多孔金属纤维烧结板制造及在制氢微反应器中的作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的飞速发展,人类面临的能源危机、环境污染问题日益严重,新能源的研究开发与利用必将成为解决该问题最为有效的技术途径。以低碳醇为燃料的制氢微反应器可为燃料电池等微小型电子装置提供安全可靠的在线氢源,从而引起世界各国研究者的广泛关注。本文以切削法加工的金属纤维为原材料,利用固相烧结技术形成多孔金属纤维烧结板,并将其作为催化剂载体构造一种新型甲醇水蒸气重整制氢微反应器,取得了显著的制氢性能。主要研究内容如下:
     1.金属纤维的切削加工成形及微结构表征
     采用车削加工和刨削加工两种成形方法获得不同形貌的金属纤维,并系统研究加工参数对金属纤维及其表面结构的影响规律。采用多齿车削加工的连续型铜纤维表面具有丰富的微结构,其尺度变化范围在30μm以下;当量直径可达100μm以下,截面形状为近似矩形或三角形;在800oC温度下保温30分钟后,纤维内部拉长变形的晶粒由于再结晶而生成等轴的细晶粒。
     2.金属纤维烧结板的烧结成形及工艺参数优化
     以铜纤维为原料,利用固相烧结技术在800~1000oC烧结温度下形成多孔金属纤维烧结板和定向金属纤维烧结板。在多孔金属纤维烧结板中,存在纤维长度的接触连接和纤维之间的交错连接两种结合方式,烧结过程中容易形成牢固的烧结颈,从而实现纤维之间的冶金结合。研究烧结工艺对其成形过程的影响规律,烧结温度对其成形具有重要影响,而烧结时间则影响不大。
     3.多孔金属纤维烧结板的结构与性能研究
     在单向拉伸与压缩实验过程中,多孔铜纤维烧结板都先经历短暂的弹性变形阶段后迅速进入拉伸破坏或压缩密实变形阶段,在整个变形过程中没有屈服阶段出现。不同孔隙率的多孔铜纤维烧结板表现出良好的均匀传热特性,在高孔隙率的条件下仍具有较高的热导系数。通过改变流速的方法,研究气体通过不同孔隙率的多孔铜纤维烧结板的压降特性,并对停留时间进行了测试。
     4.多孔金属纤维烧结板的几何模型和传输特性的数值模拟
     在GAMBIT软件中,建立基于立方孔单元结构的三维立体模型来描述多孔铜纤维烧结板的几何特征。通过改变孔隙率大小和入口流速,利用FLUENT数值模拟流体在多孔铜纤维烧结板中的流速和温度分布及压降特性。在70~90%的孔隙范围内,孔隙结构对入口流速具有显著增强作用,但孔隙率大小对流速分布影响不大。压降随流速的增加而逐渐增加,随孔隙率的增加而呈迅速减小的趋势。
     5.金属纤维烧结板载体结构的甲醇重整制氢微反应器
     利用两层浸渍的方法进行催化剂负载,通过超声波水浴振动实验,系统研究孔隙率和负载质量对催化剂负载强度的影响规律。采用改变反应空速和反应温度的方法,分析不同孔隙率和制造工艺参数条件下形成的多孔铜纤维烧结板的催化反应性能。在还原氛围条件下在800oC温度下烧结形成80%孔隙率多孔铜纤维烧结板,由于其具有三维网状结构和大比表面积,获得最优制氢反应性能。与商用不锈钢纤维烧结板进行对比分析,采用多孔铜纤维烧结板作为载体的甲醇水蒸气重整制氢微反应器,在甲醇转化率,氢气流速,重整气流速等方面都明显优于商用不锈钢纤维烧结板,H2选择性可达98%以上,产生的氢气可输出18W的功率。
With the rapid development of world economy, energy crisis and environmental pollution is two growing problems for human society. Development and utilization of new energy gives the most effective way to solve these problems. In recent years, microreactors for hydrogen production fueled by hydrocarbons successfully provided the on-line hydrogen source for PEMFC. Therefore, microreactors exhibit a promising way to provide hydrogen for microelectronics powder equipment. In this dissertation, a novel porous metal fiber sintered felt (PMFSF) has been produced by the solid-state sintering of copper fibers fabricated using the cutting method. A methanol steam reforming microreactor for hydrogen production is constructed using the PMFSFs as catalyst support, which demonstrates good performance in hydrogen production. Main research results are as follows:
     1. Cutting process of metal fiber and microstructure characterization
     Turning and planing process are employed to produce metal fibers with different morphologies. The effect of machining parameters on metal fibers and their surface structure in turning and planing process is studied. The continuous fine copper fibers have a lot of microstructures on the surface, with the scale of below 30μm; the equivalent diameter is less than 100μm, and the cross-section shape is approximate rectangle or triangle; after sintering at 800oC for 30 min, the extended and deformed grains in copper fibers regenerate equiaxed grains due to internal crystallization.
