改良型A~2/O工艺处理低浓度城市污水的特征及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已建或在建的污水处理厂80%采用了活性污泥法,A2/O工艺因其是最简单的同步脱氮除磷活性污泥法而得到了广泛应用,但A2/O工艺存在释磷与脱氮争夺碳源、硝酸盐氮干扰释磷等固有缺陷。本文中的A2/O工艺是一种改良工艺,改良体现在预缺氧选择池的设置、分点进水以及阶式曝气池的应用。以改良型A2/O工艺处理中国南方典型的低浓度污水为研究对象,进行了实验室和现场研究,研究表明:
     (1)预缺氧选择池能有效去除回流污泥中的硝酸盐氮和亚硝酸盐氮,且去除硝酸盐氮的效果更稳定。预缺氧选择池的设置,使厌氧池内几乎不发生脱氮作用,脱氮主要发生在选择池和缺氧池,改善了厌氧池的释磷条件。
     (2)低浓度污水处理中,生物池MLSS浓度应根据F/M=0.10-0.12以及进水BOD确定,MLSS达到某一定值后出现提升困难,过度提升MLSS浓度对提高运行效果无益。水质波动不大时,可采取定MLSS控制策略,在维持生物池内MLSS的同时应及时适当排泥。排泥可以提高COD、NH3-N、TP、SS去除率。不排泥不仅会使除磷效果恶化,还会引起污泥活性降低、出水SS剧烈波动,脱氮率也降低。无脱氮要求时,混合液回流比的选择应综合考虑运行成本与除磷要求,因为混合液回流比低,回流污泥中的NO3-N增多,影响除磷率的提高。
     (3)阶式曝气池有如下典型特征:
     阶式曝气池单池设计成方形(L=1.58B)时,流态介于推流与全混流之间,更接近推流,且随着串联级数的增加越来越接近推流,此种池型比廊道式曝气池更简单。
     阶式曝气池内有机物、氨氮降解以一级反应为主,对污染物的降解进行模拟时宜采用分段拟合。
     阶式曝气池的MLSS逐级浓度分布与是否排泥、排泥量以及曝气池的混合状态有关。
     单池内流态为CSTR时,阶式曝气池比单级曝气池的推动力更高、体积大幅减小。设计中采用等体积CSTR曝气池串联可保证总体积最小。曝气池改造中,增加隔墙即可改造成阶式曝气池,污染物去除率提高。
     (4)进水受到偏碱性冲击时,对除磷无不利影响,TN去除率提高,氨氮去除率不变;进水受到低磷冲击时,除磷率提高了15.9%,但低磷时需要更长的硝化时间。
     (5)进水中氨氮浓度低时、好氧段DO控制不当时易出现过量曝气,过量曝气会导致除磷效果恶化,聚磷菌受抑制后反硝化菌夺得更多碳源,脱氮率提高。过量曝气不会导致出水SS增加,但污泥的SVI上升、颗粒粒径变小。氨氮降解速率提高,彻底硝化所需的时间缩短,过量曝气时应缩短曝气时间,避免混合液回流时携带过多的溶解氧进入缺氧池。
     (6)安庆市城东污水厂的ASM实测化学计量系数和动力学参数如下,可以为低浓度污水厂的运行模拟提供参考。
     水质参数:Ss占总COD的比例平均为4.8%,xs占总COD的比例平均为10.5%,SI占总COD的比例平均为21.5%,XI占总COD的比例平均为62.7%。氨氮占TN的71%;硝态氮占TN的11%;SND占TN的7%;XND占TN的11%。
     污泥参数(10℃时):异养菌产率系数0.71 g(COD)/g(COD),异养菌衰减系数0.40d-1,异养菌最大比增长速率系数2.0g(Xs)/g(XH).d。
80% of the existing wastewater treatment plants adopt activated sludge system. A2/O process which is the most simple simultaneous nutrient removal process is widely used in wastewater treatment plants. But there are some challenges troubled with A2/O process, such as carbon competition between phosphorus-accumulating organisms and denitrifier, effect of nitrate on phosphorus removal, sludge retention time conflict between autotrophic bacteria and heterotrophic bacteria. A modified A2/O process was presented in this thesis, and its modified configuration included (1) an anoxic selector at the head of A2/O process. (2) step-feed in anoxic selector and anaerobic tank. (3) stage aeration tank in aerobic zone. The thesis focused on characteristics and control of modified A2/O process treating South China wastewater tipical of low strength. The main conclusions are drawn as follows.
