磨料流加工技术的理论分析和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨料流加工是应用粘弹性磨料加工工件的一种特种光整加工方法,能够很好地抛光零件的复杂表面和不可见区域,如窄缝、微孔、交叉孔、异形孔腔等,能够将倒圆角、去毛刺和抛光同时完成,可加工的材料范围宽,不仅能加工金属材料,还能加工陶瓷、硬塑料等。本文从流体磨料、加工机理、工艺参数关系、表面完整性、加工异常等方面对磨料流加工技术进行了理论探讨和实验研究。
     首先,从改善流体磨料的性能入手,研制了适应不同加工工艺要求的新配方。提出基于模糊数学理论的流体磨料粘度的分级方法,建立了粘度的隶属函数,为加工应用提供了选择依据。提出了基于机电一体化技术的粘度的精确测量方法,为仿真研究奠定了基础。
     其次,着重研究流体磨料的流变行为及其加工特性。推导了边界条件不为零的流速分布公式。在研究工艺参数对倒圆尺寸影响的过程中,发现了“准倒圆”特性,进而探讨其形成机理,认为是流体磨料的弹性湍流所致。分析了去毛刺机理,讨论了单向加工和双向往复加工的去毛刺效果。从微观的角度研究了微小的单个磨粒的受力情况及其对微观不平表面的抛光机理,揭示了加工过程中磨削与滚压共存的加工机理。通过实验探明加工循环次数对表面粗糙度的影响以及对轮廓支承长度率的影响,结果表明:前几次加工循环对于改善表面质量十分关键,磨料流加工能够提高零件表面的耐磨性,延长使用寿命。
     分析研究了波纹状表面和漏流强磨等异常现象的产生机制,认为表面产生波纹是由于加工工况使粘弹性流体磨料超过弹性变形极限所致,并预测了可能出现的更加异常的情况,而漏流处工件和夹具均造成强烈磨损是因为此处具有薄壁小孔的结构特点,流速很大。这些研究结论为保证加工质量,预防残次品的出现提供了理论支持。
     开发了温度的实时检测和控制系统。探明了磨料流加工过程中的温度变化规律,对照加工机理分析了呈现这种规律的必然性。研究了温度对加工表面粗糙度的影响,指出控制温度对稳定加工质量、提高加工效率以及预测加工结果的重要性。
     课题研究的最终目的是为了合理控制加工参数获得高质量的加工表面,为此特别研究了表面形貌和能谱,检测了表面的显微硬度。结果表明:表面完整、无撕裂,表面显微硬度略有增大。在长期的实验研究中发现磨料流加工表面还具有防锈性,通过分析工艺特点和流体磨料的本质揭示了磨料流加工工艺本身具有这种固有的防锈特性。考虑到现有检测仪器受结构所限,无法检测窄缝、微孔、异形孔腔等适合磨料流加工的特殊部位,提出基于计算机视觉的检测方法,并在部分实例加工中加以应用。
     最后,通过对模具、热流道板、齿轮、光纤连接器陶瓷套管、摆线转子马达的定子、喷嘴、长管、曲管等零件的加工验证了理论研究结果的合理性和正确性。
Abrasive Flow Machining (AFM) is a non-traditional finishing process, which processes component by using a flowable viscoelastic abrasive mixture. AFM possesses excellent capabilities for finishing of complicated surface and inaccessible regions of a component, such as narrow slits of component, micro- voids, cross holes, shaped holes and cavity, and so on. The process can achieve radiusing, deburring, and polishing simultaneously. The AFM can be used for a wide range of materials including metals, ceramic and hard plastics. This paper presents theoretical analysis and experimental results of an investigation into some aspects of the mixture performance, AFM process mechanism, parametric relationships, surface integrity, and abnormal process.
     First, new formulas, applied in different areas, were developed by improving the properties of flowable mixture. The method of classification for viscosity of flowable mixture on the basis of the fuzzy mathematics theory was indicated. The membership functions of viscosity were founded to provide a way of selecting flowable mixture. The accurate method of measuring viscosity of flowable mixture based upon the integrative technology of mechanics and electrics was also presented to establish the foundation for emulational research.