     2. Sintering process of PMFSF and optimization of sintering parameters
     A novel PMFSF and oriented linear metal fiber sintered felt have been produced by the solid-state sintering of copper fibers at the sintering temperature of 800~1000oC. After sintering process, there are two kinds of sintering joints present in the PMFSF: fiber-to-fiber surface contact and crossing fiber meshing. In sintering process, sintering joints can be easily formed so that the metallurgy union between fibers is completed. The effect of sintering parameters on the forming process of PMFSF is studied . The sintering temperature has a significant influence on the sintering process of PMFSF, but the holding time does not.
     3. Structure and performance of PMFSF
     In uniaxial tensile and compressive test, the PMFSF first has a short stage of elastic deformation, and then rapidly enter into tensile fractures or compression dense deformation, without allowing yielding stage to take place. The PMFSF has excellent heat transfer properties, and show a good thermal conductivity, even in high porosity condition. In addition, pressure drop characteristics is studied when the gas pass through the PMFSF. While, the residence time for gas in the PMFSF with different porosities is tested and anlyzed.
     4. Geometry model of PMFSF and numerical simulation of transport property
     Using GAMBIT software, the three-dimensional model of cell-based cubic pore structure is established to describe the PMFSF. When the fluid pass through the PMFSF, the velocity and temperature distribution as well as pressure drop characteristics are shown by the numerical simulation using FLUENT under different porosity sizes and inlet velocities. At the porosity of 70~90%, the pore structure has significantly enhanced the inlet velocity, but the porosity don’t influence the velocity distribution greatly. Pressure drop is increased gradually with increasing inlet velocity, and is rapidly decreased with increasing porosity.
     5.Methanol reforming microreactor for hydrogen production with PMFSF as catalyst support
     The two-layer impregnation method is employed to coat catalyst on the PMFSF. The effect of the porosity and mass of catalyst on the loading intensity is studied by the ultrasonic water bath vibration method. Moreover, the effect of the porosity and manufacturing parameters for the PMFSF on the performance of methanol steam reforming microreactor is studied by varying the gas hourly space velocity and reaction temperature. The PMFSF sintered at 800oC in the reduction atmosphere shows remarkable superiority in reaction performance for hydrogen production, owing to its three dimensional reticulated structure and superior specific surface area. Comparing with commercial stainless steel fiber sintered felts coated with equal mass of Cu/Zn/Al/Zr catalyst, obvious advantages are observed in methanol conversion, reformate gas flow rate and H2 production rate when the PMFSF is used as catalyst support. The H2 selectivity can reach 98%. The developed methanol steam reforming microreactor can generate hydrogen enough to provide a power output of 18W for a fuel cell.
引文
[1] Holladay J.D., Hu J., King D.L., et al. An overview of hydrogen production technologies[J].Catalysis Today,2009,139(4):244-260.
    [2] Daniel R.P., Robert A.D., Holladay J.D.. Methanol steam reforming for hydrogen production[J]. Chemical Reviews,2007,107(10):3992-4021.
    [3] Holladay J.D., Wang Y., Jones E.. Review of developments in portable hydrogen production using microreactor technology[J]. Chemical Reviews,2004,104(10):4767- 4789.
    [4] Zissi S., Bertsch A., Jézéquel J.Y., et al. Stereolithography and rnicrotechniques[J]. Microsystem Technologies,1996,2(2):97-l02.
    [5] Yu X.H.,Tu S.T.,Wang Z.D.,et al. On-board production of hydrogen for fuel cells over Cu/ZnO/Al2O3 catalyst coating in a micro-channel reactor[J]. Journal of Power Sources, 2005,150(1-2):57-66.
    [6] Kawamura Y., Ogura N., Yamamoto T., et al. A miniaturized methanol reformer with Si-based microreactor for a small PEMFC[J]. Chemical Engineering Science,2006,61(4): 1092-1101.
