高性能生物基环氧树脂及其固化剂的合成、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松香是一种丰富的可再生资源,全球的年产量高达110-150万吨。它刚性的环状结构和一些石油基的芳香族或脂肪族化合物媲美,使得它可以应用于一些高性能聚合物的合成。为利用松香这种可再生资源,合成出新的生物基热固性材料以缓解日益严重的石油危机带来的压力,本文在以下几方面进行了研究:
     1、以松香酸和马来酸酐为原料,通过D-A反应合成了高纯度的马来海松酸酐,用IR、NMR、元素分析等对其进行了结构表征。在此基础上,分别用马来海松酸酐和偏苯三酸酐对环氧树脂DER 662E进行固化,并用DMA、力学性能测试仪、TGA等对比研究了固化后环氧树脂的模量、玻璃化转变温度、拉伸强度等力学性能和耐热性能。探索了生物基马来海松酸酐作为环氧树脂固化剂替代石油基偏苯三酸酐的可能性。由MPA和TMA作为固化剂固化后所得环氧树脂的模量基本相同,其模量在2500 MPa左右。但是前者具有略高的玻璃化转变温度(具体为127℃和121℃)。其弯曲强度亦没有太大差别,TMA/DER 662E固化产物的弯曲强度为105±1MPa, MPA/DER 662E固化产物的为107±2 MPa。这可能是由于MPA和TMA在固化环氧树脂DER 662E时,具有相同的官能度(都是一个酸酐和一个羧基,官能度为3),但是MPA相对于TMA而言,其庞大的氢菲环结构具有更大的空间位阻效应,从而在一定程度上提高了环氧树脂的玻璃化转变温度。
     2、以可再生资源松香为原料经D-A加成、酸酐水解、酯化等一系列反应合成了高环氧值的生物基环氧树脂,并以生物基(包括松香基和桐油基)的固化剂固化所合成的环氧树脂,并对固化产物的性能进行了系统的研究,通过调配松香基固化剂(MPA)和桐油基固化剂(TOA)的复合比例可以得到一种综合性能俱佳的生物基热固性材料。
     虽然MPA固化的松香基环氧树脂与桐油酸酐固化产物在模量和玻璃化转变温度具有明显的优势,但美中不足的是其材料性能在冲击强度上的劣势也很明显,因此有必要加以改善,从而提高其使用范围。我们尝试用不同比例的TOA混合MPA共同固化环氧树脂,以得到一种性能全面优越的材料以满足各方面的应用。单纯等当量的桐油酸酐的固化的松香基环氧树脂其弹性模量仅为900 MPa左右,当其分别混入30%和70%(以环氧当量计算)的马来海松酸酐共同固化环氧树脂时,模量分别增加至1400 MPa和2000 MPa左右,同时单纯的马来海松酸酐固化该生物基的环氧树脂时时,所得固化产物的冲击强度仅为1.84 kJ/m*m,当分别与一定量的桐油酸酐混合后固化所得产物冲击强度提高了75%左右。
     在当前石油资源越来越紧缺和环保的呼声日渐高涨的时代背景下,我们的目标旨在利用可再生资源合成生物基热固性材料以缓解日益严重的石油危机带来的压力。
The conversion of bio-mass to useful polymers or composites has considerable economical and environmental value in current time due to serious environmental pollution and diminishing petroleum oil. The world production of rosin is 1.1~1.5 million tons annually. The ring structure of rosin acid is similar in rigidity to petroleum based aromatic and cycloaliphatic compounds. It has great potential in synthesis of high performance materials. In our work, the following research work has been done:
     1、Maleopimarate was synthesized from rosin acid and maleic anhydride by D-A reaction. Its characterization was performed by IR, NMR and element analysis. Epoxy DER 662E was cured with maleopimarate (MPA) and trimellitic anhydride (TMA), respectively. The modulus, glass transition temperature and tensile strength as well as thermal stability of cured epoxy were evaluated by DMA, Instron Machine and TGA. The feasibility of bio-based maleopimarate as an alternative to petrochemical-based trimellitic anhydride using as an epoxy curing agent was studied. It shows that Epoxy DER 662E was cured by MPA and TMA have no difference in storage modulus (about 2500 MPa) but the former displayed higher glass transition temperature (Tg,127℃) than the epoxy cured with TMA(Tg,121℃). which might be caused by the large hydrogenated phenanthrene ring in MPA. The inflect intension of the two resulting products are about 105±1 MPa and 107±2 MPa separately.
