特大型泥石流淤埋路段公路快速修复技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流是西部山区公路的主要地质病害,体现在公路路基、路面、桥涵及防护结构被泥石流冲击破坏和淤埋损毁两方面,分别约占60%和40%。近10年来,中国西部有50余座桥梁、涵洞在被泥石流淤埋后逐渐毁损破坏,然而迄今,泥石流对公路建构筑物的淤埋毁损机理尚不清楚,本项目于2008年由四川省科技厅立项,通过近3年的深入研究,结合团队前期研究,取得创新性成果如下:
     1.构建了泥石流试验模型,并据此进行了天山泥石流淤埋桥梁模型试验。通过模型试验,验证了泥石流沉积过程中固结力的存在性。
     2.基于泥石流两相流理论,分析了泥石流沉积物固结的力学机理。并在Terzaghi一维固结理论的基础上,结合Bingham流变模型建立了泥石流沉积物的超孔隙水压力、固结度及沉降压缩量随固结时间和沉积体尺寸相变化的固结公式,并通过室内固结试验验证了该公式的正确性和可行性。因此,运用这些计算结果并结合现场勘察资料,可以更快速准确的制定出合适的公路泥石流淤埋灾害应急减灾方案。
     3.以室内微型压缩试验为基础,建立了泥石流沉积物承载力与固相比、含水量之间的数学关系式,简化了野外测量泥石流沉积物地基承载能力的过程。
     4.根据得出的粘性泥石流沉积物固结与承载力变化规律,建立了泥石流暴发后淤埋路段公路交通快速恢复成套技术,如泥石流淤埋路段应急通行承载伞、战备浮桥,并构建其详细的施工工法和设计步骤,推广应用后可使公路交通恢复时间变为3~5天,比现在所需恢复时间缩短3倍以上。
     5.以新疆天山公路K631泥石流淤埋灾害为治理对象,运用应急承载伞技术进行设计计算,结果证明该技术可以很好地运用到工程实践之中。另外,运用有限元软件ADINA在三维上对泥石流沉积物与战备浮桥的耦合结构进行了数值模拟,比较清晰地反映了泥石流淤埋路段战备浮桥的应力变形过程,并且得到了和实际情况比较相符的结果。更重要的是,在数值仿真过程中定性地揭示了泥石流沉积体与战备浮桥浮墩作用的细节过程。
Debris flow is one of the main road diseases in western China,its hazards includeattacking and burying the highway subgrades、pavements、bridges and protectivestructures,the occurrence frequency of these two disasters is 6∶4. In the pastdecade,there are more than 50 bridges、culverts were buried by debris flow and thengradually destroyed , However,so far the buried-damage mechanism of debris flow onthe highway building structure is not clear,domestic and foreign experts andscholars'studies on the mechanical mechanism of debris flow deposit are verylimited.Therefore,according to this situation ,the project conducted a systematicstudy,the main conclusions and innovations are as follows:
     1.Constructed the test model of debris flow,then carryed out the buried-bridgemodel test of Tianshan debris flow .Through the model test,verified the presence ofconsolidation force during the process of debris flow deposition.
     2.According to the two-phase flow theory of debris flow deposit ,analysed theconsolidation mechanical mechanism of highway debris flow deposit. On the basis ofTerzaghi one-dimensional consolidation theory, established the consolidation formula,which described the change process of excess pore water pressure、consolidationdegree、settlement and compression with theconsolidation time and deposit size, and then verified the correctness and feasibility ofthe formula by the indoor consolidation test. Therefore, used these results and combinedwith the field survey data, could develop a proper program for emergency mitigation ofhighway debris flow buried disaster more quickly and accurately .
     3.On the basis of indoor micro-compression test,established the mathematicalrelationship expression between the bearing capacity and solid phase ratio/water contentof debris flow deposit,simplified the field measuring process of bearing capacity ondebris flow deposit foundation.
