污泥浓缩消化一体化反应器微生物群落结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于三峡库区特殊的山地地形,雨水的冲刷极易导致污水厂剩余污泥对库区水体造成污染,因此库区的污泥处理处置问题就显得尤为重要。库区内已经建成运行的污水处理厂中,污泥减量和稳定处置方面都很欠缺,同时传统的污泥厌氧处理工艺存在的负荷低、消化时间长、投资费用高等问题,因此,开发新型高效污泥处理技术,特别是污泥减容和污泥稳定技术的研究就显得非常迫切。
     本课题组在前期试验研究的基础上进一步优化设计了两相一体式浓缩消化(TISTD)反应器,实现污泥浓缩消化一体化并相互促进,反应器运行效能的小试试验表明其浓缩、消化效果优于普通浓缩池、消化池。TISTD反应器中处理效能与反应器中的微生物直接相关,TISTD反应器中有两种关系极为密切的功能菌群:产酸菌群和产甲烷菌群,产酸菌将有机物转化为挥发性有机酸,而产甲烷菌利用这些有机酸转化为甲烷、二氧化碳等气体从而实现污泥的减量化。虽然产酸相中主要有产酸发酵细菌存在,产甲烷相中有产甲烷细菌存在,但整个系统也包含多种其它菌群。反应器运行的稳定性和效率在很大程度上取决于其中微生物种群多样性及优势种群的活性。不同条件下反应器运行的稳定性及效率与系统群落结构的变迁有必然的联系。为了实现TISTD反应器在工程上的推广和应用,论文在课题组前期小试研究成果的基础上,以重庆鸡冠石污水处理厂二沉池污泥为处理对象,对TISTD反应器运行效能和微生物群落结构与功能进行了研究。研究内容包括:运用传统的分离培养方法及16S rDNA序列分析方法研究了TISTD反应器在最优工况下反应器内微生物的分布特性及优势菌属;并分别在反应器的启动期、投配率20%、30%、40%和50%下达到稳定运行时取样,提取污泥总DNA,使用PCR-TGGE指纹图谱技术研究分析了反应器各个阶段的群落结构和生态变化;并结合厌氧污泥脱氢酶活性测定,分析不同阶段下反应器系统中微生物群落代谢活性的动态变化规律,全面揭示TISTD反应器在中温运行条件下维持良好浓缩消化功能的微生物机理。取得主要研究成果有:
     ①试验考察了中温条件下投配率为10%、20%、30%、40%、50%时TISTD反应器的运行效能,结果表明反应器在中温条件下,运行状况良好,最优投配率为30%,相应的水力停留时间为3.33天。在最优投配率下,当进泥含水率为99.4~99.6%,排泥含水率在89.5%~93.5%之间;当进泥VS/TS为0.62~0.77,排泥VS/TS在0.21~0.28之间;排水SS在0.15g/L~0.6g/L之间;其浓缩和消化效果优于普通浓缩池和消化池。
     ②外反应室中有变形虫、豆形虫、鞭毛虫和纤毛虫等众多原生动物;电镜扫描可以看到内反应室菌群种类复杂,各种形态的细菌互营互生,菌丝交错相互结合形成了复杂的菌群结构,细胞形态包括球状、杆状等,有许多菌胶团存在;厌氧分离和培养得到的优势菌株的形态包括短杆状、丝状和球状。其中3株优势细菌经16S rDNA序列分析鉴定分别为芽孢杆菌属和产甲烷菌属,表明TISTD反应器有效的实现了污泥厌氧消化过程中的生物相分离,即外反应室的优势菌群是芽孢杆菌属,是污泥浓缩酸化主要场所,内反应室的优势菌群是古细菌和甲烷菌属,是污泥消化产甲烷的主要场所。
     ③TGGE图谱中显著条带数量较多,各个阶段条带的位置不尽相同,说明TISTD反应器在中温条件下内部微生物种群呈现较高的多样性分布,微生物优势种群呈现一定的差异,随着反应器负荷的改变,微生物的群落结构和种群数量也呈现出明显的演替过程,优势种群的功能地位处在动态变化中,表明反应器中污泥浓缩消化过程是由多种细菌种属共同协作完成的。典型条带割胶回收分析结果显示,与TISTD反应器系统厌氧污泥中的大部分优势功能菌群亲缘关系较近的菌属为未培养菌株。
     ④在TISTD反应器的不同处理阶段,结合厌氧污泥脱氢酶和辅酶活性的测定,较为全面的了解了TISTD反应器中微生物群落结构的演变过程中群落代谢活性是处于动态变化的,都是呈先增高后降低的趋势,其中内反应室污泥脱氢酶活性始终低于外反应室,根据脱氢酶活性的变化曲线确定TISTD反应器的最佳投配率为30%,此时内反应室脱氢酶活性为80.1μg·L~(-1)·h~(-1),外反应室脱氢酶活性为97.7μg·L~(-1)·h~(-1),微生物的种群数量和功能菌株代谢活性都处于很高的水平。
     研究成果为TISTD反应器工程应用的设计、启动和运行提供了较系统的微生物理论和技术支撑,对推广TISTD反应器的工程应用具有实质的基础理论意义。
Due to the mountainous terrain of Three Gorges Reservoir Area, it risks the severepollution of the surplus sludge from the WWTPs, which is easily washed away into thesurrounding water body. Accordingly, sludge treatment and disposal in the reservoirarea is of particular importance. However, the WWTPs built in the Three Gorgesreservoir area lack of the technologies in the reduction and stabilization of the sludge;meanwhile, the traditional sludge anaerobic treatment processes are subjected tolow-load, long digestion duration, high costs, and etc. From a comprehensiveperspective, the development of a new efficient sludge treatment technology, especiallyfocusing on the volume reduction and stabilization of was very urgent.
