锂离子电池的热电化学研究及其电极材料的计算与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池以其高能量密度、高电压、无记忆效应、低自放电率等优点已广泛应用于笔记本电脑、手机、数码相机等小型便携式电器和航空航天领域,并逐步走向电动汽车领域。然而,锂离子电池特别是电动汽车用锂电池开发面临的安全性问题有待进一步解决。为了解决电池安全问题,有必要对电池的热效应进行分析。本文采用电化学-量热联用技术系统地研究以LiFePO4和LiMn2O4为正极材料的锂离子电池在不同温度和倍率下充放电过程中的热电化学行为,为电池热管理提供了基础数据,为全面评价电池材料的热、电性能提供了一种新的手段。同时,建立了锂离子电池的电-热耦合模型,应用有限元法预测了电池内部的温度分布。构建了锂离子电池体系中电极材料的晶体结构模型,应用第一性原理预测了电池的平均电压及正、负极材料的热力学性质,对于电池结构设计的优化及安全性能的提高具有非常重要的意义。
     本文运用热电化学方法和计算机模拟技术分别从宏观和微观角度对锂离子电池及其电极材料的结构和性能等若干问题进行了研究,获得了以下三个方面的研究结果:
     1.采用八通道等温微量量热仪与蓝电电池测试系统联用技术,测量分别以LiFePO4和LiMn2O4为正极材料的锂离子电池的电学特性、热学特性与温度的关系,进一步开展了正极材料的电、热性能评价。LiFePO4研究结果表明:温度和充放电倍率是影响电池比容量和发热量的重要因素,随着充放电倍率和温度的增加,比容量减小而发热量增大。在低倍率(O.1C.0.2C)下,电池极化较小,可逆性较好,电池的循环产热来自于可逆热和不可逆热共同作用。而在高倍率(0.5C、1.0C)下,不可逆热远远大于可逆热而处于主导地位,且随着温度的升高,放热效应更显著。通过热电化学研究,获得了电池充放电过程中的一系列热力学参数(化学反应焓变△rHm、化学反应熵变△rSm、化学反应吉布斯自由能变△rGm),该热力学参数在低倍率(O.1C和0.2C)下受温度影响较小;而在高倍率(0.5C和1.0C)下,随着温度的升高,△rHm显著增加。在低倍率(0.1C和0.2C)下,与正极材料LiFePO4相比,LiMn2O4的△rSm更小,其可逆性更好,循环性能更优。
     2.基于热传导理论建立了锂离子电池电-热耦合模型,采用有限元ANSYS模拟了LiFePO4锂离子电池在不同环境温度和充放电倍率下的稳态温度场。同时采用热电偶监测电池内部温度变化,对电池模型进行验证。结果表明:锂离子电池充放电过程中,电池内部的最高温度均出现在负极层与隔膜层之间,即电池内部偏中心位置。在相同充放电倍率条件下,环境温度越高,电池内部最高温度和表面温度之间的温差越大,电池内部温度场分布均匀性越差。在相同环境温度下,充放电倍率越大,电池内部温度场分布的均匀性越差。采用热电偶测量到的电池内部温度值与模型计算结果基本吻合,验证了本电-热耦合模型的可靠性。
     3.采用第一性原理的超软赝势平面波法,结合广义梯度近似(GGA)的PW91算法,计算了锂离子电池电极材料(LiFePO4. Li)的电子结构、热力学性质及LiFePO4体系的平均电压。结果表明:锂离子电池LiFePO4/Li的平均电压为3.22V,和实验值(3.40V)基本一致。正极材料LiFePO4和负极材料Li的熵S和焓H均随温度升高而增大,而吉布斯自由能G随温度升高而减小,这与热力学规律相符合。本研究获得了锂离子电池正极材料LiFePO4和负极材料Li的微观结构及热力学性质,可为锂离子电池的实际应用提供理论指导。
Lithium ion batteries have been widely used in portable appliances such as laptops, cell phones and digital cameras because of their high-energy storage density, high voltage, memoryless effect, low self-discharge rate, etc. When lithium ion batteries are developed from small size used in the portable electronic devices to up-scaling system investigated for the potential applications of aerospace fields and electrified vehicles, safety concerns have come to the public attention. It is necessary to analysis the thermal effects of lithium ion batteries in order to resolve their safety problem. In order to disclose the thermo-electrochemical behaviors of LiFePO4and LiMn2O4lithium ion batteries during charge-discharge process at various ambient temperatures and rates, electrochemical-calorimetric measurements were employed in this study. These experimental results provided basic data for battery thermal management and a new technique for comprehensive evaluation of thermal and electric performance of battery materials. In addition, the electric-heat coupling model of lithium ion battery was established with finite element method. Temperature distribution inside the battery was predicted with the aid of this model. Based on established crystal structure model of electrode materials, average voltage of lithium ion battery and thermodynamic properties of the cathode and anode materials were predicted by using the first principles. It is significant to optimize the battery structure and improve safety performance of battery based on the above results.
