结团絮凝工艺优化中试及生产性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,水处理工艺的设备化,小型化已经成为水处理技术的一种发展趋势。结团絮凝工艺作为一种新型高效固液分离水处理工艺,已成为水处理工艺设备化,小型化的一种理想选择。结团絮凝工艺研究在技术原理、工艺控制条件及反应器设计等方面已取得了丰硕的成果,然而在工艺优化、结团絮体成长、结团体悬浮层动力学等方面的研究尚不够深入。
     本文以结团絮凝工艺优化与结团絮体悬浮层为研究对象,对悬浮层布水区及搅拌条件,以及微絮凝条件进行了优化设计,建立了悬浮层中结团体成长模型,并以天津杨柳青水厂排泥水为处理对象进行了试验验证,在此基础上对工艺条件进行了优化,并对低原水浓度条件下工艺的运行方式进行了探讨。最后,通过生产性试验对研究成果进行了验证。论文成果主要包括以下方面:
     (1)进一步优化了结团絮凝反应器构造及微絮体形成控制条件
     根据悬浮层布水隔板水力计算,为保证配水均匀以及药剂与原水的均匀混合,将配水过流断面设计为楔形;为保证搅拌G值均匀输出,经优化计算,搅拌桨宽度应沿径向按B=Cr-3逐渐减小,并分别对小型和大型搅拌桨进行了优化设计及G值校核计算;试验条件下,选择管式反应器作为微絮凝反应器,确定(G/Re)0.5T值为10.87的管式反应器与结团絮凝工艺组合处理效果最佳。
     (2)建立了结团絮体成长动力学模型
     通过研究结团体所受剪切力及相互之间的碰撞频率,对结团体有效密度ρe的影响因素分析表明,悬浮层体积浓度Vf和G值均与ρe成正比关系;研究了工艺条件对ρe的影响规律,认为原水浓度CO及上升流速uw的变化会引起结团体ρe或结团体粒径d的显著变化;通过分析结团体在悬浮层中的受力情况,建立了结团体成长粒径表达式d=(?)及最小粒径的表达式dmin=0.038(?);基于物(?)料平衡方程,通过分析结团体成长中粒径的变化建立了体积浓度变化的微分方程:模型验证结果表明,模型具有较好的适用性;基于结团体生长模型建立了最大上升流速流速与原水浓度间的负线性关系。
     (3)优化了结团絮凝工艺运行条件
     引入搅拌G值将结团絮凝基本公式修正为C=C0exp(?),通过对结uw团体悬浮层的动力学分析得出了结团体悬浮层适宜的上升流速应介于最小上升流速uwmin=0.004(?)d及达到浊度限值的上升流速uw=(?)之间通过工艺运行条件优化的中试试验验证了上述理论,同时优化了工艺运行参数。
     (4)确定了污泥回流条件下低原水浓度的结团絮凝工艺控制条件
     确定最佳污泥回流点设置于PAM投加点之后,反应器进水口之前;污泥回流条件下,随着回流比的增大,出水浊度的变化表现为先降低,后稍有上升趋势,而试验数据表明,回流比的增大有助于结团体沉降性能的提高;通过对结团体悬浮层中初始粒子的去除规律研究建立了最佳污泥回流量的控制条件:(?)
     (5)完成了工艺运行的生产性试验研究
     建设了天津杨柳青水厂排泥水结团絮凝工艺处理的生产性试验系统,并优化确定了系统的运行控制条件。在PAM投量为1.2mg/L,搅拌转速为2-4rpm的控制条件下,水流上升流速可达22.1cm/min-66.4cm/min;上升流速提高,出水浊度呈增大趋势,但均小于14.9NTU;排泥含水率可低于96%,且运行稳定,受季节变化影响小。
     设计并建成了该工艺的自动控制系统。该系统实现了在进水浊度及流量变化情况下能及时通过调整加药量稳定出水浊度,并实现自动排泥;成本核算结果表明,在30m3/h的处理规模下,年运行成本4.42万元,吨水处理成本0.17元。工程的具有较为显著的社会效益、环境效益和经济效益。
Accompany with the development of water treatment technology, the treatment process tend to miniaturization with more equipment devices. The pellet flocculation blanket(PFB) process which is characterized with high surface-loading, short residence time, small occupation area, easy erecting, flexible and wider applicability, and easy to enforce auto control, is maturing into an ideal choice of moden water treatment process. Most foregone pellet flocculation researches focused on the flocculation mechanism, the process operational conditions, the reactor designation, et al., but there leaves something to be desired in many aspects such as the optimization of operational conditions, the growth of pellet flocs, and the kinetic of pellet blanket, large numbers of researches must be done to perfect the pellet flocculation theory.