     Combining modern high-rate anaerobic reactor theory with gravity concentrationtank for the first time, the research group has successfully developed the Two-phaseIntegrated Sludge Thickening and Digestion reactor (TISTD) to achieve integration ofthickening and digestion and the enhancement of the functions. The laboratory testsshowed that the effectiveness of TISTD is way better than the conventionalconcentrated tank and digester. In essence, the TISTD reactor still follows thethree-stage theory of the anaerobic digestion process; therefore, its performance isclosely associated with the two functional microbial populations inside the reactor:acid-producing bacteria and the methanogens. The acid-producing bacteria are capableof degrading organics into volatile fatty acids, from which the methanogens utilize anddegrade into methane, carbon dioxide and other gases in order to achieve the reductionof sludge. Besides these two major bacterial populations, the system contained variousmicroorganisms. The stability and efficiency of the reactor depended largely on theactivity of microbial diversity and dominant species. The stability and efficiency of thereactor under different operation conditions has certain correlation with the change ofthe microbial structure in the system. In this study, the traditional isolation and culturemethods and16S rDNA sequence analysis were used to study the distribution ofmicroorganisms and the predominant species under the optimal operating conditions inthe TISTD reactor. The sludge samples were taken during the start-up period and thesteady state with sludge feeding rate of20%,30%,40%and50%. Then the wholegenome was analyzed by PCR-TGGE fingerprinting technology to acquire themicrobial structure and ecological changes in the reactor at various stages. Additionally, dehydrogenase activity of anaerobic sludge was measured to reveal the dynamicvariation of the metabolic processes in the reactor at different stages. All the resultscomprehensively unraveled the mechanisms of the microbiological reactions in theTISTD under moderate temperature and provided some insights for the furtherapplication of the reactor and process improvement. The main results are as follows:
     ①The efficacy under different sludge feeding rate (20%,30%,40%and50%)showed that the optimal sludge feeding rate was30%, and the hydraulic retention timewas3.33d. When the water content and the ratio of VS/TS were in the range of99.4~99.6%and0.62~0.77and the water content and the ratio of VS/TS of effluentsludge was in the range89.5%~93.5%and0.21~0.28respectively and the suspendedsolids in effluent water were in the range of0.15~0.6g/L, the thickening and digestionefficacy of the TISTD were way better than conventional gravitational thickening tankand anaerobic digester.
     ②Under an optical microscope, many protozoan amoeba, bean-shaped insect,flagellates and ciliates can be detected in the outer reaction chamber; Scanning electronmicroscope provided us with the complicated microbial community structure and cellmorphology. The predominant strains, enriched by anaerobic morphology isolation andculture, were shown to be short rod-shaped, filamentous and spherical. Threepredominant bacteria were identified as Bacillus and methanogenic genus by16S rDNAsequence analysis, indicating that TISTD realized biophase separation effectively duringthe anaerobic digestion in the reactor making the outer reaction chamber favorable forBacillus to thicken and acidify the sludge while the inner chamber suitable for archaeaand methanogens to digest the sludge and produce methane.
