Zn在N-GaSb晶片中扩散机理与GaSb热光伏电池制备工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PN结是光伏电池的核心,GaSb热光伏电池中的PN结可通过“准密封式”Zn扩散法制备,本文主要从实验和理论两个方面研究了制备GaSb电池涉及到的Zn气相扩散过程。
     作者实验研究了扩散源Zn球在过量、适量和不足三种情况下Zn在N-GaSb晶片中的扩散过程。研究发现:在460~500℃内,若扩散源Zn球适量,GaSb晶片表面Zn浓度几乎是恒定不变的;当扩散时间不变时,结深随扩散温度的升高呈指数增长关系;当扩散温度不变时,结深与扩散时间的二分之一次方呈线性增长关系。
     采用同时存在VG 0a和I G+a这两种本体主缺陷为扩散媒介的方法模拟出了扩散源Zn球适量情况下的kink-and-tail类型的Zn扩散曲线。研究发现:在460~500℃内,扩散温度变化时,表面Zn扩散率的对数值与绝对温度的倒数成线性关系;当扩散温度不变,增加扩散时间时,样品表面Zn扩散率恒定不变。
     调研了GaSb电池的制备方法,并选取单步Zn扩散工艺制备出了GaSb电池样品,分析了提高其量子效率的方法,对单步扩散工艺进行了改进。
P-N junction is central to a photovolatic(PV) cell, a“pseudo-closed”zinc diffusion process is used to form the P-N junction in GaSb thermophotovoltaic cells, the zinc diffusion process is investigated through experiments and theoretics in this dissertation.
     Zinc diffusion process in N-GaSb was studied with excessive, appropriate and insufficient quantity of diffusion source (zinc pellets). It is found out that: for diffusion temperature from 460 to 500℃, the zinc surface concentration of the diffused samples has nearly no change if the diffusion source is appropriate; when the diffusion time being constant, the logarithmic value of diffusion depth is linear with the diffusion temperature; when the diffusion temperature being constant, the diffusion depth is linear with the square-root of diffusion time.
     Kink-and-tail type zinc concentration profiles obtained with appropriate zinc pellets quantity were successfully simulated using the assumption that the vacancy mechanism mediated by VG 0aand kick-out mechanism mediated by IG+ a take effect at the same time. It is found out that: for diffusion temperature from 460 to 500℃, the logarithmic value of the zinc surface diffusion coefficient is linear with the reciprocal value of diffusion temperature; when the diffusion temperature being constant, both the zinc surface concentration and diffusion coefficient do not change with diffusion time.
     Several manufacturing technologies of GaSb cell are investigated, the GaSb cell sample is manufactured using the single-step zinc diffusion process, the method to enhance the quantum effciency is analyzed and the improvement is used in the manufacturing process.
引文
[1] Samuel Piers Nicols. Self- and zinc diffusion in Gallium Antimonide (D). University of California, 1998.
    [2] C. Hilsum, A. C. Rose-Innes. Semiconducting III-V Compounds[M].上海:上海科学技术出版社, 1961, P3.
    [3] G. Stollwerck, O. V. Sulima, and A. W. Bett. Characterization and simulation of GaSb device-related properties(J). IEEE Transactions On Electron Devices, 2000, Vol. 47, No. 2.
    [4] T. Schlegl, F. Dimroth, A. Ohm, A. W. Bett. TPV modules based on GaSb structures(C). Thermophotovolataic Generation of Electricity, Sixth Conference, 2004, P285-293.
    [5] G. Rajagopalan, N. S. Reddy, H. Ehsani, et al. A simple single-step diffusion and emitter etching process for high-efficiency gallium-antimonide thermophotovoltaic devices [J]. Journal of Electronic Materials, 2003, 32(11): 1317-1321.
    [6] Sulima O.V, Bett A.W. Fabrication and simulation of GaSb thermophotovoltaic cells[J]. Solar Energy Materials and Solar Cells, 2001, 66(1): 533-540.
    [7] Bett Andreas W, Keser Silke, Stollwerck Gunther, Sulima Oleg V. Large-area GaSb photovoltaic cells[A]. Third NREL Conference on thermophotovoltaic generation of electricity[C], Colorado, 1997, 41-53.
    [8] Khvostikov V. P, Rastegaeva M. G, Khvostikova O. A, et al. High-efficiency (49%) and high-power photovoltaic cells based on gallium antimonide[J]. Semiconductors, 2006, 40 (10):1242-1246
    [9]杨兴典.基于GaSb的热光伏电池工艺技术的研究(D).南京理工大学, 2008.
    [10]刘爱民. GaAs/GaSb高效叠层太阳能电池的制备(D).中国科学院半导体研究所半导体, 1998.
    [11] Fraas L M, Girard G R, Avery J E, et al. GaSb booster cells for over 30 percent efficient solar-cell stacks[J]. Journal of Applied Physics, 1989, 66: 3866-3870.