     Here three main aspects of the dissertation have been achieved by thermo-electrochemical method and computer simulation techniques at both macro and micro levels:electronic structures, electrochemical and thermodynamic properties of lithium ion battery and their electrode materials:
     1. With LiFePO4and LiMn2O4as cathode materials, the relationships among electrical characteristics, thermal characteristics, and temperature of lithium ion batteries was investigated by using an eight-channel micro-calorimeter combined with battery test system. The performances of the cathode materials like thermal and electrical were evaluated further. The research results of LiFePO4show that the specific capacity and the amount of heat were strongly affected by ambient temperature and charge-discharge rate. With the increase of rate and temperature, the specific capacity decreased and the amount of heat increased. At low rate (0.1C,0.2C), the battery had a smaller polarization and a better reversibility, both reversible and irreversible heat contributed to the overall heat production, while irreversible heat dominated the overall heat production when the battery cycled at high rate (0.5C,1.0C). From the comparison of thermal behavior at target temperature (30℃,40℃,50℃), a pronounced exothermic thermal behavior was observed during charge-discharge process in the high current region (0.5C,1.0C) at elevated temperature. Through the study of thermo-electrochemistry, a series of thermodynamic parameters of lithium ion batteries during charge-discharge process, such as△rHm,△rSm and△rGm, were achieved. These thermodynamic parameters were weakly affected by ambient temperature when the battery cycled at low rate (0.1C,0.2C), but at high rate (0.5C,1.0C), enthalpy change of chemical reaction (△rHm) increased significantly with the increase of temperature. At low rate (0.1C,0.2C), compared with LiFePO4cathode material, LiMn2O4had a smaller entropy change of chemical reaction (△rSm), a better reversibility and a better cycle performance.
     2. The electric-heat coupling model of LiFePO4lithium ion battery was established with theory of thermal conduction. The steady temperature field of lithium ion battery during charge-discharge process at different ambient temperatures and charge-discharge rates was simulated with ANSYS software. Moreover, temperature change inside the battery was monitored by using the thermocouple in order to validate the battery model. The results show that the highest temperature inside the battery appeared between the anode layer and the separator layer. That is, it appeared at partial center position inside the battery. Temperature distribution of lithium ion battery was strongly affected by charge-discharge rate and ambient temperature. With the ambient temperature increasing temperature difference between the highest temperature and surface temperature inside the battery increased. Under the same rate, and uniform temperature distribution decreased. When the ambient temperature was the same, with the rate increasing uniform temperature distribution decreased. Experimental values, which had been achieved by using the thermocouple measurement, were basically anastomosed with the theoretical calculations. The result showed the reliability of this model.
     3. By using the ultrasoft pseudopotential plane wave method based on the first principles, combining the generalized gradient approximation (GGA) and PW91algorithms, the electronic structures and thermodynamic properties of the electrode materials of lithium ion batteries (LiFePO4and Li) as well as average voltage of battery were calculated. The results show that the calculated average voltage of LiFePO4/Li battery3.22V, is basically agreement with3.40V that was experimentally observed. Entropy S, enthalpy H and Gibbs free energy G of the electrode materials (LiFePO4and Li) of lithium ion batteries were calculated by the phonon spectra state density. With the ambient temperature increasing entropy S and enthalpy H increased, but Gibbs free energy G decreased. This result complied with the thermodynamic law. In a word, the micro calculation provided the theoretical guidance about the practical application of lithium ion batteries.
引文
[1]Arai J, Yamaki T, Yamauchi S, et al. Development of a high power lithium secondary battery for hybrid electric vehicles [J]. J. Power Sources,2005, 146(1-2):788-792.
    [2]Verbrugge M W, Liu P. Electrochemical characterization of high-power lithium ion batteries using triangular voltage and current excitation sources [J]. J. Power Sources,2007,174(1):2-8.
    [3]Divya K C, Ostergaard J. Battery energy storage technology for power systems-An overview [J]. Electric Power Systems Research,2009,79(4):511-520.
    [4]Braun P V, Cho J, Pikul J H, et al. High power rechargeable batteries [J]. Current Opinion in Solid State and Materials Science,2012,16:186-198.
    [5]Scrosati B, Garche J. Lithium batteries:status, prospects and future [J]. Journal of Power Sources,2010,195(9):2419-2430.
    [6]Wang Q S, Ping P, Zhao X J, et al. Thermal runaway caused fire and explosion of lithium ion battery [J]. Journal of Power Sources,2012,208:210-224.
    [7]Tobishima S, Yamaki J. A consideration of lithium cell safety [J]. Journal of Power Sources,1999,81-82:882-886.
    [8]Tobishima S, Takei K, Sakurai Y, et al. Lithium ion cell safety [J]. Journal of Power Sources,2000,90:188-195.
    [9]Selman J R, Al Hallaj S, Uchida I, et al. Cooperative research on safety fundamentals of lithium batteries [J]. Journal of Power Sources,2001,97-98: 726-732.
    [10]Balakrishnan P G, Ramesh R, Kumar T P. Safety mechanisms in lithium-ion batteries [J]. Journal of Power Sources,2006,155:401-414.
    [11]Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries [J]. Process Safety and Environmental Protection,2011, 89(6):434-442.
    [12]Lu L G, Han X B, Li J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J].2013,226:272-288.
    [13]Saito Y, Kanari K, Takano K, et al. A calorimetric study on a cylindrical type lithium secondary battery by using a twin-type heat conduction calorimeter [J]. Thermochimica Acta,1997,296:75-85.
    [14]Maleki H, Hallaj S A, Selman J R, et al. Thermal properties of lithium-ion battery and components [J]. Journal of the Electrochemical Society,1999,146(3): 947-954.
    [15]Jin H F, Liu Z, A comparison study of capacity degradation mechanism of LiFePO4-based lithium ion cells, Journal of Power Sources 189 (2009) 445.
    [16]Jiang Z Y, Zhang J, Dong L J, et al. Determination of the entropy change of the electrode reaction by an ac electrochemical-thermal method [J]. J Electroana. Chem.,1999,469:1-10.
    [17]Kobayashi Y, Miyashiro H, Kumai K, et al. Precise electrochemical calorimetry of LiCoO2/graphite lithium-ion cell-Understanding thermal behavior and estimation of degradation mechanism [J]. J. Electrochem. Soc.,2002,149(8): 978-982.
    [18]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008:6-9,63-65.
    [19]吴宇平,戴晓兵,马军旗,程预江.锂离子电池——应用与实践[M].北京:化学工业出版社,2004:7-12,168-187.
    [20]郭炳煜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002:34-36,101-134,259-263.