     Secondly, the rheological behavior and processing properties of flowable mixture were studied in detail. The velocity formula of flow with a boundary condition of nonzero was derived. In during of investigateing the effect of primary process parameters on the size of radiusing, the characteristic of quasi-radiusing was found and inferred to result from elastic turbulent flow of flowable mixture by investigating the formation mechanism. Then the deburring mechanism of AFM was analyzed. The effects of deburring of single direction process and to-and-fro process were discussed. The load of small and single abrasive was estimated using the microcosmic method, and the polishing mechanism of microscopic and uneven surface was analyzed. The process mechanism that grinding and rolling coexist in during AFM was revealed. The effects of processing cycle times on the surface roughness and the sustaining length ratio of profiles were evaluated. It was found that the first few processing cycles were crucial to improve the quality of surface. It was shown that AFM made the surface of component more wearable and the useful life of component longer.
     The mechanisms of some abnormal processes, such as corrugated surface and serious wearing surface due to leakage flow, were analyzed. It is thought that the corrugated surface results from the elastic deformation of flowable mixture exceeding allowance because of AFM process parameters. According to the mechanism, much more abnormal phenomenona which appeared possibly were forecasted. The serious wearing occurs at the place of leakage flow between component and fixture because the flowable mixture flows at a high speed through the place which presents the configuration of small hole with short length. These provided theoretically support for insuring process quality and preventing wasters from producing.
     The equipment of real-time detecting and controlling temperature was developed. Using the equipment, the variation of temperature was revealed during the process of AFM, and the inevitability of the variation was testified corresponding to the process mechanism. The influence of temperature on the surface roughness processed was investigated. The results showed that the temperature was important to stabilize the processing quality, enhance the processing efficiency and predict the processing outcomes.
     With the ultimate aim of obtaining excellent processing surface through process controll in the thesis, the surface appearance and energy dispersive spectrum (EDS) were investigated. The micro-hardness of surface was measured. The results indicated that the surface was integrated, not tearing. Moreover, the micro-hardness of surface slightly increased. It was found that the surface of AFM was antirust and this was the intrinsic characteristic of the technology for AFM by analyzing the trait of technology and the hypostasis of flowable mixture. In view of the structural limitation in the existing apparatus, the special position adapting to AFM such as narrow cracks, micro-voids, shaped cavity etc can’t be detected. Accordingly, a novel detecting method based on computer vision was developed and applied in some experiments.
     Finally, the rationality and correctness of the theoretical results were proved by processing some components,such as mould, hot runner, gear, ceramic tube of optical fiber linker, stator of cycloid motor, nozzle, long stainless pipe, bent pipe, and so on.
引文
[1] Flowing abrasive deburr parts[J]. American Machinist. March 18, 1974: 53-55.
    [2] David E. Siwert. Edge and Surface Finishing with Abrasive Flow[J]. Manufacturing Engineering. December 1975: 37-40
    [3] Larry Rhoades. Abrasive Flow Machining with Not-So-Silly Putty[J]. Metal Finishing. July 1987: 27-29.
    [4] L.J. Rhoades. Abrasive flow machining[J]. Manufacturing Engineering. Nov. 1988: 75-78.
    [5] Larry Rhoades. Abrasive flow machining: a case study[J]. Journal of Materials Processing Technology. 1991 (28): 107-116.
    [6]冯竹荪.一种新型的光饰去刺工艺——磨料流加工[J].现代制造工程,1983(7): 21, 41-42.
    [7]李元宗,阎慕良,杨树国.磨料流加工[J].电子工艺技术, 1987(7): 10-12, 33.
    [8]田道康,付晓阳.去毛刺新工艺简介[J].技术通讯(吉林), 1990(1): 15-19.
    [9]胡德森,李敏.用磨料流去除复杂导槽毛刺[J].机械加工, 1992(2): 48-50.
    [10]胡德森译.复杂导槽毛刺的去除[J].机械制造, 1993(12): 33.
    [11]王丹娣译.磨料流加工[J].技术情报(黎明厂), 1990(1): 22-27.
    [12]刘振辉,杨嘉楷编.特种加工[M].重庆:重庆大学出版社, 1991.
    [13]康运江.浅谈几种特种加工[J].机械制造, 1994(7): 14.