     2、Synthesis and characterization of glycidyl ester with three functional group from rosin acid. Its structure was also confirmed by IR and NMR in detail. In order to investigate its properties, it was cured with bio-based curing agents, such as rosin based anhydride and tung oil based anhydride as well as their mixture. With different curing agent system, the properties of cured fully bio-based epoxy could be manipulated. Though the rosin-based epoxy cured by MPA had much advantage in the modulus, glass transition temperature and tensile strength than that TOA(the date is about 3200 MPa:2400 MPa、164℃:61℃、69±2 MPa:37±1 MPa separately). There also disadvantages in some properties like strike intensity (cured by MPA was only 1.84 kJ/m*m while the other was 3.4 kJ/m*m), So we need to improve it by blending the rigid curing agent with some flexible agent so as to enhance its. We can find the strike intensity of Epoxy cured by MPA get much better (about more than 75 percent) when blended with TOA.
     With the background of the drying up of petroleum day by day and people's growing attention on environment protection, we need to do some change. The purpose of our resent work is to find an alternative to petro-based chemical material so as to reduce the stress brought by the lack of petroleum.
引文
[1]陈庆,刘宏.国内生物降解材料的市场竞争研究[C].第四届生物基与生物分解材料技术和应用国际研讨会.上海.2010
    [2]翁云宣.中国降解塑料现状及趋势[C].第四届生物基与生物分解材料技术和应用国际研讨会.上海.2010
    [3]Dardat, M.,Sahl, M生物基和可堆肥产品的认证[C],第四届生物基与生物分解材料技术和应用国际研讨会.上海.2010
    [4]朱锦,汤兆宾,张传芝等.一种新型耐热聚乳酸的研制[C].第四届生物基与生物分解材料技术和应用国际研讨会.上海.2010
    [5]中国塑协降解专委会.近期国内降解塑料的媒体报道[G].2010,18,41-54
    [6]司红岩,向天成.聚羟基脂肪酸酯的生物合成研究进展[J].安徽农业科学,2011,39(10):5699—5700,5703
    [7]高炜丽,李建科,赵燕.可生物降解淀粉塑料研究进展[J].广东化工,2007,34(7),52-55
    [8]Bussell, G. W. Maleinized fatty acid esters of 9-oxatetracyclo-4.4.1oo undecan-4-ol.U.S. Patent 3,855,163; 1974.
    [9]Force, C. G.; Starr, F. S. vegetable oil adducts as emollients in skin and hair care products[P].U.S. Patent 4,740,367; 1988.
    [10]Meffert, A.; Kluth, H.;process for preparation of modified triglycerides[P]. Denmark Patent 4,886,893; 1989.
    [11]Rangarajan, B.; Havey, A.; Grulke, E. A.; Culnan, P. D. Kinetic Parameters of a Two-Phase Model for in situ Epoxidation of Soybean Oil[J] J. Am. Oil Chem. Soc.1995,72,1161.
    [12]Zaher, F. A.; EI-Malla, M. H.; EI-Hefnawy, M. M. Kinetics of Oxirane Cleavage In Epoxidized Soybean Oil[J]. J. Am. Oil Chem. Soc.1989,66,698-700.
    [13]Friedman, A.; Polovsky, S. B.; Pavlichko, J. P.; Moral, L. S.Hydroxylated milk glycerides[P]. U.S. Patent 5,576,027; 1996.
    [14]Swern, D.; Billen, G. N.; Findley, T. W.; Scanlan, J. T. Hydroxylation of Monounsaturated Fatty Materials with Hydrogen Peroxide[J] J. Am. Chem. Soc.1945,67,1786-1789.
    [15]Hodakowski, L. E.; Osborn, C. L.; Harris, E. B.Polymerizable epoxides-modified compositions[P]. U.S. Patent 4,119,640; 1978.
    [16]Trecker, D. J.; Borden, G. W.; Smith, O. W. U.S. Patent 3,979,270; 1976.