     (1) Anoxic selector could remove 35% of nitrate and 30% of nitrite in return sludge when 10% of influent entering selector. The removal of nitrate was more stable than nitrite. Denitrification mainly completed in selector and anoxic tank other than anaerobic tank, so selector improved conditions for phosphorus release in anaerobic tank.
     (2) MLSS should be determined according to F/M=0.10-0.12, and excess MLSS was not suitable for treating low strength wastewater. Excess sludge discharge could improve removal of COD, NH3-N, TP and SS. Without excess sludge discharge, effluent SS fluctuated badly and denitrification was also affected. If influent TN was very low, selection of mixed liquid recycle ratio should based on co-consideration of run cost and phosphorus removal. Because low mixed liquid recycle ratio could result in more nitrate in return sludge disturbing phosphorus release.
     (3) Characteristics of stage aeration tank were as follows.
     The mixed condition of single tank (L=1.58B) of stage aeration tank was closer to plug flow. Its configuration was simpler compared to channel aeration tank.
     The degradation of COD and NH3-N in stage aeration tank was afford to first order reaction. Simulation of stage aeration tank should base on multi-stage mode other than considering stage aeration tank as a whole.
     MLSS in stage aeration tank is uneven. This was attributed to excess sludge discharge amount and different mixed condition in each tank.
     If the mixed condition in single tank was CSTR, after adopting staging strategy, reaction rates could be improved and volume of biomass tank could be reduced. And the volume could be minimun when volume of each was the same. It is convenient to modify conventional aeration tank to stage aeration tank, and this modification could get higher removal rate.
     (4) When influent was fluctuated with weak alkaline(pH8.0-8.5), it did not have a negative effect on system performance, phosphorus and NH3-N removal maintained, TN removal improved. When influent phosphorus was very low, phosphorus removal improved 15.9%, but time for completed nitrification was extended.
     (5) Excess aeration resulted in deterioration of phosphorus removal and improved TN removal. SS in surface effluent was increased and also SVI of sludge. NH3-N removal rate was improved due to high DO concentration, so aeration time should be shortened in order to maintain less DO owing to mixed liquid recycle from anerobic tank to anoxic tank.
     (6) ASM stoichiometric coefficients and kinetic parameters of AnQing wastewater treatment plant were as follows.
     Water quality parameters:ratio of Ss, Xs, SI, XI to COD was respecially 4.8%,10.5%, 21.5%,62.7%.Ratio of NH3-N, NOX-N, SND, XND to TN was respecially 71%,11%,7%, 11%.
     Sludge parameters:YH, bH,μH was respecially 0.71 g(COD)/g(COD),0.40 d-1,2.0 g(Xs)/g(XH).d
引文
[1]丘静,李家龙.倒置式A2/O工艺在南方城市污水处理厂的运用.广西城镇建设,2008,6:73-76.
    [2]高大文,彭永臻,王淑莹等.污水处理智能控制的研究、应用与发展.中国给水排水,2002,18(6):35-39.
    [3]US EPA. Process design manual of nitrogen control. EPA 625/r-93/010 Cincinnati, Ohio,1993.
    [4]Peng Y. Z., Wang S.Y Nitrification-denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control. Water Science and Technology,2004,49(5-6):121-127.
    [5]Chiu Y.C., Lee L.L., Chang C.N. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. Int.Biodeterior.Biodegrad,2007,59:1-7.
    [6]Joo H.Z., Hirai M., Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by alcaligenes faecalis. Bioscience and.Bioengineering,2005,100(2):184-191.
    [7]Zart D., Eberhard B. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 and NO. Archives of Microbiology,1998, 169:282-286.
    [8]Pochana K., Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND).Water Science and Technology,1999,39(6):681-683.
    [9]Pochana K., Keller J., Paullant. Model development for simultaneous nitrification and denitrification. Water Science and Technology,1999,39(1):235-243.