    [7] Park G.G., Yima S.D., Yoon Y.G., et al. Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems[J].Catalysis Today,2005,110(1-2):108-113.
    [8] Aartun I., Silberova B., Venvik H., et al. Hydrogen production from propane in Rh-impregnated metallic microchannel reactors and alumina foams[J].Catalysis Today, 2005,105(3-4):469-478.
    [9] Tadd A.R., Gould B.D., Schwank J.W.. Packed bed versus microreactor performance in autothermal reforming of isooctane[J].Catalysis Today,2005,110(1-2):68-75.
    [10] Giani L., Cristiani C., Groppi G., et al. Washcoating method for Pd/g-Al2O3 deposition on metallic foams[J]. Applied Catalysis B: Environmental,2006,62(1-2):121-131.
    [11]卢天健,何德坪,陈常青,等.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535.
    [12]许佩敏,张健,孙旭东.我国金属纤维及制品的应用研究状况[J].稀有金属快报,2008,27(9):11-16.
    [13]刘古田.金属纤维综述[J].稀有金属材料与工程,1994,23(1):7-15.
    [14]韩冬,张俊红,张英,等.金属铝纤维的性能研究及其应用进展[J].轻金属, 2007,(12):67-70.
    [15] Bernabeu E., Sanchez L.M., Siegmann P., et al. Classification of surface structures on fine metallic wires [J]. Applied Surface Science,2001,180(3-4):191-199.
    [16] Wan Z.P., Tang Y., Liu Y. J., et al. High efficient production of slim long metal fibers using bifurcating chip cutting [J]. Journal of Materials Processing Technology,2007, 189(7):273-278.
    [17] Lotze G., Stephani G., L?ser W., et al. Fundamentals of fibre formation during melt extraction[J]. Materials Science and Engineering A ,1991,133(3):680-683.
    [18] Andersen O. Melt extracted fibres boost porous parts [J]. Metal Powder Report,1999,54 (7-8):30-34.
    [19] Andersen O., Kostmann C., Stephani G., et al. Advanced porous structures made from intermetallic and superalloy fibers[A]. Proceedings of the 1st International Conference on Materials Processing for Properties and Performance[C], Singapore,2002:214-221.
    [20] Morgenthal I., Andersen O., Brüning R.,et al. Highly porous metal fibre structures as catalysts for the selective oxidation of propane[A]. Proceedings of the International Conference "Advanced Metallic Materials"[C],Smolenice,Slovakia,2003:208-213.
    [21] Steigert S., Li Z., Andersen O., et al. Intermetallic fibre materials for hot gas filtration in power plants and combustion plants[DB]. Http://www.ifam-dd. raunhofer.de/ fhg/ Images/ intermetallic _fibre_materials_tcm 260-64584.pdf
    [22] Rudkowski P., Strom-Olsen J.O., Rudkowska G., et al. Ultra fine, ultra soft metallic fibres[J]. IEEE Transactions on Magnetics,1995,31(2):1224-1228.
    [23] Strom-Olsen J. O., Rudkowska G., Rudkowski P.. Fine metallic and ceramic fibers by melt extraction[J]. Materials Science and Engineering A,1994,179-180(5):158-162.
    [24] Rudkowski P., Rudkowska G., Strom-Olsen J.O.. The fabrication of fine metallic fibers by continuous melt-extraction and their magnetic and mechanical properties[J]. Materials Science and Engineering A,1991,133(3):158-161.
    [25]邱从章,刘楚明.集束拉拔法金属纤维的现状和发展趋势[J].金属材料与冶金工程,2007,35(2):14-18.
    [26] Skolyszewski A., Pac′ko M.. Back tension value in the fine wire drawing process [J]. Journal of Materials Processing Technology,1998,80-81(8):380-387.
    [27]李加种.金属纤维的加工[J].制造技术与机床,1994,2:45-48.
    [28] Kaneko M.,Yanagisawa A.,Nakagawa T.. On fiber sticking phenomenon in coiled sheet shaving for metal fiber production[J]. Journal of the Japan Society for Precision Engineering,1995,61(5):140-148.
    [29] Tsuneo C., Makoto D.. Filter for gas generator and generator[P].日本: JP2002037013A1, 2002.
    [30]李加种.振动切削金属纤维的工艺参数[J].制造技术与机床,1994,2:50-53.