     ③TGGE profiles with many a significantly strips at different positions duringdifferent stages illustrated that the microbial populations inside the reactor were quitediverse under the moderate temperature condition and also the predominant populationsvaried. As the load of the reactor changed, the microbial community structure andpopulation showed a significant change dynamically, which indicated the significanceof the cooperation of all the microbial populations in the achievement of the efficiencyof TISTD. The analysis of the typical bands tapping recovery showed that, the strains inclose relationship with the predominant ones in anaerobic sludge TISTD reactor systemwere uncultured strains.
     ④The anaerobic sludge dehydrogenase activity was measured for acomprehensive understanding of the structural and functional diversity of the microbial community in the reactor system. Dehydrogenase activity showed the similar trend inthe outer and inner chamber of the reactor, which increased first and then decreased. Butthe dehydrogenase activity of the sludge from the inner reaction chamber was alwayslower than that from the outer reaction chamber. According to the dehydrogenaseactivity curve, the optimal sludge-feeding rate of TISTD reactor was30%, at whichpoint the dehydrogenase activity was80.1μg L~(-1) h~(-1)in the inner reaction chamber and97.7μg L~(-1) h~(-1)in the outer reaction chamber.
引文
[1]金儒霖等.污泥处置,北京:中国建筑工业出版社,2003,38~42.
    [2]重庆市环保局.2012年重庆市固体废物污染环境防治信息[EB/OL].[2013-04-04].
    [3]黄碧珊,黄国才,陈德章.三峡水库回水范围研究[J].水运工程,2003,(7):4-6.
    [4]丁文川,郝以琼,等.重庆市城市污水厂污泥的处理与处置,重庆环境科学,2000,4,22(2):14~18.
    [5]何强,邹建,黄明.三峡库区污水处理厂污泥处置现状研究[J].重庆建筑大学学报,2007,29(3):1-3.
    [6]郝晓地,蔡正清,甘一萍,等.剩余污泥预处理技术概览[J].环境科学学报,2011,31(1):1-12.
    [7]彭琦,孙志坚.国内污泥处理与综合利用现状及发展[J].能源工程,2008,5:47-50.
    [8] Gomez-Rico M F, Font R, Aracil I, et a1.Analysis of organic pollutants in sewage sludgesfrom the Valencian Community(Spain)[J].Archives of Environmental Contamination andToxicology,2007,52:306-316.
    [9] C.P.Chu,DJ.Lee,Experimental analysis of centrifugal dewatering process of polyelectrolyteflocculated waste activated sludge[J].Water.Res,2001,35(10)2377~2380.
    [10]何强,郑伟青,刘鸿霞,等.污泥同时浓缩消化新型反应器的开发研究[J].环境工程学报,2009,3(11):2077-2081.
    [11]何强,唐川东,胡学斌,等.污泥浓缩消化一体化中试试验研究[J].土木建筑与环境工程,2011,33(1):6-9.
    [12]何强,杨巍,刘鸿霞,等.两相一体式污泥浓缩消化反应器的性能研究[J].中国给水排水,2009,25(11):15-18.
    [13]李金红,何群彪.欧洲污泥处理处置概况[J].中国给水排水,2005,(21)1:101~103.
    [14]尹军,谭学军,廖国盘等.我国城市污水污泥的特性与处置现状[J].中国给水排水,2003,19(13):21~24.
    [15]余杰,田宁宁,王凯军.中国城市污水处理厂污泥处理、处置问题探讨分析[J].环境工程学报,2007,1(1):82~85.
    [16]张水英,张辉,周军,王佳伟,甘一萍,刘昆.我国污泥处理处置现状与发展[J].建设科技,2007,(17).
    [17]吴静,姜洁,周红明,毕蕾.我国城市污水厂污泥厌氧消化系统的运行现状[J].中国给水排水,2008,24(22):21~23.
    [18]解光武,蔡明招,郑文芝.国内外污泥的处理与处置技术[J].环境技术,2003,5:24~26.
    [19]中国城市污水污泥处理处置问题探讨[J].北京:2005年中国国际水处理技术高级专家论坛,2005:142~146.
    [20]张卫河.浅谈城市污泥处理与资源化利用[J].能源与环境,2007,(04).
    [21]周春峰等.城市污泥处理现状及对策分析[J].现代商贸工业,2003,(10).