    [14]孔庆华.特种加工[M].上海:同济大学出版社, 1997: 146-149.
    [15]杨世春主编.表面质量与光整技术[M].北京:机械工业出版社, 2001: 233-257.
    [16]胡传炘主编.特种加工手册[M].北京:北京工业大学出版社. 2001.
    [17]冯金榜.磨料流加工与MB9211型半自动磨料流机床[J].磨床与磨削, 1989(4): 61-62.
    [18]杨贵铭.磨粒流挤压抛光技术研究应用[J].航空制造工程, 1996(11): 12-13.
    [19]陈济轮.特种加工技术航天发动机制造中的应用[J].电加工与模具, 2003(2): 13-15.
    [20]郭应竹,石志奎.航空机载零件磨粒流去毛刺工艺[J].航空制造技术, 2001(4): 57-58, 65.
    [21]郭应竹.磨粒流去除电解加工型面腐蚀层的工艺研究[J].航空工艺技术, 1997(5): 39-40.
    [22]郭应竹.整体叶轮叶片型面抛光的最佳选择——磨粒流加工[J].航空工艺技术, 1995(5): 27-29.
    [23]郭应竹.磨粒流加工在航空发动机制造中的应用[J].航空工艺技术, 1993(5): 28-32.
    [24]孙玉良.模具的挤压研磨精加工工艺[J].轻合金加工技术, 1996, 24(12): 8-11.
    [25]孙成林.挤压珩磨在模具研磨工艺上的应用[J].模具工业, 1992 (8): 59-60.
    [26]孙成林.挤压珩磨工艺的应用[J].机械工艺师,1992(10):17-18.
    [27]陆纪培,张斌,王滨.挤压珩磨用粘性磨料[J].航空制造技术, 1988(4): 7-9, 49.
    [28]陆纪培,张斌,王滨.挤压珩磨工艺及其在模具制造业中的应用[J].机械工程师, 1989(6):38-39, 12.
    [29]王纯,杨建明,王洁.模具异形孔抛光技术探讨[J].模具工业, 1996(9): 36-39.
    [30]杨建明,吴长太,高丽华.模具异型腔抛光工艺研究[J].现代制造工程, 2004(2): 64-66.
    [31]金滩.磨料流加工工艺参数对针织机”三角”走针面表面粗糙度的影响[J].磨料磨具与磨削, 1991(6): 23-26.
    [32]李秉栋,王建华.磨料流抛光技术在纺织机械零件加工中的应用[J].纺织机械, 2002(2): 48-51.
    [33]乔丽光.挤压珩磨技术及应用[J].山西机械, 1999(增刊2): 40-41.
    [34]戴根村.磨料流技术去除交叉孔毛刺[J].航天制造技术, 2002(1): 25-28.
    [35]陈靖.发动机及管路零件去毛刺[J].航天制造技术, 2002(2): 16-18.
    [36]张海谦,关雅兰,何健.磨料流加工工艺在汽车生产中的试验研究[J].磨料磨具与磨削, 1990(3): 40-43
    [37]郑利红,武利生.半自动磨料流机床控制系统的研究[J].华北工学院学报, 2000(增刊6): 62-65.
    [38]毕建忠,李继亮.磨料流加工技术及应用[J].工程设计与应用研究, 2001(3): 7-11.
    [39]李延波,王岩.挤压磨料抛光新工艺及其设备[J].农机化研究, 2002(1): 121-122.
    [40]李大,胡德森.磨料流加工及其运用范围[J].制造技术与机床, 1993(5): 21-22.
    [41]朱兆兰.光整加工新技术—挤压珩磨[J].工程建设与设计, 1990(3): 17-20.
    [42]黄海基,江昕.模具表面加工新技术—挤压珩磨[J].金属成形工艺, 1992(1):18-21.
    [43]张学仁,于华,陈洪勋.挤压珩磨对线切割表面性能的影响[J].电加工, 1989(5): 26-29.
    [44]阎慕良,李元宗.磨料流加工齿轮的试验研究[J].现代制造工程, 1985(1): 37-39.
    [45]续栋梁,李元宗,刘强,轧刚,阎慕良.磨料流加工对齿轮精度的分析及其降噪效果[J].电子工艺技术, 1991(1): 45-47.