    [10]Song S.S, Stenstrom M.K. Effect of oxygen transport limitation on nitrification in the activated sludge process. Res.J.Water Pollut.Control Fed,63(3):208-219.
    [11]Bakti N.A.K., Dick R.I. A model for a nitrifying suspended-growth reactor
    incorporating intraparticle diffusional limitation. Water Research,26(12):1681-1690
    [12]Kuenen J. G., Robertson L.A. Aerobic denitrification:a controversy revived Arch Microbilo,1984,139:351-354.
    [13]Hollocher T.C., Castignetii D. Heterotrophic nitrification among denitrifiers. Applied and Environmental Microbiology. Applied and Environmental Microbiology,1984,47(4):620-623.
    [14]Kuenen J.G., Robertson L.A., Kleijntjens R. Aerobic denitrification and heterotrophic nitrification by thiosphaera pantotropha Antonie Van Leeuwenhoek, 1985,51(4):445.
    [15]Reuss A.F. Ergas S.J. Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. Water Supply,2001,50(3):161-171.
    [16]Nakayama T., Sakakibara Y.M. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification. Water Research,2001,35(3):768-778.
    [17]Sakakibara Y., Feleke Z. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. Water Research,2002, 36:3092-3102.
    [18]Kim D.K., Park H.I, Choi Y. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochemistry,2005,40:3383-3388.
    [19]Sakakibarab Y., Prosnansky M., Kuroda M. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration. Water Research,2002,36:4801-4810.
    [20]Mendeza R., Kleerebezem R. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and postdenitrification. Water Science and Technology, 2002,45(10):349-356.
    [21]Singh K.P., Shrimali M. New methods of nitrate removal from water. Environmental Pollution,2001,112:351-359.
    [22]Tal Y., Rijn J.V. Denitrification in recirculating systems:theory and applications. Aquacultural Engineering,2006,34:364-376.
    [23].Wareham D.G., Holman J.B. COD, ammonia and dissolved oxygen time profiles in
    the simultaneous nitrification/denitrification process. Biochemical Engineering Journal,2005,22:125-133.
    [24]Van de Graaf, Mulder A., Robertson L.A. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecol,1995, 16:177-183.
    [25]Broda E. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol,1997, 17:491_493.
    [26]Heijnen J.J., Strous M., Kuenen J.G. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiol Biotechnol,1998,50:589-596.
    [27]Kuba T., Murnleitner E., M.C.M van Loosdrecht. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnology and Bioengineering,1997,54(5):34-45.
    [28]Dold P.L., Barker P.S. Denitrification behavior in biological excess phosphorus removal activated sludge systems.Water Research,1996,30(4):769-780.
    [29]Romain L., Raymond J., Zhiguo Yuan, et al. Simultaneous nitrification denitrification and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering,2003,83(2):172-178.
    [30]M.C.M van Loosdrecht, Kuba T., Heijnen J.J. Phosphorus and nitrogen removal with minimal COD requirement by integration of nitrification in a two sludge system. Water Research,1996,30(7):1702-1710.
    [31]Smolders G.J.F., Kuba T., van Loosdrecht M.C.M. Biological phosphorus removal from wastewater by anaerobic-aerobic sequencing batch reactor. Water Science and Technology,1993,27(5-6):241-252.
    [32]刘洪波,孙力平.天津纪庄子污水处理厂反硝化聚磷菌作用初探.天津城市建设学院学报,2004,10(3):174-178.
    [33]Hence M., Kerrn J.P. Biological phosphorus uptake under anoxic and oxic conditions. Water Research,1993,27(4):617-624.
    [34]M.C.M van Loosdrecht, Kuba T. Phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Science and Technology,1993,
    27(5-6):241-252.
    [35]Kuba T., Wachtmeister A. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Research,1997,31(3):471-478.
    [36]王亚宜,彭永臻,王淑莹等.反硝化除磷理论、工艺及影响因素.中国给水排水,2003,19(1):33-36.
    [37]Marsili S., Libelli G., Bortone. Anoxic phosphate uptake in the Dephanox process. Water Science and Technology,1999,40(4-5):177-185.