    [22]杨向平.我国污泥处置的现状和对策[J].水科技,2007,23:58~59.
    [23]赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展[J].中国给水排水,2001,17(6):19~23.
    [24]陈苏,孙丽娜,孙铁珩等.城市污泥处理处置技术及资源化利用研究[J].生态科学,2006,25(4):375-378.
    [25]朱小山,孟范平,赵希锦.城市污泥的处理技术及资源化展望[J].四川环境,2002,21(4):8~12.
    [26]昝元峰,王树众等.污泥处理技术的新进展[J].中国给水排水,2004,20(6):26~28.
    [27]王涛,污泥浓缩脱水及相关技术研究进展[J].中国环保产业,2008,(02).
    [28] Banerjee S et al. Impulse drying sludge [J].Wat Res,1998;32(1):258~260.
    [29] Xuan Y, Han P f, Lu X P, et al.2004. A review on the dewaterability of bio-sludge andultrasound pretreatment[J]. Ultrasonics Sonochemistry,11:337~348.
    [30] Latifoglu A. Improvements to the dewaterability of ferric sludge produced from chemicaltreatment of wastewater, Proc.4th Inter. Conf [J]. Water Pollut, Lake Blied, Slov.1997.
    [31]何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社,2003.
    [32]郭亚丽.污水处理厂污泥的资源化处理[J].科技情报开发与经济,2004,14(7):140~141.
    [33]彭永臻等.污泥需氧消化的研究进展[J].中国给水排水.2003,19(2):36~39.
    [34]尹军等.污泥好氧消化处理的若干问题探讨[J].中国给水排水.2001,17(8):23~25.
    [35]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,2000.
    [36] Bhattacharya S K, Madura R L, Walling D A, e t a1. Volatile solids reduction in two-phaseand conventional anaerobic sludge digestion[J].Water Research,1996,4(30):1041-1048.
    [37]牛樱,陈季华.剩余污泥处理技术[J].工业用水与废水.2000,5(31):4~6.
    [38] H. Brawer, G. Varma. Air Pollution Control Equipment New York. Berlin Heidilberg,1981.
    [39]谢冰,史家.微生物脱臭及其应用[M].上海环境科学.1997,16(3):14~17.
    [40]朱小山,孟范平,赵希锦.城市污泥的处理技术及资源化展望[J].四川环境.2002,21(4).
    [41]胡龙,何晶晶,邵立明.城市污水污泥热干燥处理技术及其应用分析[J].重庆环境科学.1999,21(1):51~54.
    [42]王凯军等.城市污水污泥稳定性问题和试验方法探讨[J].给水排水,2002,28(5):5~8.
    [43]伯钢.污泥资源化处置与综合利用.环境保护科学[J],2006,32(5):36~41.
    [44]张峥嵘,黄少斌.污泥减量化的分析与研究[J].化学与生物工程,2006,23(9):4~6.
    [45]梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2003,4(1):44~51.
    [46]胡和平,刘军,罗刚等.活性污泥工艺中污泥减量化技术研究进展[J].水资源保护,2007,(06).
    [47] Weemaes M., Grootaerd H., Simoens F., Verstraete W. Anaerobic digestion of ozonizedbiosolids [J]. Wat. Res.,2000,34(8):2330~2336.
    [48] Chen G H, Mo H K, Liu Y. Utilization of a metabolic uncoupler3,3',4'5-tetrachloro-salicylanilide(TCS)to reduce sludge growth in activated sludge culture[J]. Wat Res,2002,36(8):2077~2083.
    [49] Liang P, Huang X, Qian Y, et al. Determination and comparison of sludge reduction ratescaused by microfaunas predation[J].Wat Res,2006,97(6):854~861.
    [50] U. Neis.Ultrasound in water, wastewater and sludge treatment [J]. Water21,2000(4):36~39.
    [51] Ghyoot W, Verstraete W. Reduced sludge production in a two—stage membrane assistedbioreactor [J]. Wat Res,1999,34(1):205~215.
    [52] Rensink J H, Rulkens W H. Using metazoa to reduce sludge production [J]. Wat Sci Tech,1997,36(11):171~179.
    [53]魏源送,樊耀波.污泥减量技术的研究及其应用[J].中国给水排水,2001,17(7):23~26.
    [54]徐强.污泥处理处置技术及装置[M].北京:化学工业出版社,2003.7:56~62.
    [55]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,2000.