     This paper focused on the optimization of the process designation such as the blanket water distribution system, the agitating peddles, and the choice of pre-coagulation process, the establishment of the pellets growth model which was proved by subsequent pilot scale experiment, the effect of operational conditions on blanket characteristics, and the operation mode under low influent concentration. At the end of the investigation, theoretical results were identified through full scall experiment. The major achievements in this paper were expressed as following:
     (1) The optimization of the process designation
     In this investigation, hydrolic calculation was applied to optimize the designation of raw water distribution system and the blanket agitator. The optimization results indicated that, to achieve well distributed water distribution, the orifice diameter or narrow slit width should declined gradually along with the downward direction. In the designation, the wetted cross-section was designed with cuniform sharp to generate microscale eddies. The hydrolic calculation of rotating agitator illustrated that, the width of agitator should declined gradually among the paddle radius derection according to the relationship of B=Cr-3, based on this theory, paddles fit for small scale and large scall reactors were designed respectively. Optimizing experiment indicated that, tubular coagulator with (G/Re)0.5T value of 10.87 achieved best results, so in this investigation, this kind of mixer was selected as the pre-coagulation device.
     (2) The establishment of pellet flocs growth model
     In this paper, by deducing collide frequency between pellet particles, effect factors to pellets effective densityρe was analyzed, the results indicated that, both the volume concentration Vf and the G value appeared direct proportional relationship withρe.Relevant experimental results identified these relationships. By analyzing forces act on the pellet, expression about pellet size was established as d=uw/2 (?) Kρe3(1-Vf)m , as well as the minimum size could be expressed as dmin=0.038μ(?)uw/2. Based onρe(?) the mass balance equation, the variation of Vf in an infinitesimal blanket was expressed by analyzing pellets growth in the blanket with height of dh, the relationship could be
     The statistics analysis of the verification experiment indicated that, correlated experimental results could fit the model preferably, from which could achieve the calculation of blanket height.
     (3) The optimization of the PFB process
     By considering G value, the basic eqation of pellet coagulation could be deduced as C= C0 exp(?);By kinetic analyzing of the flocs blanket, the minimum uw up-flow rate of the blanket could be established as uwmin=(?), as well as (?) the maximun upflow rate as uw=(?). The fit up-flow rate is in the interval between the minimun up-flow rate and the maximum value.
     The related pilot experiment identified above theories, as well as optimized the operational conditions.
     (4) The determination of operational conditions under low influent concentration with sludge recycle
     This part of investigation is to determine optimal operational mode under low influent concentration. The pilot scale experimental results indicated that, the optimal position for sludge recycle located behind PAM dosage position and in front of the inlet, and along with the increasing of the sludge reflux ratio, effluent turbidity tend to decrease at first, and then increase. The experimental results also expressed that, the increasing of sludge reflux ratio contributed to the improvement of pellets sedimentability.
     The kinetic investigation about primary partical removing indicated that, under a certain operational condition, there exists optimal influent concentration under which could achieve lowest outlet turbidity; according to this thoery, the optimal sludge recycle rate could be expressed as:
     (5) Full scale experiment of PFB process
     At the end of this paper, PFB process was applied to concentrate ferric flocs sludge in Tianjin Yangliuqing water treatment plant to inspect the applicability of theoretical results in this investigation. The full scale experimental results indicated that, by applying PFB process, under experimental condition of PAM dosage of 1.2 mg/L, agitating rotation velocity of 2-4 rpm, effluent turbidity, sludge moisture content and maximal upflow rate could be less than 10NTU, below 96% and 66.4 cm/min respectively with inlet SS ranged between 108 mg/L and 195 mg/L
     The development and debugging of automatic control system supported by demonstration project was executed after the full-scale experiment. The collected data from the automatic controlled continuous running system indicated that, the control system could alter PAM dosage to the fitful value automaticly according to the change of inlet flow rate or raw water concentration, and could calculate the accumulative thicken sludge weight automatically according to the raw water concentration and inlet flow rate to achieve automaticsludge drainage.