    [17]Trecker, D. J.; Borden, G. W.; Smith, O. W. U.S. Patent 3,931,075; 1976.
    [18]Can, E. M.S. Thesis, Bogazici University, Turkey; 1999.
    [19]Can, E., S. Kusefoglu, and R.P. Wool, Rigid thermosetting liquid molding resins from renewable resources. Ⅱ. Copolymers of soybean oil monoglyceride maleates with neopentyl glycol and bisphenol A maleates[J]. Journal of Applied Polymer Science,2002.83(5):p. 972-980.
    [20]Richard P. Wool, Xiuzhi Susan Sun, Bio-Based Polymers and Composites[M]. chapter4,56-73
    [21]黄坤,夏建陵等.桐油及其衍生物的改性在高分子材料中的应用进展[J].化工进展,2008,27(10):1588-1592
    [22]D. L. TRUMBO, B. E. MOTE, Synthesis of Tung Oil-Diacrylate Copolymers via the Diels-Alder Reaction and Properties of Films from the Copolymers[J]. Journal of Applied Polymer Science, Vol.80,2369-2375 (2001)
    [23]Li, F.K. and R.C. Larock, Novel polymeric materials from biological oils[J]. Journal of Polymers and the Environment,2002.10(1-2):p.59-67.
    [24]Li, F.K. and R.C. Larock, Thermosetting polymers from cationic copolymerization of tung oil:Synthesis and characterization[J]. Journal of Applied Polymer Science,2000.78(5):p. 1044-1056.
    [25]Fengkui Li and Richard C. Larock, Synthesis, Structure and Properties of New Tung Oil-Styrene-Divinylbenzene Copolymers Prepared by Thermal Polymerization[J].Biomacromolecules 2003,4,1018-1025
    [26]Fengkui Li, Richard C. Larock. New soybean oil-styrene-divinylbenzene thermosetting copolymers. Ⅲ. Tensile stress-strain behavior[J]. Journal of Polymer Science:Part B: Polymer Physics, Vol.39,60-77 (2001)
    [27]刘守贵.桐油改性曼尼赫碱固化剂的合成及性能研究[J].四川化工与腐蚀控制,2000,3(5):21-28
    [28]王德中.环氧树脂生产与应用[M],267-268
    [29]何守俭,谢军,陆印堂.桐油酸酐增韧环氧树脂的研究及应用[J].玻璃钢/复合材料,1991,(2):4-11
    [30]沈时骏,鲍素萍,翟红波等.环氧树脂/桐油酸酐/蒙脱土纳米复合材料固化动力学[J].应用化学,2004,21(2):130-134
    [31]商士斌,王丹,高宏等.桐油酸酐酰亚胺环氧树脂耐热性研究[J].林产化学与工业,2006,26(4):31-34
    [32]黄坤,夏建陵,李梅等.桐油制备C21聚酰胺环氧固化剂的性能及固化反应动力学研究[J].精细化工,2009,26(2):109-114
    [33]张鹏,黄图平.桐油改性脂肪胺环氧树脂固化剂的合成与性能[J].四川轻化工学院学报,1997,10(3):30-33
    [34]聂小安,桐油基可挠性环氧树脂的中试及其性能研究[J].林产化工通讯,2001,35(1):14-16
    [35]张中林,邹余筑.桐油改性酚醛环氧树脂的合成工艺[J].上海化工,1999,24(13):23-25.
    [36]Coppen JW, Hone GA, Gum naval store et al. Food and Agriculture Organization of the United Nations[M],1995,ch.1
    [37]Sukumar Maiti, Sabyasachi Slnha Ray and Achintya K. Kundu. Rosin:A Renewable resource for polymers and polymer chemicals[J]. Prog. Polym. Sci.,1989,14:297-338
    [38]林贵福,聂小安等.生物质化学工程,松香合成环氧树脂及其固化剂的研究进展[J].2009,43(6):47-54
    [39]夏建陵,商士斌,谢晖等.丙烯酸改性松香基环氧树脂固化反应与性能研究[J].热固性树脂,2002,17(6):1-5.
    [40]杨东海编译.松香再加工及利用[M].北京:中国林业出版社,1984.