    [56]王凯军等.城市污水污泥稳定性问题和试验方法探讨[J].给水排水,2002,28(5):5~8.
    [57] Rensink J H, Rulkens W H. Using metazoa to reduce sludge production [J]. Wat Sci Tech,1997,36(11):171~179.
    [58]胡纪翠,顾夏生.废水厌氧处理理论与技术[M].北京,中国建筑工业出版社,2003,05:82~96.
    [59]张自杰.排水工程(第四版)[M].北京:中国建筑工业出版社,2007.
    [60]申立贤.高浓度有机废水厌氧处理技术[M].北京:中国环境科学出版社.1991.
    [61]沈耀良.废水生物处理新技术[M].北京:中国环境科学出版社,1999.
    [62]任南琪,王爱杰.著,厌氧生物技术原理与应用[M].北京:化学工业出版社,2004,03:43~45.
    [63] Huyard A et al. The Two Phase Anaerobic Digestion Process: Sludge Stabilization andPathogens Reduction [J].Wat Sci Tech,2000,42(9):41~47.
    [64]魏源送,樊耀波.污泥减量技术的研究及其应用[J].中国给水排水,2001,17(7):23~26.
    [65] Saby S., Djafer M., Chen G. H. Feasibility of using achlorination step to reduce excess sludgein activated sludge process [J]. Wat. Res.,2002,(36):656~666.
    [66]涂剑成,管锡珺等.现代厌氧方应器的现状与发展[J].新疆环境保护.2004.26(3):9~12.
    [67]季民,霍金胜.厌氧颗粒污泥膨胀床(EGSB)的工艺特征与运行性能[J].工业用水与废水.1999.30(4):1~4.
    [68]王凯军.厌氧工艺的发展和新型厌氧反应器[J].环境科学.1998.Vol19:94~96.
    [69] Jens E Schmid, Granular Sludge Formation in Up-flow Anaerobic Sludge Blanket (UASB)Reactors[J], Biotechnology Bioengineering,1996,49:229~246.
    [70] G Lettinga, Advanced Anaerobic Wastewater Treatment in the Near Future [J]. Water Science,1997,35(10):5~12.
    [71] Zheng Ping, Hu Baolan, Start-up Strategies of UASB Reactor for Treatment of PharmaceuticalWastewater [J], Journal of Enviroment Sciences,2002,14(2):250~254.
    [72] Wills A.T. Techniques for the Study of Anaerobic Spore forming Bacteria, Microbiology, vol.3B,(ed. By J.N. Norris et al.), Academic Press, London and New York,1969.78~115.
    [73] Garcia J L, Patel K C, Ollivier B. Taxonomic, phylogenetic andecological diversity ofmethanogenic[J]. Arch Anaerobe,2000(6):205-226.
    [74] Hungate R E. A roll tube method for cultivation of strict anaerobes [M]//Norris J R. Methodsin Microbiolgy. New York: Academic Press.1969.
    [75] Abram J W, Nedwell D B. Inhibition of methanogenesis by sulphate reducing bacteriacompeting for transferred hydrogen [J]. Arch Microbiol,1987,117:89~92.
    [76] Raskinl L., Stromiey J.M., Rittmann R. E. et al., Group-specific:16SrRNA hybridizationprobes to describe natural communities of methanogens. Appl. Environ. Microbiol.1994,60,1232~1240.
    [77] Huang L. N., Zhou H., Chen Y.Q. et al., Diversity and structure of the archaeal community inthe leachate of a fullscale recirculating landfill as examined by direct16SrRNA gene sequenceretrieval. FEMS Microbiol Lett.2002,214,235~240
    [78] Gon J. J., Zumstein E., Datbert P. et al., Molecular microbial diversity of an anaerobic digestoras determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol.1997,63,2802~2813.
    [79]黄立南,周慧,陈月琴等,垃圾填埋场渗滤液中古细菌群落16SrRNA基因的ARDRA分析.2012.11(7),1085~1090
    [80] Amann R.L., Stromley J., Devereux R., Key R., Stohl D. A., Molecular and microscopicidentification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbial.1992,58,614~623.
    [81] Akkermans A. D. L., van Elsas J. D.,de Bruijn F. J., Molecular Microbial Ecology Mannual.Kluwer Academic Publishers.1995. sect.1.
    [82] Amann R. L., Frank-Oliver G, Alexander N., Modern methods in subsurface microbiology:insitu identification of microorganisms with nucleic acid probes. FEMS Microbiol Rev.1997.20,191~200.