    [46]李元宗等,磨料流加工齿轮鼓形齿的方法[P].中国:ZL91105372.7.
    [47]白俊生等,磨料流齿轮修缘的加工方法[P].中国:ZL91105372.5.
    [48] Li Yuan-zong, Bai Jun-sheng, Ya Gang, Yan Mu-liang. Crowning Gears With Abrasive Flow Machining[P]. Proceedings of the 2nd International Conference on Precision Surface Finishing and Burr Technology (1992): 352-357.
    [49]邵寿民.磨料流加工改善鼓形齿齿面粗糙度[J].机械制造, 1989(8): 27-28.
    [50]郭应竹.细小孔的磨粒流加工[J].航空工艺技术, 1991(3): 20-23.
    [51]艾冬梅,贾志新.小孔加工技术发展现状[J].机械工程师, 2002(1): 8-10.
    [52]王纯.异形长径比孔腔的光整加工[J].航空机械工程, 1997(8): 26-28.
    [53]唐维平,严忠杰,喻鸣显.喷油嘴喷孔和压力室液体研磨技术研究[J].内燃机燃油喷射和控制. 2001(2): 36-40.
    [54]谢京武,张朝晖.针阀体喷孔去毛刺工艺的研究[J].内燃机燃油喷射和控制, 2001(3): 36-36, 49.
    [55]黄光明,章成军.液体挤压研磨技术在喷油嘴喷孔加工中的应用[J].现代车用动力, 2003(1): 23-25.
    [56]唐维平,宋伟,喻鸣显,周毅.喷油嘴喷孔液体挤压研磨工艺研究[J].现代车用动力, 2003(5): 30-34.
    [57] T.R. Loveless, R.E. Williams, K.P. Rajurkar. A study of the effect of abrasive-flow finishing on various machined surfaces[J]. Journal of Materials Processing Technology, 1994 (47): 133-151.
    [58] P.J. Davies, A.J. Fletecher, The assessment of the rheological characteristics of various polyborosiloxane/grit mixtures as utilized in the abrasive flow machining process. Proceedings of the Institution of Mechanical Engineers, 1995 (209): 409-418.
    [59] A.J. Fletecher, A. Fioravanti, Polishing and honing process: an investigation of the thermal properties of mixtures of polyborosiloxane and silicon carbide abrasive. Proceedings of the Institution of Mechanical Engineers, 1996 (210): p.256-265.
    [60] R.E. Williams, K.P. Rajurkar. Stochastic Modeling and Analysis of Abrasive Flow Machining[J]. Transactions of the ASME, 1992 (114): 74-81.
    [61] R.E. Williams. Acoustic Emission Characteristics of Abrasive Flow Machining[J]. Journal of Manufacturing Science and Engineering, 1998 (120): 264-271.
    [62] J.J. Haan, P.S. Steif. Abrasive wear due to the slow flow of a concentrated suspension[J]. Wear, 1998 (219): 177-183.
    [63] Rajendra Kumar Jain, Vijay Kumar Jain. Simulation of surface generated in abrasive flow machining process[J]. Robotics and Computer Integrated Manufacturing, 1999 (15): 403-412.
    [64] V.K. Jain, S.G. Adsul. Experimental investigation into abrasive flow machining[J]. International Journal of Machine Tools & Manufacture, 2000 (40): 1003-1021.
    [65] Rajendra K. Jain, V. K. Jain. Specific energy and temperature determination in abrasive flow machining process[J]. International Journal of Machine Tools & Manufacture, 2001 (41):1689-1704.
    [66] Rajendra K. Jain等著,周先辉编译.磨料流加工工艺中切削比能与温度的计算[J].国外金属加工, 2003, 24(2): 23-29.
    [67] V.K. Jain, C. Ranganatha, K. Muralidhar. Evaluation of rheological properties of medium for AFM process[J]. Machining Science and Technology, 2001, 5(2): 151-170.
    [68] Rajendra K. Jain, Vijay K. Jain, P.M. Dixit. Modeling of material removal and surface roughness in abrasive flow machining process[J]. International Journal of Machine Tools & Manufacture, 1999 (39): 1903-1923.
