SINS/DVL组合导航技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SINS/DVL组合导航系统利用DVL提供的高精度速度信息抑制捷联惯导系统的误差积累,是目前广泛应用的水下组合导航技术。然而,在工程实践中有两大因素制约着SINS/DVL组合导航定位精度:一是DVL与IMU之间的安装标校误差;另一个是DVL自身测速误差。针对以上两大问题,本文从以下几个方面对SINS/DVL组合导航技术进行了研究:
     1、推导并建立了基于安装误差角和刻度因子误差在线估计的SINS/DVL组合导航系统误差模型。在建立组合导航系统误差模型的过程中,首先推导了捷联惯导系统误差模型;然后建立了基于安装误差角和刻度因子误差的DVL误差模型;最后在捷联惯导系统误差模型和DVL误差模型的基础上,建立了基于安装误差角和刻度因子误差在线估计的组合导航系统误差模型。
     2、利用非线性全局可观性理论,分析了组合导航系统的可观性。通过可观性分析,可以得到组合导航系统模型状态量的可估计性,在理论上说明组合导航系统误差模型的合理性。利用全局可观性分析得出了如下主要结论:若载体运动满足姿态不变,比力变化,则刻度因子可观;载体做匀速直线运动,并且只考虑偏航方向安装角以及天向速度为零,则航向安装角可观;载体运动满足姿态不变,比力变化,且不同时刻比力导数线性无关,则安装角可观。文中还利用仿真实验验证了可观性分析的结论。
     3、通过船载试验对SINS/DVL组合导航系统模型进行了验证。在常规的船体行驶速度条件下,刻度因子误差导致的测速误差通常很小,所以在船载试验中忽略了刻度因子误差的影响。在船载试验结果分析中,首先利用迭代递推的方法得出如下结论:基于安装误差角和刻度因子误差补偿的组合导航系统模型可以有效提高SINS/DVL组合导航的定位精度。然后分析了基于安装误差角在线估计的SINS/DVL组合导航系统的导航结果,结果表明,安装误差角在线估计方法可以有效估计出安装误差角,在线解决IMU与DVL的安装标校问题,提高SINS/DVL组合导航定位精度,在工程实践中具有一定的实用性。
SINS/DVL integrated navigation system using the high accurate velocity offered by DVL to restrain the error accumulation of SINS is a widely-used under-water integrated navigation technology. However, there are still two main factors restricting the positioning accuracy of it. One is the misalignment between IMU and DVL. The other one is velocity error of DVL itself. For the two factors, researches on SINS/DVL integrated navigation technology have been done as the following aspects:
     1. The error model of SINS/DVL based on online estimation of misalignment angles and scale factor error is deduced. In the process of deducing,firstly, the error model of the SINS is deduced. Then, the error model of DVL based on misalignment angles and scale factor error is designed. Finally, the error model of SINS/DVL based on online estimation of misalignment angles and scale factor error is composed of the error model of SINS and the error model of DVL.
     2. The nonlinear global observability analysis approach is used to analyze the observability of SINS/DVL integrated navigation system. Though observability analysis, the estimatility of state variables in the integrated model is proved,and the rationalioty of the model is shown. The main conclusions are presented as following: the scale factor is observable when the carrier takes a movement with constant attitude and time-varying special force.And if the yaw-direction misalignment angle is only considered and the upward velocity is zero, the yaw-direction misalignment angle is observable when the carrier takes an linear movement with constant velocity. And the misalignment angles are observable when the carrier takes a movement with constant attitude and time-varying special force and linearly independent derivatives of special force for different time. The above conclusions are supported by simulations results.
     3. The error model of SINS/DVL is validated by vessel tests. The scale factor error is neglected in vessel tests because its influnce is very small when the vessel moves in normal speed. In the analysis of vessel tests, firstly,using calibration method, we attain the conclusion that the positioning accuracy is improved greatly after compensating by the integrated model based on misalignment angle and scale factor. Then, the navigation result of SINS/DVL based on online estimation of misalignment angle is analyzed, which shows that the online estimation method could effectively estimate the misalignment angle to slove the misalignment between IMU and DVL online, and improve the positioning accuracy of SINS/DVL, which could be usefull in the project.
引文
[1]徐德民,李俊,严卫生,潘光,宋保维.自主水下潜航器(AUV)的发展与关键技术.中国科学技术前沿(中国工程院版),Vol. 7,2004:143-175.
    [2]张红梅,赵建虎,杨鲲,田春和.水下导航定位技术[M]:武汉大学出版社,2010.
    [3] James C. Kinsey, Ryan M. Eustice, Louis L. Whitcomb "A survey of underwater vehicle navigation recent advances and new challenges",in IFAC Conf. on Manoeuvring and Control of Marine Craft,Lisbon,Portugal,Sept,2006.
    [4] Bjorn Jalving, Kenneth Gade, Kristian Svartveit, "DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System",Modeling, Identification and Control, vol.25,no.4,pp. 223-235,October 2004.
    [5]张天光,王秀萍,王丽霞.捷联惯性导航技术[M]:国防工业出版社, 2007.
    [6]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
    [7]秦瑞,王顺伟,袁晓峰,季德成.多普勒测速仪/捷联惯导技术研究[J].战术导弹技术,2006. 11 (6): 68~72.
    [8]李亮. SINS/DVL组合导航技术研究[D].哈尔滨工程大学硕士学位论文,2003.
    [9]袁信,俞济祥,陈哲.导航系统[M]:航空工业出版社, 1993.
    [10]秦永元.惯性导航[M]:科学出版社, 2006.
    [11] David H.Titterton, J.L.W. Strapdown Inertial Navigantion Technology[M]. Second Edition. Lexington,Massachusetts, USA: American Institute of Aeronautics and Astronautics, Inc, 2004.