    [21]郭炳煜,李新海,杨松青.化学电源——电池原理及制造技术[M].长沙:中南大学出版社,2003:15-16,321-330,343-344.
    [22]吴宇平,万春荣,姜长印,方世璧.锂离子二次电池[M].北京:化学工业出版社,2002:8-9,27-29.
    [23]Fergus J W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources,2010,195:939-954.
    [24]Thackeray M M, David WI F, Bruce P G, et al. Lithium insertion into manganese spinels [J]. Materials Research Bulletin,1983,18(4):461-472.
    [25]Luo W, Li X, Dahn J R. Synthesis, characterization, and thermal stability of Li[Ni1/3Mn1/3Co1/3.z(MnMg)2/2]O2 [J]. Chemistry of Materials,2010,22(17): 5065-5073.
    [26]Luo W, Dahn J R. Preparation of Co1-zAlz(OH)2(NO3)2 layered double hydroxides and Li(Co1-zAlz)O2, Chemistry of Materials,2009,21(1):56-62.
    [27]Luo W, Zhou F, Zhao X, et al. Synthesis, characterization, and thermal stability of LiNi1/3Mn1/3Co1/3-zMgzO2, LiNi1/3-zMn1/3Co1/3MgzO2, and LiNi1/3Mn1/3-zCo1/3-MgzO2 [J]. Chemistry of Materials,2010,22(3):1164-1172.
    [28]Luo W, Dahn J R. Can Zr be substituted for Co in Co1-zZrz(OH)2 and LiCo1-zZrzO2 [J]. Journal of the Electrochemical Society,2011,158(2):110-114.
    [29]Padhi A K, Nanjundaswamy K S, Goodenough J B, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [30]Chung S Y, Blocking J T, Chiang Y M, Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1(2): 123-128.
    [31]Chen J J. Recent progress in advanced materials for lithium ion batteries [J]. Materials,2013,6(1):156-183.
    [32]Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries [J]. Advanced Materials,2009,21(45):4593-4607.
    [33]Li Z H, Zhang D M, Yang F X. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material [J]. Journal of Materials Science,2009,44(10):2435-2443.
    [34]郭孝东,刘恒,吴德桥,等.磷酸盐系锂离子电池正极材料的研究进展[J].材料导报,2009,23(4):28-31.
    [35]顾远,张向军,卢世刚,等.LiFePO4正极材料及其改性研究进展[J].电源技术,2013,1:147-151.
    [36]刘云建.锂离子动力电池的制作及其性能研究[D].长沙:中南大学,2009.
    [37]Daiwon C, Prashant N K. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J]. J. Power Sources,2007,163(2): 1064-1069.
    [38]Xia Y G, Masaki Y, Hideyuki N. Improved electrochemical performance of LiFePO4 by increasing its specific surface area [J]. Electrochimica Acta,2006, 52(1):240-245.
    [39]Jae K K, Gouri C, Jae W C, et al. Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material [J]. J. Power Sources, 2007,166(1):211-218.
    [40]Guerfi A, Kaneko M, Petitclerc M, et al. LiFePO4 water-soluble binder electrode for Li-ion batteries [J]. J. Power Sources,2007,163(2):1047-1052.
    [41]Song M S, Kang Y M, Kim J H, et al. Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating [J]. J. Power Sources,2007,166(1):260-265.
    [42]Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, et al. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries:a new high-pressure form of LiMPO4 (M=Fe and Ni) [J]. Journal of Materials Chemistry,2001,13:1570-1576.
    [43]沙鸥,赵敏寿,翟静等.锂离子电池新型正极材料LiFePO4的研究进展[J].稀有金属材料与工程,2009,38(11):2060-2064.
    [44]Arnold G, Garche J, Hemmer R, et al. Fine-Particle lithium iron Phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. J. Power Sources,2003,119-121(1):247-251.
    [45]Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45-51.
    [46]Franger S, Cras F L, Bourbon C, et al. LiFePO4 synthesis routes for enhanced electrochemical performance [J]. Electrochemical and Solid-State Letters.2002, 5(10):231-233.
    [47]Islam M S, Driscoll D J, Craig A J, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 Olivine-type battery material [J]. Chemistry of Materials,2005,17(20):5085-5092.
    [48]Craig A J F, Veluz M H P, Islam M S. Lithium battery materials LiMPO4 (M=Mn, Fe, Co, and Ni):insights into defect association, transport mechanisms, and doping behavior [J]. Chemistry of Materials,2008,20(18):5907-5915.
    [49]Li L J, Li X H, Wang Z X, et al. Stable cycle-life properties of Ti-doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method [J]. Journal of Physics and Chemistry of Solids,2009,70:238-242.
    [50]Liu Y J, Li X H, Guo H J, et al. Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery [J]. Journal of Power Sources,2008, 184:522-526.
    [51]李旭,彭文杰,李新海等.LiFe1-xMgxPO4的制备及其电化学性能[J].中国 有色金属学报,2008,18(6): 1123-1128.
    [52]Qin X, Wang X H, Xiang H M, et al. Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries [J]. The Journal of Physical Chemistry,2010,114(39):16806-16812.
    [53]张宝,罗文斌,李新海等.LiFePO4/C锂离子电池正极材料的电化学性能[J].中国有色金属学报,2005,15(2):300-304.
    [54]唐开枚,陈立宝,林晓园等.锂离子电池正极材料纳米LiFePO4 [J].微纳电子技术,2009,46(2):84-90.
    [55]吕东生,李伟善,刘煦等.LiMn2O4的容量衰减机理和结构稳定方法[J].电池工业,2004,9(5):244-246.
    [56]李运娇,常建卫,李洪桂等.富锂型掺钴尖晶石锂锰氧化物的结构与电化学性能[J].中南大学学报(自然科学版),2004,35(3):381-385.