    [41]孔振武,王定选.马来海松酸环氧树脂的结构与性能表征[J].林产化学与工业,1994,14:31-36.
    [42]黄活阳,哈成勇,李因文等.聚合松香基环氧树脂的合成与表征[J].林产化学与工业,2008,28(5):40-44.
    [43]Liu, X.Q., W.B. Xin, and J.W. Zhang. Rosin-derived imide-diacids as epoxy curing agents for enhanced performance[J]. Bioresource Technology,2010,101(7):2520-2524.
    [44]HonghuaWang, Xiaoqing Liu et al. Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions Polym Int 2009,58:1435-1441.
    [45]J W Coppen, G A Hone, Gum naval stores:Turpentine and rosin from pine resin, Food and Agriculture Organization of the United Nations[M],1995, ch.1.
    [46]沈敏敏,刘治猛,哈成勇等.马来海松酸缩水甘油酯的合成[J].广州化学,2001,26(2):21-26.
    [47]孔振武,王定选.马来海松酸环氧树脂的结构与性能表征[J]林产化学与工业,1994,14:31-35.
    [48]夏建陵,商士斌,谢晖等.丙烯酸改性松香基环氧树脂固化反应与性能研究[J]热固性树脂,2002,17(6):1-5.
    [49]B loan, M Fanica, J Appl. Polym. Sci.,2004,92 (4):2240-2252.
    [50]B. loan, M. Fanica, Die Angewandte Makromolekulare Chemie,1996,234 (1):91-102.
    [51]李春成,朱光,李贞宜.脱氢枞酸型聚丙烯成核剂的研究[J].高技术通讯,2001,(12):87-90.
    [52]X Q Liu, W B Xin, J W Zhang. Rosin-based acid anhydrides as alternatives to petrochemical curing agents[J].Green Chem.,2009,11(7):1018-1025.
    [53]M Sponton, J C Ronda, M Galia et al. J Polym. Sci. Part A:Polym. Chem.,2007,45(11): 2142-2153.
    [54]陈士杰.涂料工艺(增订本)第一分册[M].北京:化学工业出版社,1994:67-70.
    [55]loan Bicu*, F5nicH Musts. Allylic polymers from resin acids[J]. Die Angewundte Mukromolekulure Chemie 246 (1997) 11-22
    [56]IOAN BICU, FANICA MUSTATA. Polymers from a Levopimaric Acid-Acrylonitrile Diels-Alder Adduct:Synthesis and Characterization[J]. Journal of Polymer Science:Part A: Polymer Chemistry, Vol.43,6308-6322 (2005)
    [57]U.V. Barabde*, S.V. Fulzele, P.M. Satturwar, A.K. Dorle, S.B. Joshi. Film coating and biodegradation studies of new rosin derivative[J]. Reactive & Functional Polymers 62 (2005) 241-248
    [58]Ayman M. Atta*, R. Mansour, Mahmoud I. Abdou and Ashraf M. Sayed. Epoxy resins from rosin acids:synthesis and characterization[J]. POLYMERS FOR ADVANCED TECHNOLOGIES. Polym. Adv. Technol.2004; 15:514-522
    [59]Jong Soon Lee, Sung II Hong, synthesis of acrylic rosin derivatives and application as negative photoresist[J],European Polymer Journal.38 (2002) 387-392
    [60]Liu, X.Q. and J.W. Zhang, High-performance biobased epoxy derived from rosin[J].Polymer International,2010.59(5):p.607-609.
    [61]S.N. Zlatanos* and A.N. Sagredos. A New Method of Synthesis of Alkyl-Glycidyl Esters of Dicarboxylic Acids in High Yields[J]. JAOCS, Vol.67, no.10 (October 1990) 661-664
    [62]聂小安,王定选等C36二聚酸二缩水甘油醋型环氧树脂的合成[J],热固性树脂1997,3,11-16
    [63]魏晓惠,曹德榕,陈就记等.丙烯海松酸二缩水甘油酯的合成、结构与性能[J],林产化学与工业.2004,24(增刊):47-51
    [64]余磊,刘安昌.对苯二甲酸二缩水甘油酯的合成[J].广东化工,2009,36(6):26-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700