     The cost-effectiveness analysis indicated that, under the experimental scale of 30m3/h, the operation cost per ton raw water is¥0.17, the annual running cost of the demonstration project is Y44200, and according to current situation of DWTP residues treatment development, the integrated high efficient treatment process developed in this project could provide high value of application and dissemination, the application of the technology could achieve obviously economic, social, and environmental benefit.
引文
[1]于泮池,王晓昌,高羽飞.结团凝聚工艺的研究(一)—结团凝聚基础理论的探讨[J].西安冶金建筑学院学报,1986,3:1-19.
    [2]W. Walaszek, P. Ay. Pelleting flocculation-an alternative technique to optimise sludge conditioning [J]. International Journal of Mineral Processing,2005,76:173-180.
    [3]W. Walaszek, P. Ay. Porosity and interior structure analysis of pellet-flocs [J]. Colloids and Surfaces,2006,280:155-162.
    [4]丹保宪仁,于泮池,王晓昌.高浊度水结团凝聚处理方法[J].中国给水排水,1987,3(4):4-8.
    [5]N. Tambo, X.C. Wang. Control of coagulation condition for treatment of high-turbidity water by fluidized bed separation [J]. Journal of Water Supply:Research and Technology-Aqua., 1993,42(4):212-222.
    [6]N. Tambo, X.C. Wang. Application of fluidized pellet bed technique in the treatment of highly colored and turbidity water [J]. Journal of Water Supply:Research and Technology-Aqua., 1993,42(5):301-309.
    [7]黄廷林,王伟,熊向陨等.污泥浓缩的造粒流化床理论与技术[J].给水排水,1997,23(5):9-12.
    [8]X.C. Wang, P.K. Jin, H.L. Yuan, et al. Pilot study of a fluidized-pellet-bed technique for simultaneous solid/liquid separation and sludge thichening in a sewage treatment plant[C]. IWA Specialist Group on Sludge Management,2003, June 23-25, Trondheim, Norway
    [9]N.Tampo, Y. Matsui. Performance of fluidized pellet bed separator for high concentration suspense removal [J]. Journal of Water Supply:Research and Technology-Aqua.,1989, 38(1):16-25.
    [10]黄廷林.高炉煤气洗涤废水的处理技术[J].中国给水排水,1999,15(3):30-31.
    [11]王晓昌,袁宏林,谭长鸿等.造粒型高效固液分离技术用于电厂废水再生的试验研究[J].给水排水,2001,27(8):39-41.
    [12]李梅,黄廷林,汪国雅.洗煤废水高效处理的实验研究[J].西安建筑科技大学学报,2002,34(1):38-41.
    [13]黄廷林,李梅,高晓梅.结团絮凝工艺处理洗煤废水的研究[J].工业用水与废水,2002,33(4):23-25.
    [14]黄廷林,解岳,丛海兵等.水厂生产废水结团凝聚处理的中试试验研究[J].给水排水,2003,29(3):9-12.
    [15]黄廷林,张刚,聂小保等.造粒流化床浓缩技术处理给水厂排泥水的中试研究[J].给水排水,2005,31(11):10-14.
    [16]黄廷林,张刚,聂小保.石灰投加对水厂排泥水造粒流化床处理工艺的影响[J].水处理技术,2006,32(1):44-47.
    [17]T.L. Huang, G. Zhang. Pilot scale evaluation on algae-containing Alum sludge conditioning with PFB process [C]. Taibei:The 3rd IWA ASPIRE Conference and Exhibition,2009.
    [18]J. Robio, M.L. Souza, R.W. Smith. Overview of flotation as wasterwater treatment technology[J]. Minerals Engineering,2002,15:139-155.