    [38]Cooper P., Day M., Thomas V. Process options for phosphorus and nitrogen removal from wastewater. Water and Environment Journal,1994,8(1):84-92.
    [39]魏峰,陈凌霞,徐志伟.A+A2/O工艺在泰安市污水处理厂的应用.中国给水排水,2005,21(12):83-85.
    [40]谢晖,李绍秀,郭玉.改良A2/O工艺的工程实践.环境污染治理技术与设备,2006,7(5):132-134.
    [41]娄金生,谢水波.提高A2O工艺总体处理效果的措施.中国给水排水,1998,14(3):27-30.
    [42]张杰,臧景红,杨宏等.A2/O工艺的固有缺欠和对策研究.给水排水,2003,29(3):22-26.
    [43]张波.城市污水生物脱氮除磷技术工艺与机理研究:博士学位论文.上海:同济大学图书馆,1996.
    [44]Streett F., Carrio L., Mahoney K. Practical consideration for design of a step feed biological nutrient removal system. In:Proceedings of 73rd annual conference and expositon,2000.
    [45]邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺.中国给水排水,2003,19(4):32-36.
    [46]Black S., Crawford G., Stafford D., et al. The step bio-P process at lethbridge-over one full year of operation. In:Proceedings of 73rd annual conference and exposition, 2000.
    [47]New York City Department of Environmental Protection (NYCDEP). The Tallman Island Demonstration Project, Draft Report, Process Control Section. Bureau of
    Wastewater treatment, N YCDEP.New York:1991.
    [48]De Santis V., Adamski R.E., Spangel A.,et al. Step-feed operation at short detention times-a cost effective method for improving wastewater treatment. Water Science and Technology,2000,41(9):15-20.
    [49]祝贵兵,彭永臻,吴淑云等.分段进水生物脱氮工艺的优化控制运行研究.中国给水排水,2006,22(21):1-5.
    [50]Wang Wei, Wang Shuying, Peng Yongzhen. Enhanced biological nutrient removal in modified step-feed anaerobic/anoxic/oxic process. Biotechnology and Bioengineering,2009,17(5):840-848.
    [51]Shigeo Fujii. Theoretical analysis on nitrogen removal of the step-feed anoxic-oxic activated sludge process and its application for the optimal operation. Water Science and Technology,1996,34(1-2):459-466.
    [52]Zhang B.R. Floc size distribution and bacterial activities in membrane separation activated sludge process for small-scale wastewater treatment/reclaimation. Water Science and Technology,1997,35(6):37-44.
    [53]Schlegel S. Operational results of waste water treatment plants with biological N and P elimination. Water Science and Technology,1992,25(4-5):241-247.
    [54]Artan N., Gorgun E., Orhon D. Evaluation of nitrogen removal by step feeding in large treatment plants. Water Science and Technology,1996,34(1-2):253-260.
    [55]Eddy. Metcalf. Wastewater Engineering: Treatment and Reuse. New York: McGraw Hill,2003.
    [56]Tsai Y.P., Pai.T.Y, Chou Y.J., et al. Microbial kinetic analysis of three different types of EBNR process. Chemosphere,2004,55:109-118.
    [57]Melidis P., Vaiopoulou E., Aivasidis A. An activated sludge treatment plant for integrated removal of carbon, nitrogen and phophorus. Desalination,2007, 211:192-199.
    [58]Rensink J.H., Dunker, H.J.G.W. Biological P-removal in domestic wastewater by the activated sludge process. In: Proceeding 5th Environ. Sewage Refuse Symp, 1982.
    [59]Su J.L. N and P removal by RBC add-in A2/O process. In:Proceedings of World
    Congress Ⅲ on Environment and Engineering. Beijing:1993.
    [60]Wanner J. New process design for biological nutrient removal. Water Science and Technology,1992,25(4-5):445-448.
    [61]M.C.M van Loosdrecht, Kuba T. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research,1996,30(7):1702-1710.
    [62]Kim K.Y., Kim D., Ryu H.D. Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater. Bioresource Technology,2009, 100:3180-3184.
    [63]Mark C., Wentzel G., Ekama A. Defficulties and developments in biological nutrient removal technology and modeling. Water Science and Technology,1999, 39(6):1-11.