     4.According to the variation between rheological consolidaiton and bearingcapacity of viscous debris flow deposit,established the highway traffic fast recoverycomplete technologies of debris flow buried sections,such as the emergency trafficload-bearing umbrella、war pontoon, then built the detailed construction methods anddesign procedures,the highway traffic recovery time would become to 3~5 days afterpopularization and application,which reduced more than 3 times than the currentrequired recovery time.
     5.Used the Tianshan K631 debris flow buried highway disaster as the controlobject,then designed and calculated the emergency bearing umbrella technology, theresult had proved that this technology could be well applied to the engineeringpractice.Besides, used the finite element software ADINA to simulate the debris flowdeposit-combat raediness pontoon coulped structure in three dimensions, then reflectedthe stress deformation process of combat readiness pontoon in the debris flow buriedsection, and obtained the result in accordance with the actual situation. Moreimportantly, it revealed qualitatively the details of debris flow deposit-combat raedinesspontoon action in the numerical simulation.
引文
[1]陈洪凯,唐红梅,马永泰,等.公路泥石流研究及治理[M].北京:人民交通出版社,2004.
    [2]费祥俊,舒安平.泥石流运动机理与灾害防治[M].北京:清华大学出版社,2004.
    [3] Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in aNewtonian fluid under shear[J].Proc Royal Soc London Series A 225:49–63.
    [4] Iverson P M.The physics of debris flow[J].Review of Geophysics,1997,35(3).
    [5] Hutter K,Suendsent B,Rickeman D.Debris flow modeling:A review Continuum Mechanicsand Thermodynamics[J].Springer VerlagGmbH,1994.
    [6]王裕宜,费祥俊.颗粒在粘性泥石流中的悬浮机理研究[J].中国科学(F),1999,29(4).
    [7]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [8] Hampton M A.Buoyangcy in debris flow[J].Journal of Sedimentary Petrology,1997,49(3).
    [9]吴积善,康志诚,田连权等.云南蒋家沟泥石流观测[M].北京:科学出版社,1990.
    [10] Major J J,Pierson T C .Debris flow rheology:Experimental analysis of fine grainedslurries[J].Water Resources Research.1992,(246).
    [11] Iistad T,Eluerhi A,IsslerD etal.Sub-aqueous debris flow behaviour and its dependence on thesand/clay ratio:a laboratory study using particle tracking[J].Marine Geology,2004,(213).
    [12]陈洪凯,唐红梅.泥石流两相冲击力及冲击时间计算方法[J].中国公路学报,2006,19(3).
    [13]陈洪凯,唐红梅,陈野鹰.泥石流固-液分相流速计算方法研究[J].应用数学与力学,2006,27(3).
    [14]王裕宜,詹钱登,韩文亮,邹仁元.高浓度黏性泥石流堆积层理结构中筛积层和粗化层形成机理的研究[J].沉积学报,2003,21(2):206—208.
    [15] Ghilardi P,Natale L ,Savi F.Modeling debris flow propagation and deposition. Phys.Chen.Earth(c),2001,26(9).
    [16] Major J J.Gravity consolidation of granular slurries:Implications for debris flow depositionand deposit charateristics[J].Journal of Sediment Research, 2000,70(1).
    [17]陈洪凯,舒小红.泥石流固相在浆体中沉降规律研究[J].重庆建筑大学学报,2007,29(4):100-103.
    [18]陈洪凯,唐红梅,吴四飞.泥石流运动衰减动力学初步研究[J].中国地质灾害与防治学报,2005,16(S).
    [19]倪化勇,刘希林.泥石流堆积物的粒度分布及其分形结构[J].沉积与特提斯地质,2008,(03).[20」柳金峰,欧国强,游勇等.不同出口山脚约束的泥石流淤埋实验研究[J].灾害学,2009,24(3):7-10.
    [21] Tamotsu Takahashi.Debris flow:Mechanics, Prediction and Countermeasures[J].Netherlands:Taylor&Francis, 2007.