    [31]刘海洋,刘慧英,王伟霞,等.金属纤维的发展现状及前景展望[J].产业用纺织品,2005,10:1-4.
    [32] Liu W.Y., Zeng Z.X., Ming D.L.. Production of long metal fibers using a combined method of microsaw turning and pulling[J]. Journal of Materials Processing Technology, 2003,142(2):562-568.
    [33]万珍平,汤勇,刘亚俊,等.多齿刀具加工金属长纤维的机理[J].中国机械工程, 2004,15(18):1599-1602.
    [34]万珍平.多齿切削高效制造微细金属长纤维的机理研究[D].广州:华南理工大学, 2003.
    [35] Shen X.Q.,Cao K.,Jing-M.X.,et al. Metal Fe, Ni and Fe-Ni fine fibers derived from the organic gel-thermal reduction process[J]. Journal of Wuhan University of Technology (Materials Science Edition),2007,22(4):577-581.
    [36] Cao K.,Shen X.Q.,Jing M.X.,et al. Preparation of ferromagnetic metal fine fibers by organic gel-thermal reduction process[J]. Journal of Central South University of Technology,2007,14(5):607-611.
    [37] Li Y.G., Quick N.R., Kar A.. Dieless laser drawing of fine metal wires[J]. Journal of Materials Processing Technology,2002,123(3):451-458.
    [38] Tiernan P., Hillery M.T.. An analysis of wire manufacture using the dieless drawing method[J]. Journal of Manufacturing Processes,2008,10(1):12-20.
    [39] Bia?o D., Paszkowski L., Wi?niewski W.. Properties of high porosity structures made ofmetal fibers [M]. Recent Advances in Mechatronics (Part 3),2007,470-474.
    [40] Markaki A.E., Gergely V., Cockburn A., et al. Production of a highly porous material by liquid phase sintering of short ferritic stainless steel fibres and a preliminary study of its mechanical behaviour[J]. Composites Science and Technology,2003,63(16):2345-2351.
    [41] Clyne T.W., Markaki A.E., Tan J.C.. Mechanical and magnetic properties of metal fibre networks with and without a polymeric matrix[J]. Composites Science and Technology, 2005,65(15-16):2492-2499.
    [42] Markaki A.E.,Clyne T.W.. Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres[J]. Biomaterials,2004,25(19):4805-4815.
    [43] Markaki A.E.,Clyne T.W.. Magneto-mechanical actuation of bonded ferromagnetic fibre arrays[J]. Acta Materialia,2005,53(3):877-889.
    [44] Markaki A.E.,Clyne T.W.. Mechanics of thin ultra-light stainless steel sandwich sheet Material Part I. Stiffness[J]. Acta Materialia,2003,51(5):1341-1350.
    [45] Markaki A.E.,Clyne T.W.. Mechanics of thin ultra-light stainless steel sandwich sheet material Part II. Resistance to delamination[J]. Acta Materialia,2003,51(5):1351-1357.
    [46] Andersen O., Studnitzky T., Kostmann C., et al. Sintered metal fiber structures from aluminum based fibers-manufacturing and properties[A]. Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams[C].Montreal, Canada, 2007: 509-512.
    [47] Banhart J.. Manufacture, characterization and application of cellular metals and metal foams [J]. Progress in Materials Science,2001,46(6):559-632.
    [48]王同庆.金属纤维烧结毡在过滤与分离行业中的应用[J].过滤与分离,1998,(4):35-38.
    [49]汤慧萍,张正德.金属多孔材料发展现状[J].稀有金属材料与工程,1997,26(1):1-6.
    [50] Cahela D.R.,Tatarchuk B.J.. Permeability of sintered microfibrous composites for heterogeneous catalysis and other chemical processing opportunities[J]. Catalysis Today, 2001,69(1-4):33-39.
    [51] Chang B.K., Lu Y., Tatarchuk B.J.. Microfibrous entrapment of small catalyst or sorbent particulates for high contacting-efficiency removal of trace contaminants including CO and H2S from practical reformates for PEM H2–O2 fuel cells[J]. Chemical Engineering Journal,2006,115(3):195-202.
    [52] Bromley B., Hessel V., Renken A.,et al.“Sandwich Reactor”for heterogeneous catalytic processes: N2O decomposition as a case study[J]. Chemical Engineering&Technology, 2008,31(8):1162-1169.