    [64]Brandse F.A., Van Loosfrecht M.C.M, de Vries A.C. Up-grading of wastewater treatment processes for integrated nutrient removal-the BCFS process. Water Science and Technology,1998,38(3):12-23.
    [65]van Loosdrecht M.C.M, Kuba T, Heijnen J.J. Phosphorus and nitrogen removal with minimal COD requirement by integration of nitrifying dephosphatation and nitrification in a two-sludge system. Water Research,1996,30(7):1702-1710.
    [66]张望军.OCO工艺对城市污水的处理.给水排水,2000,26(3):1-2.
    [67]杭世,潘明.OCO污水处理工艺简介.见:中国土木工程学会水工业分会第四届理事会第一次会议论文集.宁波:2002.
    [68]刘汉湖,李桂杰,裴宗平.中小城镇生活污水处理新技术.江苏环境科技,2004,17(4):19-21.
    [69]David H.F. Liu, Bela G..Environmental engineer's handbook. New York: CRCpress, 1999.
    [70]Xiaolin Wang, Hanmin Zhang, Jingni Xiao. Enhanced biological nutrient removal using MUCT-MBR system. Bioresource Technology,2009,100:1048-1054.
    [71]Aivasidis A., Vaiopoulou E. A modified UCT method for biological nutrient removal:configuration and performance. Chemosphere,2008,72:1062-1068.
    [72]张亚雷,李咏梅译.活性污泥数学模型.上海:同济大学出版社,2002.
    [73]Vanderhaegen B., Coen F., Boonen I., et al. Improved design and control of industrial and municipal nutrient removal plants using dynamic model. Water Science and Technology,1997,35(10):53-61.
    [74]Henze M., Gujier W., Mino T, et al. The activated sludge model no.2:biological phosphorus removal. Water Science and Technology,1995,31(2):1-11.
    [75]Henze M., Gujer W., Mino T., et al. Wastewater and biomass characterization for the activated sludge model no.2:biological phosphorus removal. Water Science and Technology,1995,31(2):12-22.
    [76]顾国维,徐伟锋,张芳.活性污泥法脱氮除磷数学模型的发展.工业用水与废水,2004,35(2):1-4.
    [77]Jenkins D., Mamais D., Pitt P. A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Research,1993,27(1):195-197.
    [78]于静洁,顾国维,张志峰.废水中起始惰性溶解有机物的测定.环境污染与防治,2005,27(5):395-396.
    [79]甘立军.活性污泥1号模型(ASM1)水质特性参数测定研究:硕士学位论文.上海:同济大学图书馆,2003.
    [80]刘芳.城市污水厂活性污泥数学模型的参数测定及模拟研究:博士学位论文.上海:同济大学图书馆,2004.
    [81]游桂林,樊杰.呼吸计量法测定安庆市城东污水厂污泥特性参数.环境科学与技术,2009,32(7):144-147.
    [82]任世英,肖天.聚磷菌体内多聚物的染色方法.海洋科学,2005,29(1):59-63.
    [83]叶姜瑜.SUFR系统中微生物多样性及稳定性的试验研究:博士学位论文.重庆:.重庆大学图书馆,2007.
    [84]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002.
    [85]Xiaoqi Zhang, Paul L.B., Kinkle B. Composition of extraction methods for quantifying extracellular polymers in biofilms. Water Science and Technology, 1999,39:211-218.
    [86]Davoli D., Paolo M. Microorganisms responsible for foaming in a full-scale
    activated sludge plant running with initial aerobic or anoxic contact zones. Bioresource Technology,1996,60:43-49.
    [87]Mitch A.A., Domenec J., Matina M, et al. Effects of anaerobic selector hydraulic retention time on biological foam control and enhanced biological phosphorus removal in a pure-oxygen activated sludge system. Water Environment Research, 2007,79(5):472-478.
    [88]Domenec Jolis. Effects of anaerobic selector hydraulic retention time on biological foam control and enhanced biological phosphorus removal in a pure-oxygen activated sludge system. Water Environment Research,2007,79(5):472-478.