    [22] Gentile F, Bisantino T, Puglisi S, Trisorio Liuzzi G.Analysis and modelling ofdebris-flaws in Gargano watersheds (region-Southern Italy)[J].1n:Lorenzini G, Brebbia CA,Emmanouloudis DE(eds): Monitoring, simulation, prevention and remediation of dense anddebris-flows. series: WIT transactions on ecology and the environment, Wit press,2006,90:181-191.
    [23] Gentile F, Bisantino T, Trisoria Liuzzi G .Debris-flow risk analysis in south Garganowatersheds(Southern Italy)[J]. Nat Hazards ,2008,44(1):1-17.
    [24] Kaitna R, Rickenmann D, Schatzmann M . Experimental study on rheologic behaviourof debris-flow materia[J]l. Acta Geotech ,2007,2:71-85.
    [25] Marchi L, D'Agostino V (2004) Estimation of debris-flow magnitude in the eastern ItalianAlps[J]. Earth SurfProc Land 29:207-220.
    [26] Schatzmann M, Bezzola GR, Minor HE, Windhab Ed, Fischer P . Rheometry for largeparticulated fluids:2 Comparison of rheometry for debris-flow materials[J].Rheologica Acta,accepted,2009.
    [27] Tiziana Bisantino ,Peter Fischer,Francesco Gentile .Rheological characteristics ofdebris-flow material in South-Gaxgano watersheds [J].Nat Haaards ,2009, 10.
    [28]关明芳.泥石流沉积物流变固结研究[D].重庆交通大学,2006.
    [29]陈洪凯,唐红梅,鲜学福等.川藏公路四川段泥石流灾害研究与治理[J].防灾减灾工程学报,2009,29(2):125-132.
    [30]党福江,党如童.陡坡河床堆积物中的水分动态[J].水土保持应用技术,2009,5:47-49.
    [31]黄勇,杨三强,周雁等.高寒高海拔山区公路坡面泥石流防治研究[J].资源环境与工程,2009,9,23:107-110.
    [32]樊赟赟,王思敬,王恩志.基于结构两相阻力分析的泥石流堆积形态研究[J].工程地质学报,2010,18(1):100-104.
    [33]李育枢,李天斌.老泥石流堆积体上地质灾害的成灾机理及防治对策[J].岩土工程技术,2009,23(4):64-67.
    [34]李磊,任光明,蒋权翔等.某低频泥石流沟堆积物特征研究[J].中国地质灾害与防治学报,2009,20(4):41-44.
    [35]江峰.泥石流防治工程设计的若干问题初探[J].中国地质灾害与防治学报,2009,20(4):36-40.
    [36]黄晓宇,姜亚飞.泥石流危害及防治措施探讨[J].工程技术,2010,03:119-120.
    [37]王得楷.泥石流灾害危险性评估技术分析[J].甘肃科学学报,2009,21(4):51-53.
    [38]罗靖筠,杨强,高幼龙.浅析陇东地区泥石流特征和成因及防治对策[J].山西建筑,2009,35(24):127-128.
    [39]何翠香.山区公路工程地质勘察方法探讨[J].西部交通科技,2010,1:25-28.
    [40]杨少鸿.结合工程实例分析公路工程中软基处理常见方法[J].中国新技术,2009,09.
    [41]王慧春.山区公路水毁原因及防治措施浅析[J].山西建筑,2009,(24).
    [42]石晋旭.新疆天山公路泥石流病害机理与防治[D].重庆交通大学,2007.
    [43]秦爱芳,孙德安,谈永卫.非饱和土一维固结的半解析解[J].应用数学和力学,2010,(02):199-208.
    [44]朱文明,高武振,杨贺荣等.饱和土与非饱和土固结理论及其联系与差别[J].科技信息,2010,(03):480-481.
    [45]孙万鑫,谢康和.非饱和土一维固结混合流体方法的解析分析[J].岩土力学,2010,(08):2661-2665.
    [46] Ausilio E, Conte E, Dente G. An analysis of the consolidation of unsaturated soils[J].Unsaturated Soi1s,2002: 239-251.