    [12] Sulima O. V, Faleev N. N, Kazantsev A. B, et al. low-temperature Zn diffusion for GaSb solar cell structures fabrication[C]. Proceedings of the 4th European Space Power Conference, France, 1995, 369: 641-644.
    [13] J. E. Avery, L. M. Fraas, et al. Lightweight concentrator module with 30% AM0 efficient GaAs/GaSb[C]. Proc. of 21st IEEE Photovoltaic Specialist Conference, 1990, Kissimimee, 1277-1281.
    [14] V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, et al. Concentrator PV modules and solarcells for TPV systems[J]. Solar Energy Materials and Solar Cells, 2004, 84(1-4): 3-17.
    [15]乔在祥,陈文浚,杜邵梅.热光伏技术的研究进展[J].电源技术, 29(1): 57-61.
    [16] Diego Martín, Carlos Algora. Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modeling[J]. Semiconductor Science and Technology, 2004, 19: 1040-1052.
    [17] L. M. Fraas, Issaquah, James E. Avery, at el. Tandem photovoltaic solar cell with III-V diffused junction booster cell (P). United States Patent, Jun. 23, 1992, Patent Number: 5123968.
    [18] A W Bett, O. V. Sulima. GaSb photovoltaic cells for applications in TPV generators[J]. Semiconductor Science and Technology, 2003, (18): 184-190.
    [19] T. Schlegl, O. V. Sulima, and A. W. Bett. The Influence of Surface Preparation on Zn-Diffusion Processes in GaSb[A]. Sixth Conference on Thermophotovoltaic Generation of Electricity[C], Freiburg, 2004, 396-403.
    [20]钟兴儒,刘爱民,林兰英,向贤碧. GaSb太阳电池阳极氧化膜的研究[J].太阳能学报, 1906, Vol. 17, No. 3.
    [21]罗慧晶,刘爱民,徐峰,翁占坤. GaSb中Zn扩散的理论与实验的研究进展[A].全国功能材料学术年会, 2006.
    [1] V. S. Sundaram, P. E. Gruenbaum. Zinc diffusion in GaSb[J]. Journal of Crystal Growth, 1993, 73(8): 3787-3789.
    [2] T. Schlegl, O. V. Sulima, and A. W. Bett. The Influence of Surface Preparation on Zn-Diffusion Processes in GaSb[C]. Sixth Conference on Thermophotovoltaic Generation of Electricity, Freiburg, 2004, 396-403.
    [3] A. W. Bett, S. Keser, O. V. Sulima. Study of Zn diffusion into GaSb from the vapour and liquid phase[J]. Journal of Crystal Growth, 1997, 181(1): 9-16.
    [4] G. J. Conibeer, A. F. W. Willoughby, C. M. Hardingham, et al. Zinc diffusion in Tellurium doped gallium antimonide[J]. Journal of Electronic Materials, 1996, Vol. 25, No. 7.
    [5] O. V. Sulima, A. W. Bett, M. G. Mauk, et al. Diffusion of Zn in TPV materials: GaSb, InGaSb, InGaAsSb and InAsSbP[C]. Fifth Conference on Thermophotovoltaic Generation of Electricity, 2003, 402-413.
    [1] Samuel Piers Nicols. Self- and zinc diffusion in Gallium Antimonide (D). University of California, 1998.
    [2] F. C. Frank and D. Turnbull. Mechanism of diffusion of copper in germanium[J]. Phys. Rev. 1956, 104: 617-618.
    [3] L. F. Xia and Z. X. Zhang. Diffusion in metals(M). Harbin: Harbin Institute of Technology Press, 1989, p. 48.
    [4] S. Reynolds, D. W. Vook, and J. F. Gibbons. Open-tube Zn diffusion in GaAs using diethylzinc and trimethylarsenic: Experiment and model [J]. J. Appl. Phys. 1988, 63(4):1052-1059.
    [5] S. P. Nicols, H. Bracht, M. Benamara, at el. Mechanism of zinc diffusion in gallium antimonide[J]. Physica B , 2001, 308-310: 854-857.
    [6] K. Sunder, H. Bracht, S. P. Nicols, at el. Zinc and gallium diffusion in gallium antimonide[J]. Phy. Rev. B, 2007, 75: 245210(1-9).
    [7] G. Conibeer, A. F. W. Willoughby, C.M.Hardingham, at el. Zinc diffusion in Tellurium doped gallium antimonide[J]. Journal of Electronic Materials, 1996, 25: 1108-1112.
    [8] V. S. Sundram and P. E. Gruenbaum. Zinc diffusion in GaSb[J]. J. Appl. Phys, 1993, 73(8): 3787-3789.
    [9] K. Sunder, H. Bracht. Defect reactions in gallium antimonide studied by zinc and self-diffusion[J]. Physical Review B 75, 2007, 245210.
    [10] H. Bracht, M. S. Norsent,E. E. Haller at el. Zinc diffusion enhanced Ga diffusion in GaAs isotope heterostructures[J]. Physica B, 2001, 308-310: 831-834.