    [19]武若冰,王东升,李涛.絮体性能及其工艺调控的研究进展[J].环境科学学报,2008,28(4):593-598.
    [20]N. Tambo, H. Hozumi. Physical characteristics of flocs II:strength of flocs [J]. Water Research,1979,13(5):421-427.
    [21]D.H. Bache, C. Johnson, J.F. McGilligan, et al. A conceptual review of floc structure in the sweep floc domain [J]. Water Science& Technology,1997,36(4):49-56.
    [22]M. Boller, S. Blaser, Particles under stress [J]. Water Science& Technology,1998, 37(10):9-29.
    [23]A.A. Berlin, V.N. Kislenko, M.A. Moldovanvo. Mathematical model of suspension flocculation kinetics [J]. Colloid and Polymer Science,1992,270:1042-1045.
    [24]X.C.Wang, N.Tambo. Kinetic study of fluidized pellet bed process Ⅱ. Development of a Mathematical Model [J]. Journal of Water Supply:Research and Technology-Aqua,1993, 42(3):155-165.
    [25]K. McCurdy, K. Carlson, D. Gregory. Floc morphology and cyclic shearing recovery: comparison of Alum and Polyaluminium Chloride coagulants [J]. Water Research,2004, 38:486-494.
    [26]P. Jarvis, B. Jefferson, J. Gregory, et al. A review of floc strength and breakage [J]. Water Research,2005,39(14):3121-3137.
    [27]B. Gorczyca, J. Ganczarczyk. Structure and porosity of alum coagulation flocs [J]. Water Quality Research Journal of Canada,1999,34:653-666.
    [28]J. Gregory, D.W. Nelson. Monitoring of aggregates in flowing suspension [J]. Colloids and Surfaces,1986,18:175-188.
    [29]J. Leentvaar, M. Rebhun. Strength of ferric hydroxide flocs[J]. Water Research,17:895-902.
    [30]R.J. Francois. Strength of aluminium hydroxide flocs [J]. Water Research,1987,21:1023-1030.
    [31]C.C. Wu, J.J, Wu, R.Y. Huang. Floc strength and dewatering efficiency of alum sludge [J]. Advanced in Environmental Research,2003,7(3):617-621.
    [32]S.B. Fitzpatrick, E. Fradin, J. Gregory. Temperature effects on flocculation using different coagulants [C].2003, Zurich, In:Proceeding of the nano and micro particles in water and wasterwater treatment conference:IWA.
    [33]T. Li, Z. Zhu, D.S. Wang, et al. Characterization of floc size, strength, and structure under various coagulation mechanisms [J]. Powder Technology,2006,168:104-110.
    [34]黄廷林.结团体致密的动力条件研究[J].西安冶金建筑学院学报,1993,25(1):53-59.
    [35]N. Tambo, H. Hozumi. Physical characteristics of flocs (II)[J], Water Research,1979, 13:421-427.
    [36]金鹏康,曹宇,王晓昌.絮凝体的物理性质[J].西安建筑科技大学学报,2001,33(4):316-320.
    [37]K. Muhle. Coagulation and Flocculation [M]. New York:Maroel Dekker,1993,355-390.
    [38]T. Serra, J. Cokmer, X.Casamitjana. Aggregation and breakup of Particle in a Shear Flow [J]. Journal of Colliod Interface Science,1997,187:466-473.
    [39]J. Gregory. The role of floc density in solid-liquid separation [J]. Filtration and Separation, 1998,35(4):367-371.
    [40]张国忠,栾兆坤,赵颖等.聚合氯化铝(PACl)混凝絮体的破碎与恢复[J].环境科学,2007,28(2):346-351.
    [41]J. Aubin, C. Xuereb, Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD[J]. Chemical Engineering Science,2006,61(9):2913-2920.
    [42]V. Buwa, A. Dewan, A.F. Nassar, et al. Fluid dynamics and mixing of single-phase flow in a stirred vessel with a grid disc impeller:experimental and numerical investigations[J]. Chemical Engineering Science,2006,61(9):2815-2822.