    [57]陈立宝,贺跃辉,汤义武.采用固相配位法制备超细LiMn2O4正极材料[J].中南大学学报(自然科学版),2005,36(3):390-395.
    [58]Luo J Y, Li X L, Xia Y Y. Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance [J]. Electrochimica Acta, 2007,52(25):4525-4531.
    [59]郭琳.热电化学的发展及近期研究动向[J].广东教育学院学报,2000,20(3):79-83.
    [60]王珍峰,方正.热电化学中熵的另一种计算方法[J].中国稀土学报,2006,24:186-189.
    [61]刘振海.热分析导论[M].北京:化学工业出版社,1991:1-2.
    [62]Sherfey J M, Brenner A. Electrochemical calorimetry [J]. J. Electrochem. Soc., 1958,105 (11):665-672.
    [63]Fang Z, Wang S F, Zhang Z H, et al. The electrochemical Peltier heat of the standard hydrogen electrode reaction [J]. Thermochimica Acta,2008,473: 40-44.
    [64]Rakshit S K, Parida S C, Naik Y P, et al. Thermodynamic studies on lithium ferrites [J]. Journal of Solid State Chemistry,2011,184:1186-1194.
    [65]黄倩.锂离子电池的热效应及其安全性能的研究[D].上海:复旦大学,2007.
    [66]张正华,方正,王少芬等.高精度恒温环境电化学量热系统的建立Fe(CN)63-/ Fe(CN)64"体系的热电化学[J].中国有色金属学报,2008,18(9):1732-1735.
    [67]杨中发,方正,王少芬,张正华.Fe(CN)63-/Fe(CN)64-体系阳极过程的电化学Peltier热[J].中南大学学报(自然科学版),2011,42(2):312-316.
    [68]Zhang W S. Construction, calibration and testing of a decimeter-size heat-flow calorimeter [J]. Thermochimica Acta,2010,499:128-132.
    [69]Huang Q, Yan M M, Jiang Z Y. Thermal study on single electrodes in lithium-ion battery [J]. Journal of Power Sources,2006,156:541-546.
    [70]Rao Z H, Wang S F. A review of power battery thermal energy management [J]. Renewable and Sustainable Energy Reviews,2011,15(9):4554-4571.
    [71]陈悦.热导式等温量热仪在水泥水化研究中的应用[J].现代科学仪器,2005,5:59-62.
    [72]金慧芬,高俊奎,张绍丽.锂离子电池热安全性能预测方法.中国:200610130589[P],2007-06-27.
    [73]黄海江,喻献国,解晶莹.锂离子蓄电池安全性的测试与研究方法[J].电源技术,2005,29(1):52-56.
    [74]周波,钱新明.加速量热仪在锂离子蓄电池热安全性研究领域的应用[J].化工时刊,2005,19(3):31-34.
    [75]Redey L. Heat effects in batteries and measurements by electrochemical calorimetry [C]. IEEE. Thirteenth Annual Battery Conference on Applications and Advances. California, USA,1998:121-126.
    [76]Mottard J M, Hannay C, Winandy E L. Experimental study of the thermal behavior of a water cooled Ni-Cd battery [J]. J. Power Sources,2003,117: 212-222.
    [77]Saito Y, Kanari K, Takano K, et al. Characterization of reaction in lithium-ion cells by calorimetry and staircase voltage step coulometry [J]. J. Power Sources, 1999,81-82:913-917.
    [78]Zhang Z L, Zhong M H, Liu F M, et al. In-situ study of charge and discharge of Ni-MH battery using the combined method of electrochemistry and microcalorimetry [J]. Journal of thermal analysis and calorimetry,1999,58: 413-419.
    [79]Viswanathan V V, Choi D W, Wang D H, et al. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management [J] J. Power Sources,2010,195:3720-3729.
    [80]Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles [J]. J Power Sources,2001,99(1-2):70-77.
    [81]Araki T, Nakayama M, Fukuda K, et al. Thermal behavior of small nickel/metal hydride battery during rapid charge and discharge cycles [J]. J. Electrochem. Soc.,2005,152(6):1128-1135.
    [82]Onda K, Ohshima T, Nakayama M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles [J]. J Power Sources,2006, 158(1):535-542.
    [83]Williford R E, Viswanathan V V, Zhang J G. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries [J] J. Power Sources,2009,189:101-107.
    [84]Hong J S, Maleki H, Al Hallaj S, et al. Electrochemical-calorimetric studies of lithium-ion cells [J]. J. Electrochem. Soc,1998,145(5):1489-1501.
    [85]Al Hallaj S, Maleki H, Hong J S, et al. Thermal modeling and design considerations of lithium-ion batteries [J]. J. Power Sources,1999,83:1-8.
    [86]Al Hallaj S, Prakash J, Selman J R. Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements [J]. J. Power Sources, 2000,87:186-194.
    [87]Saito Y, Kanari K, Takano K. Thermal studies of a lithium-ion battery [J] J. Power Sources,1997,68(2):451-454.
    [88]Saito Y, Takano K, Kanari K, et al. Comparative study of thermal behaviors of various lithium-ion cells [J]. J. Power Sources,2001,97-98:688-692.
    [89]Saito Y. Thermal behaviors of lithium-ion batteries during high-rate pulse cycling [J]. J. Power Sources,2005,146:770-774.
    [90]Kobayashi Y, Kihira N, Takei K, et al. Electrochemical and calorimetric approach to spinel lithium manganese [J]. J. Power Sources,1999,81-82:463-466.
    [91]Wang Q S, Sun J H, Yao X L, et al. Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes [J]. Journal of loss prevention in the process industries,2006,19:561-569.
    [92]Yang H, Prakash J. Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique [J]. J. Electrochem. Soc.,2004,151(8):1222-1229.