    [11] H. Bracht and S. Brotzmann. Zinc diffusion in Gallium arsenide and the properties of gallium interstitials[J]. Physical Review B 71, 2005, 115216.
    [12] Z. Y. Gu, L. W. Tian, and L. W. Fu, Semiconductor physics(M). Beijing: Publishing House of Electronics Industry, Beijing, 1995, p16.
    [13] A. W. Bett, S. Keser, O. V. Sulima. Study of Zn diffusion into GaSb from the vapour and liquid phase[J]. Journal of Crystal Growth, 1997, 181(1): 9-16.
    [1] Fraas L M, Girard G R, Avery J E, et al. GaSb booster cells for over 30 percent efficient solar-cell stacks[J]. Journal of Applied Physics, 1989, 66: 3866-3870.
    [2] G. Rajagopalan, N. S. Reddy, H. Ehsani, et al. A simple single-step diffusion and emitter etching process for high-efficiency gallium-antimonide thermophotovoltaic devices [J]. Journal of Electronic Materials, 2003, 32(11): 1317-1321.
    [3]刘爱民. GaAs/GaSb高效叠层太阳能电池的制备[D].中国科学院半导体研究所,1998.
    [4] Fraas et al. III-V Solar Cells And Doping [P]. US Patent, Patent Number: 5217539, Jun. 8, 1993.
    [5]安琪森.太阳电池原理与工艺[M].上海:上海科学技术出版社, 1985.
    [6] Khvostikov V. P, Rastegaeva M. G, Khvostikova O. A, et al. High-efficiency (49%) and high-power photovoltaic cells based on gallium antimonide[J]. Semiconductors, 2006, 40 (10):1242-1246
    [7]钟兴儒,刘爱民,林兰英等. Ag/AuGeNi/N-GaSb欧姆接触的研究[J].太阳能学报, 1995, 16(4):384-388.
    [8] Sridaran Sujatha. Fabrication and characterization of high performance gallium antimonide photodiodes[D]. Rensselaer Polytechnic Institute, 2006.
    [9] Carlos Algora and Diego Martin. Modelling and manufacturing GaSb TPV converters[C]. Fifth Conference on Thermophotovoltaic Generation of Electricity, 2003, 452-461.
    [10] Khvostikov V. P, Rastegaeva M. G, Khvostikova O. A, et al. High-efficiency (49%) and high-power photovoltaic cells based on gallium antimonide[J]. Semiconductors, 2006, 40 (10):1242-1246.
    [11] L. M. Fraas, R. Ballantyne, J. Samaras, et al. A thermophotovoltaic electric generator using GaSb cells with a hydro-carbon burner[C]. First World Conference on Photovoltaic Energy Conversion, 1994, 2: 1713-1716.
    [12] L. M. Fraas, R. Ballantyne, H. She, et al. Commercial GaSb cell and circuit development for the midnight sun TPV stove[C]. Fourth NREL Conference on TPV Generation of Electricity, 1999: 480-487.
    [13] O. V. Sulima, R. Beckert, A. W. Bett, et al. InGaAsSb photovoltaic cells with enhanced open-circuit voltage[J].
    [14] O. V. Sulima, A. W. Bett, M.G. Mauk, et al. GaSb-, InGaAsSb-, InGaSb- InAsSbP- and Ge- TPV cells for low-temperature TPV applications[C]. Fifth Thermophotovoltaic Generation ofElectricity, 2003: 434-441.
    [15] Z. A. Shellenbarger, M. G. Mauk, J. A. Cox, et al. Improvements in GaSb-based thermophotovoltaic cells[C]. Third NREL Conference on Thermophotovoltaic Generation of Electricity, 1997:117-128.
    [16] V. M. Andreev, V. P. Khvostikov, V. R. Larionov, et al. Tandem GaSb/InGaAsSb thermophotovoltaic cells[C]. Conference Record of the 26th IEEE PVSC, 1997: 935-938.
    [17] V. P. Khvostikov, O. A. Khvostikova, E. V. Oliva, et al. Zn-diffused InAsSbP/InAs and Ge TPV cells[C]. Proc of 29th IEEE PVSC, 2002: 943-946.
    [18] V. A. Gevorkyan, V. N. Aroutiounian, K. M. Gambaryan, et al. The growth of low band-gap InAsSbP based diode heterostructures for thermophotovoltaic application[C]. Seventh World Conference on Thermophotovoltaic Generation of Electricity, 2007: 165-173.
    [19] D. M. Wilt, N. S. Fatemi, P. P. Jenkins, et al. Electrical and optical performance characteristics of 0.74eV P/N InGaAs monolithic interconnected modules[c]. Third NREL Conference on Thermophotovoltaic Generation of Electricity, 1997: 75-87.
    [20] D. M. Wilt, R. Wehrer, M. Ralmisiano, et al. Monolithic interconnected modules(MIMs) for thermophotovoltaic energy conversion[J]. Semiconductor Science and Technology, 2003, 18(5): 209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700