    [12]陈剑峰.水下航行器组合导航系统容错方法研究[D].哈尔滨工程大学硕士学位论文,2007.
    [13]黄鸣敏.组合导航系统在水下潜航器中的应用[D].哈尔滨工程大学硕士学位论文,2007.
    [14]张开东.激光陀螺捷联惯导系统连续自动标定技术[D].国防科学技术大学硕士学位论文,2002.
    [15]张卫东.激光陀螺捷联惯导系统自动标定技术[D].国防科学技术大学硕士学位论文,2000.
    [16]吴美平。陆用激光陀螺捷联惯导系统误差补偿技术研究[D].国防科学技术大学博士学位论文,2000.3.
    [17]高伯龙,李树棠.激光陀螺[M].长沙:国防科技大学出版社,1984.
    [18]陈传坎.船用多普勒测速精度分析[J].航海技术,2004,33~34.
    [19]李俊,沈安文,宋保维,徐德民.基于多普勒测速声纳的水下航行器导航方法[J].华中科技大学学报,2004,32(1),73~75.
    [20] http://baike.baidu.com/view/1805.htm.
    [21]孙健.导多普勒导航技术仿真[D].哈尔滨工程大学硕士学位论文,2009.3.业大学硕士学位论文,2006.3.
    [22]胡华烜,朱敏.大倾角时的声学多普勒测速公式误差分析[J].海洋技术,2008.9.Vol.27,No.3.
    [23] Steve Beiter, Billsan Filipo. Precision Hybird Navigation System for Marine Applications. IEEE.1998:21P.
    [24]孙元鸿.海上多普勒测速误差理论研究[J].现代雷达,1994,2.
    [25] Matthew Zucker.Fast sea floor topography extraction and visualization from sparse AUV altimeter data.Oceans 2005-Europe.2005,1:421P.
    [26]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中个应用[M].科学出版社,2003.
    [27]汤勇刚.载波相位时间差分捷联惯导组合导航方法研究[D].国防科学技术大学博士学位论文,2007.
    [28] Wu Y, Zhang H, Wu M. Observability of SINS Alignment: A Global Perspective[J]. IEEE Transaction on Aerospace and Electronic Systems, 2010.
    [29] Wu Y, Wu M, Hu X. Self-calibration for Land Navigation Using Inertial Sensors and Odometer: Observability Analysis[C]. AIAA Guidance, Navigation and Control Conference, Chicago, Illinois, 2009
    [30] Wu M, Wu Y, Hu X. Optimization-Based Alignment for Inertial Navigation Systems: Theory and Algorithm[J]. Aerospace Science and Technology, 2010.
    [31] Tang Y, Wu Y, Wu M. INS/GPS Integration: Global Observability Analysis[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1129-1142.
    [32] Wu Y, Goodall C, El-Sheimy N. Self-calibration for IMU/Odometer Land Navigation: Simulation and Test Results[C]. Institute of Navigation, International Technical Meeting, San Diego, California, 2010.
    [33] Mikael Bliksted Larsen, "High Performance Doppler-Inertial Navigation-Experimental Results", in Proc.IEEE/MTS OCEANS Conf. Exhib.vol.2,Providence,RI,2000,pp.1449-1456
    [34] Louis Whitcomb, Dana Yoerger, and Hanumant Singh, "Advances in Doppler-Based Navigation of Underwater Robotic Vehicles", in Proceedings of the 1999 IEEE International Conference on Robotics & Automation Detroit,Michigan, May 1999, pp.399-406.
    [35] C. T. Chen, Linear System Theory and Design: Rinehart and Winston, Inc., 1999.
    [36] R. Hermann and A. J. Krener, Nonlinear Controllability and Observability, IEEE Trans. on Automatic Control, 1977, vol. 22(5), pp. 728-740.
    [37] J. A. Farrell and M. Barth, The Global Positioning System & Inertial Navigation: McGraw-Hill, 1999.
    [38] F. M. Ham and R. G. Brown, Observability, Eigenvalues, and Kalman Filtering, IEEE Trans. on Aerospace and Electronic Systems, 1983, vol. 19(2), pp. 269-273.
    [39] E. Krelndler and P. E. Sarachik, On the Concepts of Controllability and Observability of Linear Systems, IEEE Transactions on Autmatic Control, 1964, pp. 129-136.
    [40] D. Goshen-Meskin and I. Y. Bar-Itzhack, Observability Analysis of Piece-Wise Constant Systems-Part I: Theory, IEEE Trans. on Aerospace and Electronic Systems, 1992, vol. 28(4), pp. 1056-1067.
    [41]程向红,万德钧,仲巡,捷联惯导系统的可观测性和可观测度研究,东南大学学报, 1997, vol. 27(6), pp. 6-11.
    [42]吴俊伟,孙国伟,张如,张媛,基于SVD方法的INS传递对准的可观测性能分析,中国惯性技术学报, 2005, vol. 13(6), pp. 26-30.
    [43] S. Wijesoma, K. W. Lee, and J. I. Guzman, On the Observability of Path Constrained Vehicle Localisation,IEEE Intelligent Transportation Systems Conference, 2006, Toronto, Canada.
    [44] H. D. Black, A Passive System for Determining the Attitude of a Satellite, Journal of Guidance, Control, and Dynamics, 1964, vol. 2(7), pp. 1350-1351.
    [45] I. Y. Bar-Itzhack, Minimal Order Time Sharing Filters for INS In-Flight Alignment, Journal of Guidance, Control, and Dynamics, 1982, vol. 5(4), pp. 396-402.
    [46]董辰辉,彭雪峰等.MATLAB 2008全程指南[M].北京:电子工业出版社,2009.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700