禽类Piwill基因与piRNAs生物学功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Piwi (P-element induced wimpy testis)基因参与生殖干细胞自我更新、减数分裂、RNA沉默以及转录调控过程。在模式生物上,研究发现piRNAs (Piwi-interacting RNAs)介导PIWI蛋白的表观遗传调控和转录初水平调控过程是生殖干细胞维持、配子形成以及受精的关键因素,但有关家禽Piwi基因的研究报道甚少。PIWI蛋白虽然广泛存在于各种动物中,但大部分只局限在配子发生和胚胎发育早期表达,而且表达模式也不一致,影响了其对生殖过程的具体作用机制的探讨。就此而言,禽类配子、胚胎易于获取且便于人工操作,具有其他生物无可比拟的优越性,可为探讨PIWI蛋白如何发挥调控作用的具体机制提供研究平台。另外,作为人类主要的动物蛋白来源食品,家禽业生产正处于发展的关键时期,仍有不少问题亟待解决:一是繁殖力持续下降,商业品种中每年有5~12%的无精症鸡遭淘汰;二是如禽流感、白血病等一些RNA病毒,因其容易变异造成预防、治疗失败,给家禽产业带来了巨大的损失。本研究以中国地方鸡种——狼山鸡为研究对象,分别从基因克隆、基因表达、转录调控和功能抑制等4个方面对Piwi like1(Piwil1)基因进行了较为全面系统的研究;并以日本鹌鹑为参照群体,分析了鹌鹑Piwil1基因和PIWI蛋白特异性结合piRNAs的表达谱,为探明Piwi基因在禽类中的生物学功能和家禽繁殖力的提高积累基础资料,也为解析生殖细胞发生机制和发展新型RNA治疗方法提供新的理论依据。
     本研究首先参考GenBank上红色原鸡Piwil1基因的mRNA序列,利用RT-PCR和RACE技术从12周龄狼山鸡睾丸组织中成功克隆了Piwil1基因的全长cDNA序列,包括一个2604bp的ORF,161bp的5'UTR和660bp的3'UTR。生物信息学分析结果表明,该ORF编码867个氨基酸残基,含有PAZ和PIWI两个Ago家族蛋白的保守结构域。启动子区的序列特征分析结果表明,Piwil1基因的5’调控区存在着一个长489bp的CpG岛,转录起始位点上游-25~-30bp区域没有真核基因启动子区典型的DNA序列元件TATA box。
     为了揭示鸡Piwill基因的组织、细胞表达模式,本研究利用Real-Time qPCR技术分别检测了12周龄狼山鸡不同组织(睾丸、大脑、下丘脑、肾脏、肾上腺、甲状腺和卵巢)和不同类型生殖系细胞(PGCs、SSCs、精原/母细胞和成熟精子)中Piwill基因的nRNA表达量。结果表明,Piwill基因在睾丸组织的表达量显著高于卵巢、肾脏等其他组织;在睾丸精原和精母细胞以及成熟精子中的表达量显著高于PGCs和SSCs细胞。Piwill基因在成熟精子的高表达,推测Piwill基因可能在精子授精过程中发挥作用。
     为了探索Piwill基因在鸡精子形成过程中的重要作用,本研究利用Real-Time qPCR技术检测了狼山鸡5个发育阶段(0、5、10、12、27周龄)6个组织(睾丸、大脑、下丘脑、肾脏、肾上腺和甲状腺)中Piwill基因的表达情况。结果表明,随着周龄的增加,睾丸中Piwill基因的表达量不断增加,而其他组织中Piwill基因的表达量基本不变。在睾丸组织中,10周龄之前,Piwill基因的表达量变化不大;10周龄之后,Piwill基因的表达量急剧上升;27周龄时,Piwill基因的表达量是0周龄时的35~40倍。性成熟后,Piwill基因在睾丸组织中的表达量急剧增加,而且主要在精原(母)细胞和成熟精子中表达,推测Piwill基因的高丰度表达应该是维持鸡精子发生所必须的。此外,本研究还检测了Piwill基因在狼山鸡上述5个发育阶段卵巢组织中的表达情况。结果表明,随着周龄的不断增加,Piwill基因在卵巢组织中的表达量逐渐降低。