    [43]J. Gregory. The Role of Floc Density in Solid-Liquid Separation [J]. Filtration and Separation,1998,35:367-371.
    [44]M.J. Vold. Computer simulation of floc formation in a colloidal suspension [J]. Journal of Colloid and Interface Science,1963,18:684-695.
    [45]D.N. Sutherland. A theoretical model of floc structure [J]. Journal of Colloid and Interface Science,1967,25:373-385.
    [46]K. Azetsu-Scott, B.D. Johnson. Measuring Physical Characteristics of Particles:a New Method of Simultaneous Measurement for Size, Settling Velocity and Density of Constituent Matter [J]. Deep Sea Res.,1992,39(6):1057-1066.
    [47]K. R. Dyer, A. J. Manning. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions [J]. Journal of Sea Research,1999,41(1-2):87-95.
    [48]C. Fargues, C. Turchiuli. Structural Characterization of Flocs in Relation to Their Settling Performances [J]. Chemical Engineering Research and Design,2003,81(9):1171-1178.
    [49]A. Khekifa, P. S. Hill. Models for effective density and settling velocity of flocs [J]. Journal of Hydraulic Research,2006,44 (3):390-401.
    [50]A. Yeung, A. Gibbs, R. Pelton. Effect of Shear on the Strength of Polymer-Induced Flocs [J]. Journal of Colloid and Interface Science,1997,196(1.1):113-115.
    [51]B. Q. Liao, D. G. Allen, G. G. Leppard, I. G. Droppo, S. N. Liss. Interparticle Interactions Affecting the Stability of Sludge Flocs [J]. Journal of Colloid and Interface Science,2002, 249(2,15):372-380.
    [52]D. Sato, M. Kobayashi, Y. Adachi. Effect of floc structure on the rate of shear coagulation [J]. Journal of Colloid and Interface Science,2004,272(2,15):345-351.
    [53]C. Selomulya, G. Bushell, R. Amal, T. D. Waite. Aggregate properties in relation to aggregation conditions under various applied shear environments [J].International Journal of Mineral Processing,2004,73(2-4,3):295-307.
    [54]S. J. Khan, C. Visvanathan. Influence of mechanical mixing intensity on a biofilm structure and permeability in a membrane bioreactor [J]. Desalination,2008,231(1-3):253-267.
    [55]S.M. Iveson, Limitation of one-dimensional population balance of wet agglomeration processes [J]. Power Technol.,2002,124:219-229.
    [56]于泮池,王晓昌.结团絮凝工艺的研究(二)—结团絮凝体形成过程的动力分析[J].西安冶金建筑学院学报,1987,(2):20-30.
    [57]N.Tampo, X.C.Wang. The mechanism of pellet flocculation in a fluidized-bed operation [J]. Journal of Water Supply:Research and Technology-Aqua.,1993,42(2):67-77.
    [58]黄廷林,曹翀.管式絮凝器应用于结团凝聚工艺的研究[J].西安冶金建筑学院学报,1991,23(2):36-45.
    [59]黄廷林,曹翀.投药条件对结团凝聚工艺的影响[J].西安冶金建筑学院学报,1991,23(4):404-410.
    [60]巴宾科夫.论水的混凝(郭连起译)[M].北京:中国建筑工业出版社,1982.
    [61]M.A. Yukselen, J. Grgory. The reversibility of floc breakage [J]. Mineral Processing,2004, 73(2-4):251-259.
    [62]Y. Watanabe, K. Tanska. Innovative sludge handling through pelletization/thickening. Water Research,1999,33(15):3245-3252.
    [63]黄廷林.结团造粒流化床造粒动力条件研究[J].给水排水,1998,24(5):25-29.
    [64]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨—Ⅱ.致密型絮凝体形成操作模式[J].环境科学学报,2000,20(4):385-390.
    [65]X.C.Wang, N.Tambo, Y. Matsui. Kinetic study of fluidized pellet bed process I. Characteristics of particle motions [J]. Journal of Water Supply:Research and Technology-Aqua,1993,42(3):146-154
    [66]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨-Ⅰ.从絮凝体分型构造谈起[J].环境科学学报,2000,20(3):257-262.
