧氨氧化工艺研究 D.浙江大学,2004
    7 陈曦.亚硝化-厌氧氨氧化生物脱氮技术应用研究 D.北京工商大学,2006
    8 国家环境保护总局.水和废水监测分析方法[M].第四版.中国环境出版社.2002
    9 郑瑞东等.泡沫分离法的研究进展 J.现代渔业信息,2005,20(9):3~6
    10 宋沁.泡沫分离法处理含阴离子表面活性剂废水 J.污染防治技术,2000,13(2):123~124
    11 滕美珍等 . 泡沫分离 - 厌氧 - 好氧工艺处理表面活性剂废水 J. 上海环境科学,2001,20(10):492~496
    1 Strous M. Missing lithotroph identified as new planctomycete . Nature, 1999,400:446~449
    2 M Storus,et al. The Sequencing Batch Reactor as a powerful Tool for the study of Slowly Growing Anaerobic Ammonium Oxidizing Microorganisms. Appl. Microbiol Biotechnol. , 1998,50(4):589~596
    3 Olav Sliekers A, Third K A,et al. CANON and Anammox in a gas-lift reactor [J]. FEMS Microbiology Letters,2003,(218):339-344
    4 孟了,等.CANON 工艺处理垃圾渗滤液中的高浓度氨氮 J.给水排水,2004,30(8):24~29
    5 方芳,等.单级自养脱氮生物膜 SBR 工艺的启动研究 J.中国给水排水,2006,22(1):58~61
    6 杨虹,等.全程自养脱氨氮悬浮填料床反应器性能的研究 J.上海环境科学,2001,20(8):369~372
    7 Xiaodi Hao,et al. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process. Wat. Res. 2002,4839~4849
    8 张丹,等.OLAND 生物脱氮系统运行及其硝化菌群的分子生物学检测 J.应用与环境生物学报,2003,9(5):530~533
    9 Xiaodi Hao,et al. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process. Wat. Res. 2002,4839~4849
    10 董远湘,等.溶解氧对 OLAND 生物膜反应器硝化性能的影响及其微生物种群动态研究 J.环境污染与防治,2005,27(8):561~565
    11 M Storus,et al. The Sequencing Batch Reactor as a powerful Tool for the study of Slowly Growing Anaerobic Ammonium Oxidizing Microorganisms. Appl. Microbiol Biotechnol. , 1998,50(4):589~596
     1 Mike S M Jetten,et al.The anaerobic oxidation of ammonium.FEMS Microbiology Reviews,1999,22:421~437
    2 乔启成,等.亚硝化控制技术的研究现状与动向 J.环境技术,2005,5:41~43
    3 李娟英,等.氨氮生物硝化过程影响因素研究 J.中国矿业大学学报,2006,35(1):120~124
    4 郭海娟,等.DO 和 pH 值在短程硝化中的作用 J.环境污染治理技术与设备,2006,7(1):37~41
    5 魏琛,等.FA 和 pH 值对低 CN 污水生物亚硝化的影响 J.重庆大学学报(自然科学版),2006,29(3):124~127
    6 张小玲,等.低 DO 下的短程硝化及同步硝化反硝化 J.中国给水排水,2004,20(5):13~16
    7 李斌.序批式活性污泥 SBR 系统内的短程硝化及特性试验研究 D.西安建筑科技大学,2004
    8 蒙爱红,等.高浓度氨氮废水的短程硝化研究 J.中国给水排水,2002,18(11):43~45
    9 宋学起,等.投加抑制剂实现短程硝化反硝化 J.水处理技术,2005,31(4):38~42
    10 Hellinga C. Schellen A A J J, Mulder J W, et al. The SHARON process: an innovative method for nitrogen removal from a ammonium rich wasterwater . Water Sci. Tech. ,1998,37(9):135~142
    11 魏琛,等.游离氨对稳定生物亚硝化的影响分析 J.重庆环境科学,2003,25(12):50~53
    12 Hanaki K,WantawinC,Ohgoki,Nitrfication at low levels of dissolved oxygen with and without organic loading in a suspended-gowth reactor,Wat Res,1990,24(3):297~302
    13 Laanbrock H J.et al. Competition for limiting amounts of oxygen between Nitrosomanas Europaea and nitrobacteria winogradskyi grown in mixed continous cultures [J],Arch Microbiology ,1993,159:453~459
     14 魏琛,等.长泥龄 SBR 亚硝化系统的污泥适应性 J.重庆大学学报,2004,27(4):111~113
    15 张小玲,等.低溶解氧下活性污泥法的短程硝化研究 J.中国给水排水,2003,19(7):1~4
    16 李斌.序批式活性污泥 SBR 系统内的短程硝化及特性试验研究 D.西安建筑科技大学,2004
    17 蒙爱红,等.高浓度氨氮废水的短程硝化研究 J.中国给水排水,2002,18(11):43~45
    18 李春杰,等.SMSBR 处理焦化废水中的短程硝化反硝化 J.中国给水排水,2001,17(11):8~12
    19 刘秀红,等.短程硝化的实现维持与过程控制的研究现状 J.环境污染治理技术与设备,2004,5(12):7~10
    20 王淑莹,等.SBR 法短程硝化及过程控制研究 J.中国给水排水,2002,18(10):1~5
    21 高景峰,等.DO 和 ORP 与 SBR 法硝化反硝化的相关关系 J.哈尔滨建筑大学学报,2002,35(1):61~65
    22 马勇,等.以氧化还原电位作为缺氧_好氧法工艺反硝化反应模糊控制的参数,2004,24(2):39~43
    23 高大文,等.交替好氧缺氧短程硝化反硝化生物脱氮 J.环境科学学报,2004,24(5):769~775
    24 高大文,等.应用实时控制实现和稳定短程硝化反硝化 J.中国给水排水,2003,19(12):1~5
    25 马勇,等.应用 DO、pH 和 ORP 在线控制 AO 硝化过程 J.中国给水排水,2005,21(11):1~5
    1 阮文权.好氧颗粒污泥同步硝化反硝化过程研究 D.江南大学,2004
    2 李小明,等.好氧微生物颗粒污泥脱氮机理 J.净水技术,2004,23(3):29~31
    3 吴永明,等.亚硝化-厌氧氨氧化作用机理的研究 J.工业用水与废水,2005,36(1):5~8
    4 廖德祥.全程自养脱氮及其颗粒化的研究 D.湖南大学,2005
     1 王涛,等.SHARON 工艺和 SHARON—ANAMMOX 组合工艺的节能特征[J].重庆建筑大学学报,2003,25(4):59~63
    2 郑兴灿,李亚新. 污水除磷脱氮技术. 北京:中国建筑工业出版社,1998
    3 Strous M.(2000)Microbiology of anaerobic ammonium oxidation. PhD thesis. Delft University Press ,Delft ,The Netherlands,ISBN 90-9013621-5
    4 张小玲,等.短程硝化_反硝化经济特性分析[J].西安建筑科技大学学报(自然科学版),2002,34(3):239~242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700