    [53] Liu Y.,Wang H., Li J.F, et al. Microfibrous entrapped Ni/Al2O3 using SS-316 fibers for H2 production from NH3 [J]. AIChE Journal,2007,53(7):1845-1849.
    [54]奚正平,周廉,李建,等.金属纤维的发展现状和应用前景[J].稀有金属材料与工程,1998,27(6):317-321.
    [55] Zhang B.,Chen T.N.. Calculation of sound absorption characteristics of porous sintered fiber metal[J]. Applied Acoustics,2009,70(2): 337-346.
    [56]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技,2006,22(6):117-121.
    [57]陈文革,张强.泡沫金属的特点、应用、制备与发展[J].粉末冶金工业,2005,15(2):37-42.
    [58] DeBruyne R., Oster L.. Enchanted world of metal fibers [J]. International Journal of Powder Metallurgy, 2000,36(1):61-65.
    [59]万珍平,刘亚俊,汤勇,等.多齿刀具的切削模型及其分屑机理[J].机械工程学报,2005,41(3):211-215.
    [60] EI-Hosseiny F.,Anderson D.. Effect of fiber length and coarseness on the burst strength of paper[J]. TAPPI Journal,1999,82(1):202-203.
    [61]谭松庭,章明秋,容敏智,等.金属纤维/聚合物导电复合材料的研究[J].材料工程,1998,(12):15-17.
    [62] Takayuki M.. Study of the durability of a paper-based friction material influenced by porosity [J]. Journal of Tribology-Transactions of the ASME,1995,117(2):272-278.
    [63] Jang H.,Ko K.,Kim S.J.,et al.The effect of metal fibers on the friction performance of automotive brake friction materials [J]. Wear,2004,256(7-8):406-414.
    [64]万珍平,叶邦彦,汤勇,等.自旋转车刀加工金属纤维时切削参数对纤维力学性能的影响[J].机械制造,2003,41(461):47-49.
    [65]明冬兰,万珍平,张发英,等.连续型金属长纤维切削加工的研究[J].工具技术,1998,32(7):9-11.
    [66]万珍平,叶邦彦,汤勇,等.多齿刀具切削机理及其在金属纤维制造中的应用[J].机械科学与技术,2003,22(6):951-953.
    [67] Wan Z.P., Tang Y., Zhang F.Y.. On manufacturing of long stainless steel fiber with fin bymulti-tooth tool and mechanical properties of the fiber [J]. Key Engineering Materials, 2006,315-316:666-670.
    [68] Nakajima H.. Fabrication, properties and application of porous metals with directional pores [J]. Progress in Materials Science,2007,52 (7):1091-1173.
    [69] Evans A.G., Hutchinson J.W., Ashby M.F.. Multifunctionality of cellular metal systems [J]. Progress in Materials Science,1999,43(3):171-221.
    [70] Evans A.G., Hutchinson J.W., Fleck N.A.,et al. The topological design of multifunctional cellular metals [J]. Progress in Materials Science,2001,46(3-4):309-327.
    [71] Evans A.G., Hutchinson J.W., Ashby M.F.. Cellular metals [J]. Current Opinion in Solid State & Materials Science,1998,3(3):288-303.
    [72] Lu W., Zhao C.Y.,Tassou S.A..Thermal analysis on metal-foam filled heat exchangers. Part I:Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer, 2006, 49(15-16):2751-2761.
    [73] Zhao C.Y., Lu W., Tassou S.A.. Thermal analysis on metal-foam filled heat exchangers. Part II: Tube heat exchangers[J].International Journal of Heat and Mass Transfer, 2006, 49(15-16):2762-2770.
    [74] Ahn S., Kim Y., Kim K.J., et al. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives[J].Journal of Power Sources,1999, 81-82(1):896-901.
    [75] Williams R.R., Harris D.K.. The heat transfer limit of step-graded metal felt heat pipe wicks [J]. International Journal of Heat and Mass Transfer, 2005,48(2):293-305.
    [76] Kempers R., Ewing D., Ching C.Y.. Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes [J]. Applied Thermal Engineering, 2006,26(5-6):589-595.
    [77]奚正平,汤慧萍,朱纪磊,等.金属多孔材料在能源与环保中的应用[J].稀有金属材料与工程,2006,35(S2):413-417.
    [78] Cerri I., Pavese M., Saracco G., et al. Premixed metal fibre burners based on a Pd catalyst [J].Catalysis Today,2003,83(1-4):19-31.