    [67]王晓昌.自我造粒型流化床中颗粒流态的实验测定[J].1999,31(2):115-118.
    [68]郭宁.水厂排泥水高效处理技术研究[D].西安建筑科技大学硕士学位论文,2008.
    [69]黄廷林,岳晓勤.结团体流化床的运动平衡[J].给水排水,1996,22(3):8-1
    [70]T.L. Huang. Kinematic equilibrium of pellet blanket in pellet coagulation process [C]. International Symposium Sanitary Environmental Engineering,1992, Chongqing:Chongqing University Press.
    [71]N. Tambo, X.C. Wang, G. Ozawa. Fluidized-pellet-bed operation:a new technique for high-rate solid/liquid separation of high-concentration suspensions [C]. Proceeding of water and wasterwater treatment, ICEWW'94, International Academic Publishers,1994:268-277.
    [72]张刚.水厂排泥水造粒流化床浓缩中试实验研究[D].西安建筑科技大学硕士论文,2004
    [73]R. D. Letterman. Water Quality and Treatment-A handbook of community water supplies,5th ed. [M]. New York, McGraw Hill Companies, INC,1999.
    [74]J. M. Coulson, J. F. Richardson. Chemical Engineering,3rd ed.[M], Oxford,:Pergamon Press, 1978.
    [75]R. Gregory, Floc Blanket Clarification [M]. Swindon.:Water Research Centre,1979.
    [76]J. Hart. Application of Process Simulation in Water Treatment[C]. London,U.K.:Association Generale Hygienistes Techniciens Municipaux 76th Congress,1996.
    [77]R. Gregory, R. Head, N. J.D. Graham. Blanket solids concentration in floc blanket clarifiers [C]. Edinburgh:In Proc. Gothenburg Symposium,1996.
    [78]R.Head, J. Hart, N. Graham. Simulating the effect of blanket characteristics on the floc blanket clarification process [J]. Water Science&Technology,1997,36(4):77-84.
    [79]L.C. Chen, S.S. Sung, W.W. Lin, et al. Observations of blanket characteristics in full-scale floc blanket clarifiers [J]. Water Science& Technology,2003,47(1):197-204.
    [80]L.C. Chen, W.W. Lin, S.S. Sung, et al. Treating high-turbidity water using full-scale floc blanket clarifiers [J]. Journal of Environmental Engineering,2004,130(12):1481-1487.
    [81]B.W. Could. Upflow clarifiers-flow flexibility related to concentrator size [J]. Effluent and Water Treatment Journal,1974;14(11):621-631.
    [82]C. Marchioli, M. Picciotto, A. Soldati. Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow [J]. Multiphase Flow,2007, 33:227-251.
    [83]S. Diehl. On boundary conditions and solutions for ideal clarifier-thicken units [J]. Chemical Engineering Journal,2000,80:119-133.
    [84]L.C. Chen, S.S. Sung, W.W. Lin, et al. Spatial instability of blanket in full-scale blanket clarifiers [J]. Journal of the Chinese Institute of Chemical Engineers,2003,34(4):447-456.
    [85]S.T. Su, R.M. Wu, D.J. Lee. Blanket dynamics in upflow suspended bed [J]. Water Research, 2004,38:89-96.
    [86]R. Burger, A. Narvaez. Steady-state, control, and capacity calculations for flocculated suspensions in clarified-thickeners [J]. International Journal of Mineral Processing,2007, 84:274-298.
    [87]S.S. Sung, D.J. Lee, C. Huang. Steady-state humic-acid-containing blanket in upflow suspended bed [J]. Water Research,2005,39:831-838.
    [88]S. Hasselblad, B. Bjorlenius, B. Carlsson. Use of dynamic models to study secondary clarifier performance [J]. Water Science and Technology,1998,37(12):207-212.
    [89]C.M. Bye, P.L. Dold. Sludge volume index settleability measures:effect of solids characteristics and test parameters [J]. Water Environ Res 1998,70(1):87-93.
    [90]Y. Kim, W.O. Pipes, P. Chung Estimation of suspended solids concentrations in activated sludge settling tanks [J]. Water Science and Technology,1997,35(8):127-35.