    [93]Lu W Q, Yang H, Prakash J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery [J]. Electrochimica Acta,2006,51:1322-1329.
    [94]李奇,杨朗,杨晖.锂离子电池在循环过程中的产热研究[J].电源技术,2008,32(9):606-610.
    [95]Krause L J, Jensen L D, Dahn J R. Measurement of parasitic reactions in Li ion cells by electrochemical calorimetry [J]. J. Electrochem. Soc.,2012,159(7): 937-943.
    [96]Pesaran A A, Russell D J, Crawford J W, et al. A unique calorimeter-cycler for evaluating high-power battery modules [C]. IEEE. Thirteenth Annual Battery Conference on Applications and Advances. California, USA,1998:127-131.
    [97]张朝晖.计算机在材料科学与工程中的应用[M].长沙:中南大学出版社,2008:1-6,127-135,192-193.
    [98]杨明波,胡红军,唐丽文.计算机在材料科学与工程中的应用[M].北京:化学工业出版社,2008:2-3,172-176.
    [99]陈舜麟.计算材料科学[M].北京:化学工业出版社,2005:6-8.
    [100]Smith K, Kim G-H, Darcy E, et al. Thermal/electrical modeling for abuse-tolerant design of lithium ion batteries [J]. Int. J. Energy Res.,2010,34(2): 204-215.
    [101]王青松,孙金华,何理.锂离子电池安全性特点及热模型研究[J].中国安全生产科学技术,2005,1(3):19-21.
    [102]Lee J, Choi K W, Yao N P, Christianson C C. Three-dimensional thermal modeling of electric vehicle batteries [J]. J. Electrochem. Soc.,1986,133(7): 1286-1291.
    [103]Doyle M, Newman J. Comparison of modeling predictions with experimental data from plastic lithium ion cells [J]. J. Electrochem. Soc.,1996,143(6): 1890-1903.
    [104]Wu M S, Hung Y H, Wang Y Y, et al. Heat dissipation behavior of the nickel/ metal hydride battery [J]. J. Electrochem. Soc.,2000,147(3):930-935.
    [105]Funahashi A, Kida Y, Yanagida K, et al. Thermal simulation of large-scale lithium secondary batteries using a graphite coke hybrid carbon negative electrode and LiNio.7Coo.3O2 positive electrode [J]. J. Power Sources,2002, 104(2):248-252.
    [106]Spotnitza R, Franklin J. Abuse behavior of high-power, lithium-ion cells [J] J. Power Sources,2003,113:81-100.
    [107]Newman J, Thomas K E, Hafezi H, et al. Modeling of lithium-ion batteries [J]. J. Power Sources,2003,119-121:838-843.
    [108]Schoeffert S. Thermal batteries modeling, self-discharge and self-heating [J]. J. Power Sources,2005,142:361-369.
    [109]Mills A, Al Hallaj S. Simulation of passive thermal management system for lithium-ion battery packs [J]. J. Power Sources,2005,141(2):307-315.
    [110]Chen S C, Wang Y Y, Wan C C. Thermal analysis of spirally wound lithium batteries [J]. J. Electrochem. Soc.,2006,153(4):637-648.
    [111]Shi J Z, Wu F, Chen S, et al. Thermal analysis of rapid charging nickel/metal hydride batteries [J]. J. Power Sources,2006,157(1):592-599.
    [112]Mi C, Li B, Buck D, et al. Advanced electro-thermal modeling of lithium-ion battery system for hybrid electric vehicle applications [C]. IEEE. Vehicle Power and Propulsion Conference, Arlington, TX,2007:107-111.
    [113]Matsushita T, Yabuta K, Tsujikawa T, et al. Construction of three-dimensional thermal simulation model of lithium-ion secondary battery [C]. IEEE. The 30th International Telecommunications Energy Conference, San Diego, CA,2008: 1-6.
    [114]Szente-Varga D, Horvath G, Rencz M. Thermal characterization and modeling of lithium-based batteries at low ambient temperature [C]. IEEE. The 14th International Workshop on Thermal Inveatigation of ICs and Systems, Rome, 2008:128-131.
    [115]Forgez C, Do D V, Friedrich G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J]. J Power Sources,2010,195: 2961-2968.
    [116]Delacourt C, Safari M. Analysis of lithium deinsertion/insertion in LiyFePO4 with a simple mathematical model [J]. Electrochimica Acta,2011,56(14): 5222-5229.
    [117]Jeon D H, Baek S M. Thermal modeling of cylindrical lithium ion battery during discharge cycle [J]. Energy Conversion and Management,2011,52: 2973-2981.
    [118]Somasundaram K, Birgersson E, Mujumdar A S. Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery [J]. J Power Sources,2012,203:84-96.
    [119]Luo Y T, Tan D, He X C. Thermodynamics modeling and simulating of lithium-ion battery pack under electric vehicle driving cycle [J]. J. Automotive Safety and Energy,2012,3(1):58-63.
    [120]He H W, Xiong R, Guo H Q. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles [J]. Applied Energy, 2012,89:413-420.
    [121]Doughty D H, Butler P C, Jungst R G, et al. Lithium battery thermal models [J]. Journal of Power Sources,2002,110:357-363.
    [122]Chen Y F, Song L, Evans J W. Modeling studies on battery thermal behaviour, thermal runaway thermal management, and energy efficiency [C]. IEEE. Energy Conversion Engineering Conference, Washington, USA,1996: 1465-1470.
    [123]Rao Z H, Wang S F, Zhang G Q. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery [J]. Energy Conversion and Management,2011,52:3408-3414.
    [124]Spotnitz R. Simulation of capacity fade in lithium-ion batteries [J]. Journal of Power Sources,2003,113:72-80.