    [83] Head I. M.,Saunders J. R., Pickup R. W., Microbial evolution,diversity and ecology: a decadeof ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol.1998.35,1~21.
    [84] Muyzer G.,Brinkhoff T.,Nobel U., Denaturing gradient gel electrophoresisgel electrophoresis(DGGE) in microbial ecology. Molecular microbial ecology manual.2004.62,1252~1266.
    [85] Muyzer G. and Ramsing N. B., Molecular methods to study the organization of microbialcommunities. Wat Sci Technol.1996.32(8),1~9.
    [86]刘志培,杨慧芳等.微生物分子生态学进展.应用与环境微生物学报.1999,5(suppl)43~48.
    [87] Sayer G. S.,Sheilds M. S.,Tedford E. T.,Application of DNA-DNA colony hybridization to thedetection of catabolic genotypes in environmental samples. Environ Microblol.1985.49,1295~1303.
    [88] Fantroussi S. E., Mahillon J.,Nsveau H.,Agathos S. N., Introduction of anaerobicdechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring. EnvironMicrobiol.1997,63,806~811.
    [89] Pierson B. K.,Taxonomy and physiology of Filamentous Anoxygenic Phototrophs. In:Blankenship Robert et al. ed. Anoxygenic photo synthetic bacteria. Kluer Academicpublishers.1995,31~47.
    [90] Pollard P. C., Estimating the growth rate of a bacterias species in a complex mixture byhybridization of genomic DNA. Ecol.1998,36,111~120.
    [91] Yuki Miura, Mirian Noriko Hiraiwa, Tsukasa Ito, et al. Bacterial community structures inMBRs treating municipal wastewater:Relationship between community stability and reactorperformance[J]. Water Research,2007,41:627~637.
    [92] Muyzer G, deWaal E C, Uitterlinden A G.Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genescoding for16S rRNA.Appl.Environ.Microbiol.1993.59:695~700.
    [93] Beatriz D, Carlos P. A, Terence L. M, et al. Application of denaturing gradient gelelectrophoresis (DGGE) to study the diversity of marine pico eukaryotic assemblages andcomparison of dgge with other molecular techniques[J]. Applied and EnvironmentalMicrobiology,2001,67(7):2942~2951.
    [94] Riesner D, Henco K, Steger G. Temperature gradient gel electro phoresis: amethod for theanalysis of conformational transitions and mutations in nucleic acids and proteins [J].Advances in Electrophoresis,1991,4:169~250.
    [95] Riesner D, Steger G, Zimmat R, et al., Temperature-gradient gel electrophoresis of nucleicacids: analysis of conformational transitions, sequence variations, and protein-nucleic acidinteractions. Electrophoresis,1989,10(5):377~389.
    [96]邢德峰,任南琪,宫曼丽,等. PCR-DGGE技术解析生物反应器微生物多样性[J].环境科学,2005,26(3):172~176.
    [97] Averas L.,Formey L.,Daae F. L. et al.,Distribution of bacteriop lankon in meromictic lackSaclenvannet. as detemined by denaturing gradient gel electrophoresis of PCR-amplified genefragments coding for16SrRNA. Appl. Environ. Microbiol.1997,63(9),3367~3373.
    [98] Pioar G. Saiz-Jimenez C. Schabereiter-Gurtner C. et al., Archaeal communities in twodisparate deteriorated ancient wall paintings detection, identification and temporal monitoringby denaturing gradient gel electrophoresis. FEMS. Microbiol. Ecol.2001.37(1),45~54.
    [99] Jackson C. R.,Roden E. E.,Churchill P.F. Denaturing gradient gel electrophoresis can fail toseparate16SrDNA fragment with multiple base differences[J],Mol. Biol. Today.2000.1(2),49~51.
    [100] Schabereiter-Gurtner C.,Saiz-Jimenez, Pinar G.,et al., Phylogenetic16srRNA analysisreveals the presence of complex and partly unknown bacterial communities in TitoBustillocave Spain,and on it s Palaeolit hic paintings[J].Environ. Microbiol.2002.4(7),392~400.
    [101]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析.微生物学报[J],2006,46(2):331~335.
    [102] C. Whitby, J. Earl, C. Lanyon, S. Gray, J: Robinson, J. Meadows and C. Edwards, Themolecular diversity of the methanogenic community in hypereutrophic freshwater lakedetermined by PCR-RFLP. Journal of Applied Microbiology.2004.97,973~984.