    [89]Paolo Madoni. Testing the control of filamentous microorganisms responsible for foaming in a full-scale activated sludge plant running with initial aerobic or anoxic contact zones. Bioresource and Technology,1997,60:43-49.
    [90]Hee-Deung Park. Taking advantage of aerated-anoxic operation in a full-scale university of cape town process. Water Environment Research,2006, 78(6):637-642.
    [91]Mnot Onukim, Robert J. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews,2003(27):99-127.
    [92]Eddy. Metcalf. Wastewater Engineer Treatment and Reuse (Fourth Edition). New York:2003.
    [93]Aysenur U., Berjl S.A. The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor. Bioresource and Technology,2004(94):1-7.
    [94]刘洪波.低浓度城市污水强化反硝化除磷—平行AN/AO工艺开发与机理研究:博士学位论文.上海:同济大学图书馆,2007.
    [95]廖雄铭,古凌艳,林琳.改良A2/O工艺的运行及除磷实践.环境科学与技术,2007,30(6):89-90.
    [96]徐伟锋.生物脱氮除磷ASM2D模拟及机理研究:博士学位论文.上海:同济大学图书馆,2006.
    [97]Nelles F., Germain E., Drews A., et al. Biomass effects on oxygen transfer in membrane bioreactors. Water Research,2007,41:1038-1044.
    [98]Majeed S.J., Gulnur C. Development of a correlation to study parameters affecting
    nitrification in a domestic wastewater treatment plant. Chem Technol Biotechnol, 2008,83:299-308.
    [99]张国宁,于丽昕,念东.混合液污泥浓度与污泥回流系统控制策略研究.给水排水,2008,34(9):47-50.
    [100]Rovatti M., Borghi M., Converti A. Biological removal of phosphorus from wastewater by alternating aerobic and anaerobic conditions. Water Research,1995, 29:263-269.
    [101]Derninger R., Schehab O., Porta F., et al. Optimizing phosphorus removal at the Ann Arbor wastewater treatment plant Water Science and Technology,1996, 34:493-499.
    [102]C.F.Ouyang, You S.J. Simaltaneous wastewater nutrient removal by a novel hybrid bioprocess. Journal of Environmental Engineering,2005,131:883-891.
    [103]姜应和,张晔.PF曝气池活性污泥及底物浓度的分布规律.武汉理工大学学报,2002,24(11):42-44.
    [104]刘艳臣,范茏,王志强等.Carrousel氧化沟内特性参数的分布.中国环境科学,2007,27(6):792-796.
    [105]赵梅梅,汪慧贞,李彩斌等.溶解氧对低负荷CAST工艺除磷效果的影响.给水排水,2005,31(7):41-44.
    [106]朱炳辰.化学反应工程(第二版).北京:化学工业出版社,1998.
    [107]C.P. Leslie Grady, Henry C.Lim. Biological wastewater treatment-Theory and application.李献文译.北京:中国建筑工业出版社,1989.
    [108]温晓灿,何争光.葡萄糖为碳源时生物除磷系统的影响因素研究.郑州大学学报(工学版)2008,29(2):103-106.
    [109]C.F.Ouyang, You S.J. Simultaneous Wastewater Nutrient Removal by a Novel Hybrid Bioprocess. Journal of environmental engineering,2005,131(6):883-891.
    [110]Mino T., Liu W.T., Matsuo T., et al. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Water Research,1996,30:75-82.
    [111]国家城市给排水工程技术研究中心.污水生物与化学处理技术.北京:中国建
    筑工业出版社,2001.
    [112]Keller J., Philip L., Bond, et al. Anaerobic Phosphate Release from Activated Sludge with Enhanced Biological Phosphorus Removal.A Possible Mechanism of Intracellular pH control. Biotechnology and Bioengineering,1999,63(5):507-515.
    [113]Takashi Mino, Wen-Tso Liu, Tomonori Matsuo, et al. Biological phosphorus removal processes -effect of ph on anaerobic substrate metabolism. Water Science and Technology,1996,34(1-2):25-32.
    [114]Kuba T., A.Wachtmeister, van M.C.M.Loosdrech, et al. A sludge characterization assay for Aerobic and Denitrifying Phosphorus removing sludge. Water Research, 1997,31(3):471-478.