    [91]Y. Kim, W.O. Pipes. Solids routing in an activated sludge process during hydraulic overloads [J]. Water Science and Technology,1996,34(3-4):9-16.
    [92]D. L. Giokas, Youngchul Kim, P. A. Paraskevas, et al. A simple empirical model for activated sludge thickening in secondary clarifiers [J]. Water Research,2002,36(13):3245-3252.
    [93]A. Deininger, F. W. Gunthert, P.A. Wilderer. The influence of currents on circular secondary clarifier performance and design [J]. Water Science and Technology,1996,34 (3-4):405-412.
    [94]A.W. Bond. Water-solids separation in an upflow [J]. Instn. Engrs. Aust., Civ. Engrg. Trans., 1965,7:141.
    [95]W.J. Yang, C.C. Wang, R.Y. Hsu, et al. Two-phase flow simulation of reactor clarifiers [J]. Journal of the Chinese Institute of Chemical Engineers,2008,39(3):275-280.
    [96]N. Tambo. Behaviour of floc blankets in an upflow clarifier. Jour. Jap.Water Wks.Assoc,44, 1969:7.
    [97]C.I. Lee, W.F. Yang, C.S. Chiou. Utilization of water clarifier sludge for copper removal in a liquid fluidized-bed reactor [J]. Journal of Hazardous Materials,2006,129(1-3):58-63.
    [98]C. Campos, V.L. Snoeyink, B. Marinas, et al. Atrazine removal by powdered activated carbon in floc blanket reactors [J]. Water Research,2000,34(16):4070-4080.
    [99]A.G. Bhole. Theory of sludge blanket clarifiers [J]. Indian Journal of Environmental Health,1997,39(1):44-51.
    [100]V. Plum, C.P. Dahi, L. Bentsen, et al. The actiflo method [J]. Water Science and Technology, 1998,37(1):269-275.
    [101]罗启达,周克明,陈伟等ACTIFLO—一种新型高效水处理澄清工艺[J].净水技术,2004,23(1):38-41.
    [102]A. M. Hurst, M. J. Edwards, M. Chipps, et al. The impact of rainstorm events on coagulation and clarifier performance in potable water treatment [J]. Science of The Total Environmnet, 2004,321(1-3):219-230.
    [103]赵建伟,何文杰,黄廷林等.排泥水处理系统污泥负荷优化的中试研究[J].供水技术,2008,2(4):35-37.
    [104]S. Philip. Treatment of liquidswith ballasted flocculation [P]. US:6689277,2001.
    [105]E. Carissimi, J. Rubio.The flocs generator reactor-FGR:a new basis for flocculation and solid-liquid separation [J]. Int. J. Miner. Process.2005,75:237-247.
    [106]E. Barbot, P. Dussouillez, J.Y. Bottero, et al. Coagulation of bentonite suspension by polyelectrolytes or ferric chloride:Floc breakage and reformation [J].Chemical Engineering Journal,2010,156(1.1):83-91.
    [107]M. Kobayashi. Breakup and strength of polystyrene latex flocs subjected to a converging flow [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004, 235(1-3):73-78.
    [108]J. J. Sansalone, J.Y. Kim. Suspended particle destabilization in retained urban stormwater as a function of coagulant dosage and redox conditions [J]. Water Research,2008, 42(4-5):909-922.
    [109]中国市政工程东北设计研究院.给水排水设计手册(第1册)常用资料(第二版)[M].北京:中国建筑工业出版社,2000.
    [110]刘海龙,王东升,王敏等.强化混凝对水力条件的要求[J].中国给水排水,2006,22(5):1-4.
    [111]张宗农.给水厂生产废水上向流造粒流化床处理试验研究[D].西安建筑科技大学硕士学位论文,2000.
    [112]曹种,王晓昌,贾森.絮凝池综合指标浅析[J].中国给水排水,1987,3(2):17-20.
    [113]王晓昌,曹翀.絮凝池综合指标GT/(Re)0.5物理意义的研讨[J].中国给水排水,1989,5(4):4-9.
    [114]American Public Health Association/American Water Works Association& Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. 18th edn. [M]. Washington DC.:1998.