    [103] Sharon McHugh, Micheal Carton, The. re' se Mahony, Vincent0' Flaherty.Methanogenic population structure in a variety of anaerobic bioreactors. FEMSMicrobiology letters.2003.219,297~304.
    [104] Cole J. R.,Chai B., Marsh T. L.,Farris R. J.,Wang Q.,Kulam S. A.,Chandra S.,McGarrell D.M.,Schmidt T. M.,Garrity G. M.,Tiedje J"M. The Ribosomal Database Project (RDP-I I):previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy.Nucleic Acids Res.2003.31(1),442~443.
    [105] Wen-T. L.,Terence L. M.,Characterization of microbial diversity by determining terminalrestriction fragment length polymorphisms of genes encoding16SrDNA. Appl. Environ.Microbial.1997.63(11),4516~4522.
    [106] Williams J. G.,Kubelik A. R.,Livak K. J. DNA polymorphism amplified by arbitrary primersis useful as genetic markers. Nucleic Acids Res.1990.18,6531~6535.
    [107] Ermier, U.,Grabarse, W.,Shima, S.,Goubeaud, M.,and Thauer, R. K. Crystal structureof methyl coenzyme M reductase:the key enzyme of biological methane formation.Science.1997.278,1457~1462.
    [108] Thauer, R. K.,Biochemistry of methanogensis:a tribute to Marjory Stephenson.Microbiology.1998,144,2377~2406.
    [109] Ellermann, J.,Hedderich,R.,Bocher, R.,and Thauer, R. K., The final step in methaneformation-investigations with highly purified methyl-CoM reductase(component-C) fromMethanobacterium thermoautotrophicum(strain Marburg).Eur.[J]. Biochem.1988.172,669~677.
    [110] Reeve, J. N.,Nolling, J. Morgan,R. M. and Smith, D. R., Methanogenesis: genes,genomes,and who's on,first?[J].Bacteriol.1997.179,5975~5986.
    [111] Bult,C. J. White, O., Olsen, G. J., Zhou, L. X. Fleischmann R.D., Sutton, G. G.,et al.,Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii.Science.1996.273,1058~1073.
    [112]石宪奎,倪文等.升流式厌氧污泥床反应器工程启动研究[J].环境污染与防治,2004,10,26(5):363~365.
    [113] Ren Hongqiang, Chen Jian. Study on the Characteristics of Granular Sludge Bed inExpended Granular Sludge Blanket (EGSB) Reactor[C]. The First China/Japan ChemicalEngineer Conference,2000:64~67.
    [114]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005.
    [115] Kato, Mario T, The anaerobic treatment of low strength wastewaters in UASB and EGSBreactors[J].Water Science and Technology,1997,36(6):375-382.
    [116]李再兴,杨景亮,叶莉,郭建博,尹明.厌氧颗粒污泥膨胀床(EGSB)处理生活污水试验研究[J].环境工程学报,2008,(10).
    [117]戚以政,汪叔雄.生化反应动力学与反应器[M].北京:化学工业出版社,1999.
    [118]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [119] Batstone, Damien J, Hernandez. J.L.A,Schmidt. J.E. Hydraulics of laboratory and full-scaleupflow anaerobic sludge blanket (UASB) reactors [J]. Biotechnology and Bioengineering,2005,91(3):387-391.
    [120]沈耀良,王慧民,赵丹,王承武.厌氧生物处理反应器混合流态及其分析[J].环境科学与技术.2002,25(3).
    [121]龙腾锐,郝以琼,夏志祥,何强.厌氧流化床水力混合特性的研究[J].重庆环境科学.1989,11(4).
    [122] Hanan Ivnitsky, Ilan Katz, Dror Minz, et al. Bacterial community composition and structureof biofilms developing on nanofiltration membranes applied to wastewater treatment[J].Water Research,2007,41:3924-3935.
    [123] Entürk E S,Ince M,Engin G O. Treatment efficiency and VFA composition of a thermophilicanaerobic contact reactor treat ing food industry wastewater [J]. Journal of HazardousMaterials,2010,176:843-848.
    [124] Ucisik A S,Henze M. Biological hydrolysis and acidification of sludge under anaerobicconditions: The effect of sludge type and origin on the production and composition ofvolatile fatty acids[J]. Water Research,2008,42:3729-3738.