    [47] Delwyn G, Fredlund D G. Unsaturated soil mechanics in engineering practice[J]. Journal ofGeotechnical and Geoenvironmental Engineering. ASCE/March 2006: 286–318.
    [48] LI X S. Thermodynamics-based consititutive framework for unsaturated soils[J].Geotechnique, 2007, 57(5): 411- 422.
    [49] Khalilin, Geiser F, Blight G E. Effective stress in unsaturated soils: review with newevidence[J].International Journal of Geomechanics, 2004: 115-126.
    [50]陈勇,刘德富,王世梅等.三维非饱和土滑坡稳定性影响因素研究[J].岩土工程学报,2010,(08):1236-1240.
    [51]曹雪山,殷宗泽.一维非饱和土固结简化计算的改进方法[J].公路交通科技,2009,(10):1-5.
    [52]赵成刚,蔡国庆.非饱和土广义有效应力原理[J].岩土力学,2009,(11):3232-3236.
    [53]邵生俊,王婷,于清高.非饱和土等效固结变形特性与一维固结变形分析方法[J].岩土工程学报,2009,(07):1037-1045.
    [54] D·G弗雷德隆德,H·拉哈尔佐.陈仲颐,张在明,陈愈炯等译.非饱和土土力学[M].北京:中国建筑工业出版社,1997.
    [55]赵维炳,施健勇.软土固结与流变[M].南京:河海大学出版社,1996,11.
    [56]王立忠,但汉波.K0固结软黏土的弹黏塑性本构模型[J].岩土工程学报,2007,29(9):1344-1354.
    [57] HICHBERGER S D,ROWE R K. Evaluation of the predictive ability of twoElastic-viscoplastic constitutive models [J].Canadian GeotechnicalJouma1,2005,42:1675-1694.
    [58]但汉波,王立忠.K0固结软黏土的应变率效应研究[J].岩土工程学报,2008,30(5):718-725.
    [59]汤亮亮,陈樟龙,单波等.压缩过程中软土固结系数与有效固结应力的关系[J].工业建筑,2010,(05):79-81.
    [60]师旭超,张继文.淤泥质软黏土次固结特性试验研究[J].人民黄河,2010,32(!):122-123.
    [61]徐珊,陈有亮,赵重兴.单向压缩状态下上海地区软土的蠕变变形与次固结特性研究[J].工程地质学报,2008,16(4):495-501.
    [62]殷家泽,张海波,朱俊高等.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    [63]谢新宇,张继发,曾国熙.饱和土体自重固结问题的相似解[J].应用数学和力学,2005,26(9):1061-1066.
    [64]黄欢,膝伟福,方聚宝.软土路基的最终沉降量计算方法探讨[J].安全与环境工程,2008,15(4):111-113.
    [65]谷任国,房营光.软土流变的物质基础及流变机制探索[J].岩土力学,2009,30(7):1915-1919.
    [66]朱巧娣,汪要武.软士固结系数计算方法探讨[J].西部探矿工程,2006,12:53-55.
    [67]黄小华,冯夏庭,陈炳瑞.蠕变试验中黏弹组合模型参数确定方法的探讨[J].岩石力学与工程学报,2007,26(6):1226-1230.
    [68]高正夏,孙迅.流变软土路基最终沉降预测模型与方法研究[J].勘察科学技术,2008,2:3-6.
    [69]林峰,黄英娣.软土固结蠕变特性试验研究[J].中国水运,2007,7(07):98-99.
    [70]张明,赵月平,王威等.考虑有效应力的软土固结系数变化规律[J].北京工业大学学报,2010,(02):199-205.
    [71] Joley Lam和K.S.Li(冯国栋译).全新纪沉积物自重固结模型的建立[J].土工基础,2006,20(1):69-70.
    [72] Nader A, Hassan R, Akbar A. Finite difference approach for consolidation with variablecompress ibility and permeab ility[J]. Computers and Geotechnics, 2007(34) : 42-52.