    [79] Lu G.X., Wang B., Zhang T.G.. Taylor impact test for ductile porous materials-Part 1: theory [J]. International Journal of Impact Engineering, 2001,25(10):981-991.
    [80]张健,汤慧萍,奚正平,等.高温气体净化用金属多孔材料的发展现状[J].稀有金属材料与工程,2006,35(S2):438-441.
    [81]张健,李程,吴贤,等.金属纤维多孔材料在机动车尾气净化器中的应用[J].稀有金属材料与工程,2007,36(S3):378-382.
    [82] Kumar A.,Reddy R. G.. Materials and design development for bipolar/end plates in fuel cells[J]. Journal of Power Sources,2004,129(1):62-67.
    [83] Liu J.G., Sun G.Q., Zhao F.L., et al. Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC[J]. Journal of Power Sources,2004,133(2): 175-180.
    [84] Ryan G., Pandit A., Apatsidis D.P.. Fabrication methods of porous metals for use in orthopaedic applications [J]. Biomaterials,2006,27(13):2651-2670.
    [85] Jang H., Ko K., Kim S.J., et al. The effect of metal fibers on the friction performance of automotive brake friction materials[J].Wear,2004,256(7-8):406-414.
    [86]谈萍,汤慧萍,王建永,等.金属多孔材料制备技术研究进展[J].稀有金属材料与工程,2006,35 (S2):433-437.
    [87] Lu T.J., Valdevit L., Evans A.G. Active cooling by metallic sandwich structures with periodic cores [J]. Progress in Materials Science,2005,50(7):789-815.
    [88] Raj S.V., Ghosn L.J., Lerch B.A.,et al. Mechanical properties of 17-4PH stainless steel foam panels [J]. Materials Science and Engineering: A, 2007,456(1-2):305-316.
    [89] Kesler O., Crews L.K., Gibson L.J.. Creep of sandwich beams with metallic foam cores [J]. Materials Science and Engineering: A,2003,341(1-2):264-272.
    [90] Kesler O., Gibson L.J.. Size effects in metallic foam core sandwich beams [J]. Materials Science and Engineering: A, 2002,326(2):228-234.
    [91] Zhou D.W., Stronge W.J.. Mechanical properties of fibrous core sandwich panels[J]. International Journal of Mechanical Sciences,2005,47(4-5):775-798.
    [92] Kostornov A. G.,Shevchuk M. S., Gorb M. L..Strength properties of high-porosity metal fiber materials[J]. Powder Metallurgy and Metal Ceramics,1972,11(4):326-329.
    [93] Ducheyne P., Aernoudt E., Meester P.D.. The mechanical behaviour of porous austenitic stainless steel fibre structures[J].Journal of Materials Science,1978,13(12):2650-2658.
    [94]乔吉超,奚正平,汤慧萍,等.金属纤维多孔材料的压缩行为[J].稀有金属材料与工程,2008,37(12):2173-2176.
    [95] Rahli O.,Tadrist L.,Miscevic M.,et al. Fluid flow through randomly packed monodisperse fibers: The kozeny-carman parameter analysis[J]. Journal of Fluids Engineering-Transactions of the ASME, 1997,119(3):188-192.
    [96]孙亮亮,陈卫翠,方肇洪.利用瞬态平面热源法测定材料的导热系数[A]. 2006中国工程热物理学会传热传质学学术会议[C].南京,2006:1378-1385.
    [97] Dukhan N.. Correlations for the pressure drop for flow through metal foam[J]. Experiments in Fluids, 2006,41(4):665-672.
    [98] Lacroix M.,Nguyen P.,Schweich D.,et al.Pressure drop measurements and modeling on SiC foams [J].Chemical Engineering Science,2007,62(12):3259-3267.
    [99] Richardson J.T., Peng Y., Remue D.. Properties of ceramic foam catalyst supports: pressure drop[J]. Applied Catalysis A:General,2000,204(1):19-32.
    [100] Maestri M., Beretta A., Groppi G.,et al. Comparison among structured and packed-bedreactors for the catalytic partial oxidation of CH4 at short contact times[J]. Catalysis Today,2005,105(3-4):709-717.
    [101] Park H. G., Piggott W. T., Chung J.,et al. A methanol steam reforming micro reactor for proton exchange membrane micro fuel cell system[A]. Proceedings of Hydrogen and Fuel Cells 2003 Conference and Trade Show [C]. Vancouver, Canada, 2003: UCRL -JC-150223.