    [125]孙征,周光宇,东秀珠.一个甲烷菌新种的描述和系统分类学研究[J].微生物学报,2001,41(3):265-269.
    [126]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社.1996.
    [127] Sanz JL, Kochling T. Molecular biology techniques used in wastewater treatment: Anoverview [J]. Process Biochemistry.2007;42(2007):119-133.
    [128]王振熊,徐毅,周培谨.嗜盐碱古生菌新种的系统分类学研究[J].微生物学报,2000,40:11-120.
    [129] Watanabe K, Teramoto M, Futamata H, et al. Molecular detection, isolation, andphysiological characterization of functionally dominant phenol-degrading bacteria inactivated sludge[J]. Appl Environ Microbiol.1998;64(11):4396-4402.
    [130]张蔚文.微生物育种技术在废水处理工程菌株研制中的应用[J].城市环境与城市生态,1993.6(1):23~29
    [131] DE Lipthay JR, Enzinger C, Johsen K, et al. Impact of DNA extraction method on bacterialcommunity composition measured by denaturing gradient gel electrophoresis[J]. SoilBiology&Biochemistry.2004;36(10):1607-1614.
    [132] Stach JE, Bathe S, Clapp JP, et al. PCR-SSCP comparison of16S rDNA sequence diversityin soil DNA obtained using different isolation and purification methods[J]. FEMS MicrobiolEcol.2001;36(23):139-151.
    [133] F J Medina-Pons, J Terrados, R Rossello-Mora, et al. Application of temperature gradientgel electrophoresis technique to monitor changes in the structure of the eukaryoticleaf-epiphytic community of Posidonia oceanica[J]. Marine Biology.2008;155(4):451-460.
    [134] Kadiya C, Alejandro G. M, Camino M. P, et al. Bacterial community structure and enzymeactivities in a membrane bioreactor(MBR) using pure oxygen as an aeration source[J].Bioresource Technology,2012.103:87-94.
    [135] Ginige MP, Hugenholtz P, Daims H, et al. Use of stable-isotope probing, full-cycle rRNAanalysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl environ microbial[J],2004,70:588-596.
    [136] Yun J L,Ma A z,Li Y M,Zhuang G Q,Wang Y F,Zhang H X.2010. Diversity ofmethanotrophs in Zoige wetland soils under both anaerobic and aerobic conditions[J].Journal of Environmental Sciences,22(8):1232-1238.
    [137]姚炜婷,孙水裕,郑莉,等.超声波-缺氧/好氧消化过程污泥EPS、酶活性及菌落数的变化研究[J].环境科学学报,2011.31(9):1925-1932.
    [138]刘和,刘晓玲,邱坚,等. C/N对污泥厌氧发酵产酸类型及代谢途径的影响[J].环境科学学报,2010,30(2):340–346.
    [139] Hanan Ivnitsky, Ilan Katz, Dror Minz, et al. Bacterial community composition and structureof biofilms developing on nanofiltration membranes applied to wastewater treatment[J].Water Research,2007,41:3924-3935.
    [140] Penning H,Conrad R. Effect of inhibition of acetoclastic methanogenesis on growth ofarchaeal populations in an anoxic model environment [J]. Applied and EnvironmentalMicrobiology,2006,72:178-184.
    [141] Yuki Miura, Mirian Noriko Hiraiwa, Tsukasa Ito, et al. Bacterial community structures inMBRs treating municipal wastewater:Relationship between community stability and reactorperformance[J]. Water Research,2007,41:627-637.
    [142]唐宁,柴立元,闵小波,等.厌氧污泥体系脱氢酶活性表征细菌数的研究.微生物学杂志[J],2005,25(2):31-34.
    [143]周春生,尹军. TTC-脱氢酶活性检测方法的研究[J].环境科学学报,2006,26(4):403-404.
    [144] Klapwijk A., Drent J., Steenvoorden J.H.A.M.. A modified Procedure for the TTC-dehydrogenase Test in Activated Sludge. Water Research,1974,8(2):121-125.
    [145]朱亮.生物降解微生态系统优化技术的基础研究[D].南京:河海大学,2004.
    [146]孙佳伟,谢丽,周琪,罗刚.高温厌氧EGSB反应器处理木薯酒精废水的启动与运行[J].水处理技术,2008,(11).
    [147]骆世明,等.农业生态学[M].北京:中国农业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700