    [73] Pan E. Green's functions in layered poraelastic half 2 spaces[J].In.J.Numer. Anal. Meth.Geometh,1999,23(13):1613-1653.
    [74]东南大学,浙江大学,湖南大学等.土力学[M].北京:中国建筑工业出版社,2005:231-253.
    [75]高文书.不同的方法在地基承载力计算中的应用[J].价值工程,2010,01:212-213.
    [76]南京水利科学研究院.土工试验规程(SL237-1999)[S].北京:中国水利水电出版社,1999.
    [77]颜秉慧.微型载荷试验确定地基土承载力[J].内蒙古公路与运输,2001,3:18-19.
    [78]徐正分.微型载荷试验的依据与方法[J].勘察科学技术,1998,4:43-44.
    [79]中华人民共和国建设部.建筑地基基础设计规范(PGB50007-2002)[S].北京:中国水利水电出版社,1999.
    [80]陈洪凯,唐红梅.采用承载伞实现泥石流淤埋路段交通应急通行的方法.中国:2.00911E+11.
    [81]陈洪凯,唐红梅.泥石流淤埋路段战备浮桥及其架设方法.中国:200910103181.X.
    [82]邵杰,孙志伟,曹瑞祥.承压舟浮桥结构的内力分析与探讨[J].钢结构,2009,6:25-27.
    [83]辛实.铁路浮桥结构的整体分析[J].铁道建筑技术,1995,3:15-17.
    [84]康志成,李焯芬,马蔼乃等.中国泥石流研究[M].北京:科学出版社,2004:134-138.
    [85]交通部公路司.公路工程技术标准((JTG B01-2003)[S].北京:中华人民共和国交通部,2004.
    [86]中交公路规划设计院.公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社,2004.
    [87]徐岳,来猛刚,姚晓飞等.基于横向分布的简支梁桥结构体系可靠度应用研究[J].公路交通科技,2009,(08):84-87.
    [88]麻文燕,陈善勤,莫勇刚.先简支后连续刚构梁桥影响内力参数分析[J].交通科技与经济,2010,1:96-99.
    [89]刘涛.谈泥石流病害对铁路桥梁的影响[J].山西建筑,2010,36(15):337-338.
    [90]李自林,常汝鸿.连续梁桥新旧荷载规范下内力及变形研究[J].河北工业大学学报,2009,38(1):86-90.
    [91]梅崇文.连续梁桥柔性墩墩顶制动力计算[J].中国西部科技,2010.04(10): 16-17.
    [92]李建强.钢筋混凝土简支梁桥承载力评估[J].交通标准化,2009,7(224):146-148.
    [93]靳敏超,管昌生,冯仲仁等.多跨连续梁桥临时固结及挠度影响研究[J].武汉理工大学学报,2010,5(10):45-48.
    [94] Brencich A,Sabia D.Experiment al Identification of a Multir span Masonry Bridges:TheTanara Bridge[J].Construction and Building Materials,2008,22(10):2087-2099.
    [95] Kim S H,Mha H S,Lee S W.Effects of Bearing Damage Upon Seismic Behaviors of aMultir span Girder Bridge [J].Engineering Structures,2006,28(7):1071-1080.
    [96] Kleinhans D D,Prota A,Nanni A.Deflection Assessment of an FRP reinforced ConcreteBridge[C]//Conference Information on Deflection Control for the Future ,DetroitMI:[S.l.],2002:225-248.
    [97] K. J. Bathe. Theory and Modeling Guide Volume 1:ADINA映射网格划分[M].
    [98] K. J. Bathe. Theory and Modeling Guide Volume 3:ADINA-F映射网格划分[M].
    [99] Robert Kroyer.FSI analysis in supersonic fluid flow[J].Computers andStructures, 2003,81:755–764.
    [100] H.Chen and C.F.Lee.Numerical simulation of debris flow[J].Can.Geotech.J.2000,37:146-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700