    [102] Park, H.G.,Chung, J., Grigoropoulos, C.P.,et al. Transport in a microfluidic catalytic reactor[A]. Proceedings of 2003 ASME Summer Heat Transfer Conference[C]. Las Vegas,Nevada,USA,2003:UCRL-JC-150224.
    [103] Kopanidis A., Theodorakakos A., Gavaises E.,et al. Numerical simulation of fluid flow and heat transfer with direct modeling of microscale geometry[A]. 5th European Thermal-Sciences Conference[C], The Netherlands, 2008.
    [104] Giani L.,Groppi G., Tronconi E.. Mass-transfer characterization of metallic foams as supports for structured catalysts[J]. Industrial & Engineering Chemistry Research, 2005,44(14):4993-5002.
    [105] Giani L., Groppi G., Tronconi E.. Heat transfer characterization of metallic foams[J]. Industrial & Engineering Chemistry Research,2005,44(24):9078-9085.
    [106] Krishnan S., Murthy J.Y., Garimella S.V.. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer-Transactions of the ASME,2006,128(8):793 -799.
    [107] Boomsma K., Poulikakos D., Ventikos Y.. Simulations of flow through open cell metal foams using an idealized periodic cell structure[J]. International Journal of Heat and Fluid Flow,2003,24 (6):825-834.
    [108]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:19-26.
    [109]潘敏强.基于流速分布优化的制氢反应微通道加工与性能研究[D].广州:华南理工大学,2007.
    [110] Gibson L.J., Ashby M. F..多孔固体结构与性能[M].刘培生,译.北京:清华大学出版社,2003:160-164.
    [111] Liu P.S, Fu C., Li T.F., et al. Relationship between tensile strength and porosity for high porosity metals[J]. Science in China (Series E),1999,42(1):100-107.
    [112] Liu P.S., Fu C.,Li T.F.. Relationship between elongation and porosity for high porosity metal materials[J].Transactions of Nonferrous Metals Society of China,1999,9(3): 546-552.
    [113] Lu T.J., Stone H.A., Ashby M.F.. Heat transfer in open-cell metal foams[J].Acta Materialia,1998,46(10):3619-3635.
    [114] Ozmat B., Leyda B., Benson B.. Thermal applications of open-cell metal foams[J]. Materials and Manufacturing Processes,2004,19(5):839-862.
    [115] Boomsma K., Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer,2001,44(4):827-836.
    [116] Suh J.S., Lee M.T., Greif R., et al. A study of steam methanol reforming in a microreactor[J]. Journal of Power Sources,2007,173(1):458-466.
    [117] Suh J.S., Lee M.T., Greif R., et al. Transport phenomena in a steam-methanol reforming microreactor with internal heating[J]. International Journal of Hydrogen Energy, 2009,34(1):314-322.
    [118] Wilke C.R.. A viscosity equation for gas mixtures[J].Journal of Chemical Physics,1950,18(4):517-519.
    [119] Holladay J.D., Jones E.O., Phelps M., et al. Microfuel processor for use in a miniature power supply[J].Journal of Power Sources,2002,108(1-2):21-27.
    [120] Pan L.W., Wang S.D.. Methanol steam reforming in a compact plate-fin reformer for fuel-cell systems[J]. International Journal of Hydrogen Energy,2005,30(9):973-979.
    [121] Terazaki T., Nomura M., Takeyama K.,et al.Development of multi-layered microreactor with methanol reformer for small PEMFC[J]. Journal of Power Sources,2005,145(2): 691-696.
    [122] Cao C.S., Xia G., Holladay J., et al. Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor[J]. Applied Catalysis A:General,2004; 262(1):19-29.
    [123] Yang Y., Ma J.X., Wu F.. Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst[J]. International Journal of Hydrogen Energy,2006,31(7):877-882.
    [124] Biswas P., Kunzru D.. Steam reforming of ethanol for production of hydrogen over Ni/CeO2-ZrO2 catalyst: Effect of support and metal loading[J].International Journal of Hydrogen Energy,2007,32(8):969-980.
    [125] Barrio V.L., Schaub G., Rohde M.,et al. Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization [J]. International Journal of Hydrogen Energy,2007, 32(10-11):1421-1428.
    [126] Ryi S.K., Park J.S., Choi S.H., et al. Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion[J]. Chemical Engineering Journal,2005,113(1): 47-53.