    [125]Wu M S, Wang Y Y, Wan C C. Thermal behaviour of nickel/metal hydride batteries during charge and discharge [J]. Journal of Power Sources,1998,74: 202-210.
    [126]Domonkos S V, Gyula H, Marta R. Thermal characterization and modeling of Lithium-based batteries at low ambient temperature [C]. THERMINIC, Rome, Italy,2008:128-131.
    [127]Forgez C, Do D V, Friedrich G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J]. Journal of Power Sources,2010,195: 2961-2968.
    [128]Somasundaram K, Birgersson E, Mujumdar A S. Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery [J]. Journal of Power Sources,2012,203:84-96.
    [129]Abe T, Koyama T. Thermodynamic modeling of the LiCoO2-CoO2 pseudo-binary system [J]. Computer Coupling of Phase Diagrams and Thermochemistry,2011,35:209-218.
    [130]Luo Y T, Tan D, He X C. Thermodynamics modeling and simulating of lithium-ion battery pack under electric vehicle driving cycle [J]. J. Automotive Safety and Energy,2012,3(1):58-63.
    [131]Bernadi D, Pawlikowski E, et al. A general energy balance for battery systems [J]. J. Electrochem Soc,1985,132(1):5-12.
    [132]Chen Y, Evans J W. Thermal analysis of lithium-ion batteries [J]. J. Electrochem. Soc.,1996,143(9):2708-2712.
    [133]Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles [J]. J Power Sources,2001,99:70-77.
    [134]Al Hallaj S, Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications [J]. J. Power Sources, 2002,110:341-348.
    [135]Wu M S, Liu K H, Wang Y Y, et al. Heat dissipation design for lithium-ion batteries [J]. J Power Sources,2002,109:160-166.
    [136]Srinivasan V, Wang C Y. Analysis of electrochemical and thermal behavior of Li-ion cells [J]. J. Electrochem. Soc.,2003,150(1):98-106.
    [137]Chen S C, Wan C C, et al. Thermal analysis of lithium-ion batteries [J]. J. Power Sources,2005,140(1):111-124.
    [138]Bharathan D, Pesaran A, Vlahinos A, et al. Improving battery design with electro-thermal modeling [C]. IEEE. Vehicle Power and Propulsion Conference, USA,2005:107-111.
    [139]Pesaran A. Electrothermal analysis of lithium ion batteries [C]. The 23rd International Battery Seminar & Exhibit, Fort Lauderdale, Florida,2006:1-26.
    [140]Kim G H, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells [J]. J Power Sources,2007,170:476-489.
    [141]Kim U S, Shin C B, Kim C S. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery [J]. J Power Sources,2008,180:909-916.
    [142]Guo G F, Long B, Cheng B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application [J]. J Power Sources,2010,195(8):2393-2398.
    [143]Zhang X W. Thermal analysis of a cylindrical lithium-ion battery [J]. Electrochimica Acta,2011,56:1246-1255.
    [144]Wu W, Xiao X R, Huang X S. The effect of battery design parameters on heat generation and utilization in a Li-ion cell [J]. Electrochimica Acta,2012,83: 227-240.
    [145]Ye Y H, Shi Y X, Cai N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery [J]. J Power Sources,2012,199:227-238.
    [146]Dreizler R M, Gross E K U. Density functional theory [M]. Berlin:Springer-Vertag,1990.
    [147]熊志华,孙振辉,雷敏生.基于密度泛函理论的第一性原理赝势法[J].江西科学,2005,23(1):1-4.
    [148]徐宇虹,尹鸽平,左朋建.锂离子电池正极材料的第一性原理[J].化学进展,2008,20(11):1827-1833.
    [149]Osorio-Guillen J M, Holm B, Ahuja R, et al. A theoretical study of olivine LiMPO4 cathodes [J]. Solid State Ionics,2004,167:221-227.
    [150]Ling C, Banerjee D, Song W, et al. First-principles study of the magnesiation of olivines:redox reaction mechanism, electrochemical and thermodynamic properties [J]. Journal of Materials Chemistry,2012,22:13517-13523.
    [151]Castets A, Carlier D, Zhang Y, et al. NMR study of the LiMnPO4OH and MPO4H2O (M=Mn, V) homeotypic phases and DFT calculations [J]. Solid State Nuclear Magnetic Resonance,2012,42:42-50.
    [152]Ong S P, Jain A, Hautier G, et al. Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations [J]. Electrochemistry Communications,2010,12:427-430.
    [153]张炜,陈文周,王俊斐等.MnPd合金相变,弹性和热力学性质的第一性原理研究[J].物理学报,2012,61(24):246201.
    [154]周震,言天英,高学平等.储能材料的模拟与设计[J].物理化学学报,2006,22(9):1168-1174.
    [155]严辉,杨巍,宋雪梅等.第一原理方法在材料科学中的应用[J].北京工业大学学报,2004,30(2):210-213.
    [156]夏君磊,赵世玺,周振平等.锂离子电池电极材料的设计方法及应用[J].材料导报,2001,15(9):33-41.
    [157]施思奇,欧阳楚英,王兆翔等.锂离子电池中的物理问题及其研究进展[J].物理,2004,33(3):182-185.
    [158]麻明友,何则强,熊利芝等.量子化学原理在锂离子电池研究中的应用[J].吉首大学学报(自然科学版),2006,27(3):97-105.
    [159]Hou X H, Hu S J, Li W S, et al. Ab initio study of the effects of Ag/Mn doping on the electronic structure of LiFePO4 [J]. Chinese Science Bulletin,2008, 53(11):1763-1767.
    [160]Moshurchak L M, Buhrmester C, Wang R L, et al. Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells [J]. Electrochimica Acta,2007,52:3779-3784.
    [161]Xu J, Chen G Effects of doping on the electronic properties of LiFePO4:A first-principles investigation [J]. Physica B,405:803-807.