    [115]Hartman P., Cech. Glucose induced breakdown of enhanced biological phophate removal. Environmental Technology,1990,11:651-656.
    [116]Liu W.T., Tsai C.S. Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems. Water Sci Technol,2002,46(1-2):179-184.
    [117]Nakamuar K., Wen-Tso Liu, Matsuo T., et al. Internal energy-based competition between polyphosphate and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio. Water Research,1997, 31(6):1430-1438.
    [118]Xiao-ming Li, Dong-bo Wang, Qi Yang, et al. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresource Technology, 2008,99:5466-5473.
    [119]黄浩华,张杰,文湘华.城市污水处理厂A2/O工艺的节能降耗途径研究.环境工程学报,2009,3(1):35-38.
    [120]Brdjanovic D. Impact of excessive aeration on biological phosphorus removal from wastewater. Water Research,1998,32(1):200-208.
    [121]Mark N., Katie A., Ralf C.R. The Effect of Dissolved Oxygen on PHB Accumulation in Activated Sludge Cultures. Biotrchnology and Bioengineering, 2003,82(2):238-250.
    [122]Satoh H., Takabatake H., Mino T., et al. PHA (polyhydroxyalkanoate) production
    potential of activated sludge treating wastewater. Water Science and Technology, 2002,45(12):119-126.
    [123]李宝宏,曹文平,张奎.廊道式好氧活性污泥法工艺去除氨氮和CODCr的运行总结.江苏环境科技,2007,20(5):42-44.
    [124]张捍民,王永飞,王新华.曝气量对SBAR中好氧颗粒污泥特性的影响.环境科学,2008,29(6):1598-1603.
    [125]杨岸明,王淑莹,杨庆.变频控制DO下SBR硝化反应控制参数及节能的中试研究.环境工程学报,2007,1(10):13-17.
    [126]蒋秀娅,袁菊.贵阳小河污水厂低浓度生活污水处理系统的技术改造.中国给水排水,2007,23(24):24-26.
    [127]Peter B., Britt M.W. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Research,1999, 33(2):391-400.
    [128]Keinath T.M., Paker D.S. Floc breakup in activated sluge plants. Water Environment Research,1993,65(2):138-145.
    [129]Poles J.L., Canales A.P. Decreased sludge production strategy for domestic wastewater treatment Water Science and Technology,1994,30(8):97-106.
    [130]Banu J.R., Uan D.K., Ick T.Y. Nutrient removal in an A2O-MBR reactor with sludge reduction. Bioresource Technology,2009,100:3820-3824.
    [131]Yamamoto K., Xing C.H., Fukushi K. Performance of an inclined-plate membrane bioreactor at zero excess sludge discharge. Journal of membrane science,2006, 275:175-186.
    [132]Yanjie Liu, Tania D., Ramesh G. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors. Chemosphere, 2009,76:697-705.
    [133]Rittmann B.E., Laspidou C.S. A unified theory for extracellular polymeric substances, soluble microbial products and active and inert biomass. Water Research,2002,36:2711-2720.
    [134]李绍峰,王宏杰,王雪芹.EPS与MBR中污泥活性关系研究.中国农村水利水 电,2007(12):59-61.
    [135]Osthuizen D. J., Cloete T.E. The role of extracellular expolymers in the removal of phosphorus from activated sludge. Water Research,2001,35(15):3595-3598.
    [136]刘芳,周雪飞,蓝梅等.活性污泥1号模型废水特定的测定研究.环境污染与防治,2004,26(2):92-94.
    [137]石婷.活性污泥数学模型(ASM1)水质特性参数研究:硕士学位论文.西安:西安建筑科技大学图书馆,2007.
    [138]揭大林.活性污泥1号模型在无锡城北污水厂的应用研究:硕士学位论文.南京:.河海大学,2007.
    [139]Scott A., Wells J.M. A general model of the activated sludge reactor with dispersive flow model development and parameter estimation. Water Research,2000, 34(16):3987-3996.
    [140]Henze M. Characterization of wastewater for modeling of activated sludge process. Water Science and Technology,1992,25(6):1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700