    [115]黄廷林,聂小保,张刚.水厂生产废水污泥比阻测定的影响因素分析及方法改进[J].西安建筑科技大学学报,2005,(3):7-10.
    [116]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:中国建筑工业出版社,1991.
    [117]C.E. Capes. Particle agglomeration and the value of the exponent n in the richardson-zaki equation [J]. Powder Technology,1974,10(6,6):303-306.
    [118]Z. Zhu, T. Li, J.J Lu, et al. Characterization of kaolin flocs formed by polyacrylamide as flocculation aids [J]. International Journal of Mineral Processing,2009,91(3-4):94-99.
    [119]I.G. Droppo, K. Exall, K. Stafford. Effects of chemical amendments on aquatic floc structure, settling and strength [J]. Water Research,2008,42(1-2):169-179.
    [120]L. Besra, D. K. Sengupta, S. K. Roy, et al. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension [J]. Separation and Purification Technology,2004,37(3):231-246.
    [121]史惠祥.实用环境工程手册[M].北京:化学工业出版社,2002.
    [122]#12
    [123]A. Raj, M. Sander, V. Janardhanan, M. Kraft A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency [J].Combustion and Flame,2010,157(3):523-534
    [124]B. M. Moudgil, B. D. Shah, H. S. Soto. Collision efficiency factors in polymer flocculation of fine particles [J].Journal of Colloid and Interface Science,1987:119(2):466-473.
    [125]A. Ding, M.J. Hounslow, C.A. Biggs. Population balance modelling of activated sludge flocculation:Investigating the size dependence of aggregation, breakage and collision efficiency [J]. Chemical Engineering Science,2006,61(1):63-74.
    [126]P. T. L. Koh, M. P. Schwarz. CFD modelling of bubble-particle collision rates and efficiencies in a flotation cell [J].Minerals Engineering,2003,16(11):1055-1059.
    [127]M. Han, H. Lee, D. F. Lawler, et al. Collision efficiency factor in brownian coagulation (aBr) including hydrodynamics and interparticle forces [J]. Water Science and Technology,1997, 36(4):69-75.
    [128]S. Agarwal, R. K. Gupta, D. Doraiswamy. A model for the collision efficiency of shear-induced agglomeration involving polymer bridging [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,345(1-3,5):224-230.
    [129]J. Ren, A. I. Packman, C. Welty. Analysis of an observed relationship between colloid collision efficiency and mean collector grain size [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,191(1-2):133-144.
    [130]A. Mantovanelli, P.V. Ridd. SEDVEL:An underwater balance for measuring in situ settling velocities and suspended cohesive sediment concentrations [J]. Journal of Sea Research,2008, 60 (4):235-245.
    [131]D. I. Verrelli, D. R. Dixon, P. J. Scales. Assessing dewatering performance of drinking water treatment sludges [J].Water Research,2010,44(5):1542-1552.
    [132]Y. Arhan, I. Oturk, T. (?)ift(?)i. Settling and dewatering characteristics of sludge from baker's yeast production wastewater treatment [J].Water Science and Technology,1996, 34(3-4):Pages 459-467.
    [133]R. J. Wakeman. Separation technologies for sludge dewatering [J]. Journal of Hazardous Materials,2007,144(3,18):614-619.
    [134]J. K. Edzwald, M. B. Kelley. Control of Cryptosporidium:From reservoirs to clarifiers to filters [J]. Water Science and Technology,1998,37(2):1-8.
    [135]J. C. Bourgeois, M. E. Walsh, G. A. Gagnon. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios [J].Water Research,2004,38(5):1173-1182.
    [136]E.J.A. Coopmans, H.P. Schwarz. Clarification as a pre-treatment to membrane systems [J]. Desalination,2004,165(15):177-182.
    [137]上海市政工程设计研究院.给水排水设计手册(第3册)城镇给水(第二版)[M].北京:中国建筑工业出版社,2000.
    [138]T. Serra, J. Colomer, B.E. Logan. Efficiency of different shear devices on flocculation [J]. Water research,2008,42(4-5):1113-1121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700