    [162]Hou X H, Hu S J. First principles studies on the electronics structures of (Li1-xMex)FePO4 (Me=Na and Be) [J]. Chinese Science Bulletin,2010, 55(27-28):3222-3227.
    [163]Wang Y, Feng Z S, Chen J J, et al. First principles study on electronic properties and occupancy sites of molybdenum doped into LiFePO4 [J]. Solid State Communications,2012,152:1577-1580.
    [164]Liu Z J, Huang X J, Wang D S. First-principle investigations of N doping in LiFePO4 [J]. Solid State Communications,2008,147:505-509.
    [165]Hoang K, Johannes M D. First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4 [J]. Journal of Power Sources, 2012,206:274-281.
    [166]Ouyang X F, Lei M L, Shi S Q, et al. First-principles studies on surface electronic structure and stability of LiFePO4 [J]. Journal of Alloys and Compounds,2009,476:462-465.
    [167]Shi S Q, Zhang H, Ke X Z, et al. First-principles study of lattice dynamics of LiFePO4 [J]. Physics Letters A,2009,373:4096-4100.
    [168]Jiang J, Ouyang C Y, Wang Z X, et al. First-principles study on electronic structure of LiFePO4 [J]. Solid State Communications,2007,143:144-148.
    [169]Zhang P X, Zhang D Y, Huang L, et al. First-principles study on the electronic structure of a LiFePO4 (010) surface adsorbed with carbon [J]. Journal of Alloys and Compounds,2012,540:121-126.
    [170]Wang D Y, Li H, Shi S Q, et al. Improving the rate performance of LiFePO4 by Fe-site doping [J]. Electrochimica Acta,2005,50:2955-2958.
    [171]Ouyang C Y, Shi S Q, Fang Q, et al. Li1+xFePO4 (0≤x≤3) as anode material for lithium ion batteries:From ab initio studies [J]. Journal of Power Sources,2008, 175:891-896.
    [172]Nagpure S C, Babu S S, Bhushan B, et al. Local electronic structure of LiFePO4 nanoparticles in aged Li-ion batteries [J]. Acta Materialia,2011,59:6917-6926.
    [173]Moreau P, Boucher F. Revisiting lithium K and iron M2,3 edge superimposition: The case of lithium battery material LiFePO4 [J]. Micron,2012,43:16-21.
    [174]Zhou F, Kang K, Ceder G, et al. The electronic structure and band gap of LiFePO4 and LiMnPO4 [J]. Solid State Communications,2004,132:181-186.
    [175]Ceder G, Y. M. Chiang, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations [J]. Nature,1998,392: 694-696.
    [176]Shi S Q, Liu L J, Ouyang C Y, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations [J]. Physical Review B,2003,68 (19):195108.
    [177]Ouyang C Y, Shi S Q, Wang Z X, et al. First-principles study of Li ion diffusion in LiFePO4 [J]. Physical Review B,2004,69 (10):104303.
    [178]Ouyang C Y, Shi S Q, Wang Z X, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations [J]. J. Phys. Conden. Mat.,2004,16:2265
    [179]Maxisch T, Ceder G Elastic properties of olivine LixFePO4 from first principles [J]. Physical Review B,2006,73:174112.
    [180]Malik R, Zhou F, Ceder G. Phase diagram and electrochemical properties of mixed olivines from first-principles calculations [J]. Physical Review B,2009, 79 (21):214201.
    [18l]张华,唐元昊,周薇薇等.LiFePO4中对位缺陷的第一性原理研究[J].物理学报,2010,59(7):5135-5140.
    [182]Wang Y, Feng Z S, Chen J J, et al. First principles study on electronic properties and occupancy sites of molybdenum doped into LiFePO4 [J]. Solid State Communications,2012,152 (16):1577-1580.
    [183]Wang L, Zhou F, Ceder G, et al. First-principles study of surface properties of LiFePO4:surface energy, structure, Wulff shape, and surface redox potential [J]. Physical Review B,2007,76:165435.
    [184]Ceder G, Zhou F, Wang L. Surface and particle-size effects on the thermodynamics of LiFePO4 from first-principles simulations [C] Washington, USA:212th ECS Meeting,2007.
    [185]Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics [J]. Journal of Phase Equilibria and Diffusion,2009,30(5): 517-534.
    [186]Thermometric 3114/3236 TAM Air等温量热仪——毫瓦级热流测量式多通道量热仪操作指南,Thermometric AB, Sweden,2000.
    [187]LAND蓝电系列电池测试系统用户使用指南,武汉金诺电子有限公司,2010.
    [188]杨军,解晶莹,王久林.化学电源测试原理与技术[M].北京:化学工业出版社,2006:16-18,29-32.
    [189]王健石,朱炳林.热电偶与热电阻技术手册[M].北京:中国标准出版社,2012.
    [190]杨立,杨桢.红外热成像测温原理与技术[M].北京:科学出版社,2012.
    [191]王连亮,马培华,李法强,等.锂离子电池正极材料LiFePO4的结构和电化学反应机理[J].化学通报,2008,1:17-23.
    [192]赵秀芸,王忠丽,孙少瑞等.磷酸铁锂正极材料的研究进展[J].物理,2012,41(2):100-106.
    [193]Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4 [J]. Journal of Power Sources,2001,97-98:498-502.
    [194]唐致远,韩彬,王健英等.锂离子电池蓄电池新型正极材料LiFePO4的研究进展[J].电源技术,2005,29(8):556-559.
    [195]Pasquier A D, Blyr A, Courjal P, et al. Mechanism for limited 55℃ storage performance of Li1.05Mn1.95O4 electrodes [J]. Journal of the Electrochemical Society,1999,146 (2):428-436.
    [196]Hunter J C. Preparation of a new crystal form of manganese dioxide:X,-MnO2 [J]. Journal of Solid State Chemistry,1981,39(2):142-147.