    [69] R.K. Jain, V.K. Jain, P.K. Kalra. Modelling of abrasive flow machining process: a neural network approach[J]. Wear, 1999 (231): 242-248.
    [70] Rajendra Kumar Jain, Vijay Kumar Jain. Optimum selection of machining conditions in abrasiveflow machining using neural network[J]. Journal of Materials Processing Technology, 2000 (108): 62-67.
    [71] Sarah S.Y Lam, Alice E Smith, Process Monitoring of Abrasive Flow Machining Using a Neural Network predictive Mode[C]l. 6th Industrial Engineering Research Conference Proceedings, Miami Beach, FL, May 1997: 477-482.
    [72]陆纪培,张斌,孙允臣,杜松岩.粘性磨料对挤压珩磨加工效果的影响[J].电加工, 1989(2): 2-6.
    [73]汪文友,段润保.粘弹磨料流加工机理的探讨[J].磨料磨具与磨削, 1989(3): 17-23.
    [74]段润保.磨料流加工(AFM)机理初探[J].唐山工程技术学院学报, 1990(3): 53-60.
    [75]杨建明,聂先桥.磨料流在工件孔腔中的流动特性分析[J].淮海工学院学报, 2000, 9(2): 10-12,16.
    [76]聂先桥,杨建明.磨料流加工磨料流动边界条件的确定[J].机械制造, 2001, 39(446): 7-9.
    [77]杨俭安.磨料流加工的流动分析[J].机械设计与研究, 1997(3): 7-9.
    [78]汤勇,陈澄洲,张发英.磨料流加工时磨料流动形态的研究[J].华南理工大学学报(自然科学版), 1997, 25(9): 1-5.
    [79]汤勇,张发英,陈澄洲.磨料流加工流动形态及加工效果的研究[J].华南理工大学学报(自然科学版). 1994, 22(5): 100-104.
    [80]汤勇,周德明,夏伟,曾志新,叶邦彦,潘声虎.磨料流加工壁面滑动特性的研究[J].华南理工大学学报(自然科学版), 2001, 29(1): 34-37.
    [81]汤勇,周德明,杨钢,吴斌,张登友,李勇.磨料流光整加工特性研究[J].华南理工大学学报(自然科学版). 2001, 29(9): 17-19.
    [82]汤勇,陈澄洲,张发英.磨料流加工压力特性对加工表面粗糙度的影响[J].华南理工大学学报(自然科学版). 1997, 25(5): 22-25.
    [83]王时英,吕明,轧刚.磨料流加工的力学原理及应用[J].太原理工大学学报, 1998, 29(3): 272-275.
    [84]张宏太,杨建成,王浩程.磨料流在离心场中运动的实验研究(一) [J].天津纺织工学院学报, 2000, 19(4): 41-44.
    [85]宋伟,吴振华,唐维平.用正交试验法确定磨料流工艺因素的最优组合[J].现代车用动力, 2003(1): 26-28,32.
    [86] Sehijpal Singh, H.S. Shan. Development of magneto abrasive flow machining process[J]. International Journal of Machine Tools & Manufacture, 2002 (42): 953-959.
    [87] Sehijpal Singh, H.S. Shan, P. Kumar. Wear behavior of materials in magnetically assisted abrasive flow machining[J]. Journal of Materials Processing Technology, 2002 (128): 155-161.
    [88] A.R. Jones, J.B. Hull. Ultrasonic flow polishing[J]. Ultrasonics, 1998 (36): 97-101.
    [89]王纯.振动抛光技术的研究与比较[J].淮海工学院学报(自然科学版), 1996, 5(2): 5-9.
    [90]杨建明,王纯.挤压振动抛光工艺及机床[J].机械工程师, 1997(4): 17-18.
    [91]王纯,杨建明,杨安昌,王洁.柔性磨体振动抛光机理探讨与对比[J].中国机械工程, 1997, 8(3): 107-109.
    [92]耿春明,赵万生,刘晋春.基于磨料和电化学作用的去毛刺技术[J].航天工艺, 2001(1): 46-53.
    [93]杨雷樱,周根然.挤压珩磨—新型的表面光整加工工艺[J].江苏航空, 1992(1): 30-31.
    [94]荣烈润.磨料流加工技术及其应用[J].上海机床, 1992(2): 19-23.