    [127] Kolb G., Zapf R., Hessel V., et al. Propane steam reforming in micro-channels—results from catalyst screening and optimisation[J].Applied Catalysis A:General,2004,277(1-2): 155-166.
    [128] Aartun I., Gjervan T., Venvik H.,et al. Catalytic conversion of propane to hydrogen in microstructured reactors[J].Chemical Engineering Journal,2004,101(1-3):93-99.
    [129] Kang I., Bae J., Bae G.. Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications[J]. Journal of Power Sources,2006,163(1):538-546.
    [130] Chen Y.Z., Xu H.Y., Jin X.L., et al. Integration of gasoline prereforming into autothermal reforming for hydrogen production[J]. Catalysis Today,2006,116(3):334 -340.
    [131] Meille V.. Review on methods to deposit catalysts on structured surfaces[J]. Applied Catalysis A:General,2006,315:1-17.
    [132] Besser R. S., Ouyang X., Surangalikar H.. Hydrocarbon hydrogenation and dehydrogenation reactions in microfabricated catalytic reactors[J].Chemical Engineering Science,2003,58(1):19-26.
    [133] Haas-Santo K., Fichtner M., Schubert K.. Preparation of microstructure compatible porous supports by sol-gel synthesis for catalyst coatings[J].Applied Catalysis A: General,2001,220(1-2):79-92.
    [134] Won J.Y.,Jun H.K.,Jeon M.K.,et al. Performance of microchannel reactor combined with combustor for methanol steam reforming[J].Catalysis Today,2006,111(3-4):158 -163.
    [135] Rouge A.,Spoetzl B.,Gebauer K.,et al. Microchannel reactors for fast periodic operation: the catalytic dehydration ofisopropanol[J]. Chemical Engineering Science,2001,56(4): 1419-1427.
    [136] Sohn J. M., Byun Y. C., Cho J.Y.,et al. Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol[J]. International Journal of Hydrogen Energy,2007,32(18): 5103-5108.
    [137] Podyacheva O.Y., Ketov A.A., Ismagilov Z.R.,et al. Metal foam supported perovskite catalysts[J]. Reaction kinetics and catalysis letters,1997,60(2):243-250.
    [138] Yu H., Chen H.Q., Pan M.Q., et al. Effect of the metal foam materials on the performance of methanol steam micro-reformer for fuel cells[J]. Applied Catalysis A: General,2007,327(1):106-113.
    [139] Peng Y.,Richardson J.T.. Properties of ceramic foam catalyst supports: one-dimensional and two-dimensional heat transfer correlations[J]. Applied Catalysis A:General,2004, 266(2):235-244.
    [140] Richardson J.T., Remue D., Hung J.K.. Properties of ceramic foam catalyst supports: mass and heat transfer[J]. Applied Catalysis A:General,2003,250(2):319-329.
    [141] A.N. Pestryakov, V.P. Petranovskii, Pfander N.,et al. Supported foam-copper catalysts for methanol selective oxidation[J]. Catalysis Communications,2004,5(12):777-781.
    [142]李永峰,林维明,余林.两种甲醇水蒸气重整制氢催化剂的研究[J].燃料化学学报,2004, 32(5):617-621.
    [143] Amphlett J.C.,Creber K.A.M.,Davis J.M.,et al.Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy,1994,19(2):131-137.
    [144] Seo D.J.,Yoon W.L.,Yoon Y.G.,et al. Development of a micro fuel processor for PEMFCs[J]. Electrochimica Acta,2004,50(2-3):719-723.
    [145] Park G.G., Seo D.J., Park S.H.,et al. Development of microchannel methanol steam reformer[J]. Chemical Engineering Journal,2004,101(1-3):87-92.
    [146] Boomsma K., Poulikakos D. The effects of compression and pore size variations on the liquid flow characteristics in metal foams[J].Journal of Fluids Engineering-Transactions of the ASME,2002,124(1):263-272.
    [147] Pestryakov A.N., Lunin V.V., Devochkin A.N.,et al. Selective oxidation of alcohols over foam-metal catalysts[J]. Applied Catalysis A: General, 2002,227 (1-2):125-130.
    [148] Chen H.Q., Yu H., Tang Y.,et al. Assessment and optimization of the mass-transfer limitation in a metal foam methanol microreformer[J].Applied Catalysis A: General, 2008,337(2):155-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700