    [197]Blyr A, Sigala C, Amatucci G, et al. Self-discharge of LiMn2O4/C Li-ion cells in their discharged state [J]. Journal of the Electrochemical Society,1998, 145(1):194-209.
    [198]Ostrovskii D, Ronci F, Scrosati B, et al. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes:spontaneous reactions at the electrode-electrolyte interface investigated by FTIR [J]. Journal of Power Sources,2001,103:10-17.
    [199]张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007:2-3,18-20.
    [200]张国智,胡仁喜,陈继刚等.ANSYS 10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007:1-6,10-13.
    [201]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [202]王晋鹏,胡欲立.锂离子蓄电池温度场分析[J].电源技术,2008,32(2):120-121,131.
    [203]王晋鹏,李阳艳.锂离子电池三维温度场分析[J].电源技术,2011,35(10):1205-1207.
    [204]张红松,胡仁喜,康士廷等.ANSYS 12.0有限元分析从入门到精通[M].北京:机械工业出版社,2010:3-4.
    [205]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005:1-2,5-13.
    [206]刘相新,孟宪颐.ANSYS基础与应用教程[M].北京:科学出版社,2006:3-7.
    [207]张建峰,王翠玲,吴玉萍等.ANSYS有限元分析软件在热分析中的应用[J].冶金能源,2004,23(5):9-12.
    [208]刘一兵,刘国华.ANSYS的关键技术及热分析研究[J].重庆科技学院学报(自热科学版),2008,10(6):104-107.
    [209]赵晋峰,褚德威,杨晓勇,张卫红等.热电池模型的研究[J].电源技术,2008,32(9):614-616.
    [210]王凤丽,宋健良,谭光宇等.在ANSYS中建立复杂有限元模型[J].哈尔滨理工大学学报,2003,8(3):22-24.
    [211]Inui K, Kobayashi Y, Watanabe Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries [J]. Energy Conversion and Management,2007,48:2103-2109.
    [212]蔡石屏,沈国土,蔡继光等.有限元模型生成及其在热分析中的应用[J].红外技术,2009,31(5):279-282.
    [213]何亮明,杜翀.圆柱形锂离子电池的三维热模拟[J].电池工业,2010,15(3):151-155.
    [214]王松蕊,付亚娟,卢立丽等.锂离子电池温度变化热模拟研究[J].电源技术,2010,34(1):41-44.
    [215]王松蕊,卢立丽,刘兴江.锂离子电池放电过程的模拟研究[J].电源技术,2011,135(6):648-651.
    [216]冯旭宁,李建军,王莉等.锂离子电池各向异性导热的实验与建模[J].汽车安全与节能学报,2012,3(2):158-164.
    [217]Kumaresan K, Sikha G, White R E. Thermal model for a Li-ion cell [J]. Journal of The Electrochemical Society,2008,155(2):164-171.
    [218](美)戴维·林登(David Linden),(美)托马斯B.雷迪(Thomas B.Reddy)著;汪继强等译.电池手册:原著第三版(电池材料与应用系列)[M].北京:化学工业出版社,2007.
    [219]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用[M].北京:科学出版社,1998:1-13,169-170.
    [220]张培新,陈建华.掺杂材料分子模拟与计算[M].北京:科学出版社,2012:8-9,20-28.
    [221]黄昆.固体物理学[M].北京:高等教育出版社,2000.
    [222]潘道皑.物质结构[M].北京:高等教育出版社,1989:47-53,523-531.
    [223]张占军,宋桂兰.费米能级的物理化学性质探讨[J].河北机电学院学报,1993,10(4):78-81.
    [224]石德珂.材料科学基础[M].北京:机械工业出版社,2003:376-380.
    [225]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [226]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code [J]. J. Phys.:Cond. Matt.,2002,14(11): 2717-2743.
    [227]Singh D J. Planewaves, pseudoptentials and the LAPW method [M]. Boston: Kluwer Academic Publishers,1993.
    [228]Andersen O K. Linear methods in band theory [J]. Physical Review B,1975,12: 3060-3083.
    [229]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [230]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41:7892-7895.
    [231]鲁贵林,杜梅芳,张忠孝等.第一性原理计算XCO3 (X=Ca、Mg)的热力学性质[J].材料导报,2012,26(2):122-126.
    [232]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science,1996,6:15-50.
    [233]Wolverton C, Zunger A. Prediction of Li intercalation and battery voltages in layered vs. cubic LixCo02 [J]. Journal of the Electrochemical Society.1998, 145(7):2424-2431.
    [234]Reimers J N. Can first principles calculations aid in lithium-ion battery design? [J]. Journal of Power Sources,1995,54:16-19.
    [235]Aydinol M K, Kohan A F, Ceder G. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J]. Physical Review B,1997,56(3): 1354-1365.
    [236]Aydinol M K, Ceder G. First-principle prediction of insertion potentials in Li-Mn oxides for secondary Li batteries [J]. Journal of the Electrochemical Society,1997,144(11):3832-3835.
    [237]Courtney I A, Tse J S, Mao O, et al. Ab initio calculation of the lithium-tin voltage profile [J]. Physical Review B,1998,58(23):15583-15588.
    [238]O. Garcia-Moreno, M. Alvarez-Vega, F. Garcia-Alvarado et al. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries:a new high-pressure form of LiMPO4 (M=Fe and Ni) [J]. Journal of Materials Chemistry,2001,13:1570-1576.
    [239]Andersson A S, Kalska B, Haggstrom L. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study [J]. Solid State Ionics,2000,130:41-52.
    [240]Ching W Y, Callaway J. Band structure, cohesive energy, optical conductivity, and Compton profile of lithium [J]. Phys. Rev. B,1974,9:5115-5121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700