    [95]熊英.磨料流加工技术的发展[J].航空科学技术, 1995(2): 16-18.
    [96]许菊花,张向宇.磨粒流介质在抛光工艺中的应用[J].材料工程, 1993(1): 28-29.
    [97]王永青,周根然,张卓.三相磨粒流喷射加工工艺研究[J].电加工, 1995(6): 38-41.
    [98] Minasse Abebe, F.C. Appl. Theoretical analysis of the basic mechanics of abrasive processes[J]. Wear, 1988 (126): 251-266.
    [99]李文.切削加工中的毛刺[J].内燃机, 1997(2): 22-25.
    [100]张辽远编著.现代加工技术[M].北京:机械工业出版社, 2002.
    [101]杜可可编译.粘弹性磨料流加工技术[J].金刚石与磨料磨具工程, 1997(4): 38.
    [102]李家树.航空螺旋桨技术的应用[J].航空科学技术, 1995(2): 18-20.
    [103]武利生,李元宗.磨料流加工中夹具设计的研究[J].金刚石与磨料磨具工程, 2004(2): 35-37.
    [104]武利生,李元宗.磨料流加工研究进展[J].金刚石与磨料磨具工程, 2005(1): 69-74.
    [105] Dynetics-Dynaflow AFM Die-Polishing System.
    [106]劳伦斯?J?罗兹.磨料流加工在大批量生产中的发展[C].汽车制造技术与工艺装备国际研讨会论文集(一). 2003.
    [107] V.K. Gorana, V.K. Jain, G.K. Lal. Experimental investigation into cutting forces and active grain density during abrasive flow machining[J]. International Journal of Machine Tools & Manufacture, 2004 (44): 201–211.
    [108] Rajendra K. Jain, V.K. Jain. Stochastic simulation of active grain density in abrasive flow machining[J]. Journal of Materials Processing Technology, 2004 (152): 17–22.
    [109] Sunil Jha, V.K. Jain. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process[J]. International Journal of Machine Tools & Manufacture, 2004 (44): 1019–1029.
    [110] S.C. Jayswal, V.K. Jain, P.M. Dixit, Modeling and simulation of magnetic abrasive finishing process[J]. International Journal of Advanced Manufacturing Technology, 2005 (26): 477–490.
    [111] Manas Das, V.K. Jain, P.S. Ghoshdastidar. Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process[J]. International Journal of Machine Tools & Manufacture, 2008(48): 415–426.
    [112]杨伦标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2001. 69-81.
    [113] [美]C. D.韩.著,徐僖,吴大诚等译.聚合物加工流变学[M].北京:科学出版社,1985:103-225. Chang Dan Han. Rheology in polymer processing[M]. Academic press, 1976.
    [114]金日光.高聚物流变学及其在加工中的应用[M].北京:化学工业出版社, 1986: 282-533.
    [115]周彦豪.聚合物加工流变学基础[M].西安:西安交通大学出版社, 1988: 16-218.
    [116]成大先.机械设计手册第4卷[M].北京:化学工业出版社, 2002: 17-20.
    [117]申开智主编.塑料成型模具[M].北京:中国轻工业出版社, 2002: 74-90.
    [118]李成林.液压传动[M].北京:石油工业出版社, 1994:31-32.
    [119]孙银城.喷油器[M].北京:国防工业出版社, 1981.
    [120]杨卫平,吴方.喷孔设计和加工对柴油机性能的影响[J].现代车用动力,1998(1):26-28.
    [121]赵嘉,方亮,孙琨,马德新.磨料流加工过程中介质黏温特性对金属磨损性能的影响[J].摩擦学学报,2008, 28(2):173-176.
    [122] [美]David A. Forsyth, Jean Ponce著,林学訚,王宏等译.计算机视觉[M].北京:电子工业出版社, 2004.
    [123]余雪丽,孙承意,冯秀芳等.神经网络与实例学习[M].中国铁道出版社.1996.
    [124]陈超,徐建林.神经网络技术在表面粗糙度检测中的应用[J].农业工程学报,2002,33(6): 135~137.
    [125]张强,王正林.精通MATLAB图像处理[M].北京:电子工业出版社, 2009:2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700