     为了探索Piwill基因在鸡胚性腺发育过程的重要作用,本研究利用Real-Time qPCR技术检测了胚胎期雌雄鸡胚性腺中Piwill基因的表达情况。结果表明,在雄性睾丸组织中,Piwill基因的表达呈双峰分布,峰值分别位于第14.5天和第17.5~18.5天,推测此时Piwill基因的高表达可能与“DNA re-methylation"过程以及精原干细胞的自我更新有关。在雌性卵巢组织中,Piwill基因的表达呈单峰分布,峰值位于第16.5~17.5天,此时初级卵母细胞已进入减数分裂Ⅰ前期,推测Piwill基因可能在卵母细胞减数分裂Ⅰ过程发挥重要作用。
     前期研究表明,Piwi基因主要在生殖系细胞中表达,具有生殖系特异性。通过前面的研究结果,发现鸡Piwill基因mRNA在不同组织和细胞中差异表达。为了探索鸡Piwill基因选择性表达的调控机制,本研究首先从基因组DNA水平通过启动子区系列缺失法来寻找Piwill基因的核心启动子区。本研究将启动子区的系列缺失片断连接至荧光素酶报告基因5’端上游,成功构建了7个含有鸡Piwill基因启动子区序列的萤火虫荧光素酶报告基因载体。然后,分别将这7个重组载体与海肾荧光素酶报告基因载体(内参质粒)共转染GC-1细胞(生殖系细胞)和COS-7细胞(非生殖系细胞),荧光素酶活性检测结果均表明Piwill基因5’侧翼区-90--43区域具有重要的转录调控活性。
     真核基因的转录调控主要依赖于顺式作用元件和反式作用因子之间的相互作用。前面的结果已表明,Piwill基因没有真核基因启动子区典型的顺式作用元件TATA box。为了寻找核心启动子区域的重要转录元件,本研究利用TFSEARCH软件对Piwill基因5’侧翼区进行了预测分析。结果发现,-90--16区域含有CCAAT box (-56--52,转录因子NF-Y的结合位点)和TCCC box (-34--31,转录因子Ik-2的结合位点)两个转录元件。为了探讨这些转录元件的生物学功能,本研究利用定点突变技术构建了3个突变体,分别为CCAATbox单突变、TCCC box单突变和二者的双突变。随后,分别将这3个突变载体与内参质粒共转染GC-1和COS-7细胞,荧光素酶活性检测结果表明,与野生型相比,突变体的启动子活性均发生了降低,这进一步表明CCAAT box和TCCC box可能对Piwill基因启动子活性具有重要作用。
     前面的研究结果已表明,鸡Piwill基因在成年鸡睾丸组织中高表达。但是,与哺乳动物相比,获取鸡睾丸组织曲精细管生精上皮中各级生精细胞的方法还不成熟。鉴于PGCs细胞是生殖祖细胞,鸡PGCs中表达Piwill基因以及PGCs体外获得和培养相对成熟等优势特性,本研究选择PGCs作为Piwill基因功能研究的细胞模型。为了研究鸡Piwill基因在生殖系中的功能,本研究首先选择基于DNA载体的RNAi技术——shRNA干扰表达载体来抑制鸡PGCs细胞中Piwill基因的表达。结果表明,不同的siRNA靶序列具有不一样的Piwill基因沉默效果,Piwill基因的mRNA表达量相应地下降了9-36%。随后,本研究检测了在最佳干扰效果下CR1-B和CR1-F转座子的mRNA表达量变化。与对照组相比,鸡CRl-F转座子ORF1mRNA的表达量升高,这从一定程度上表明Piwill基因具有抑制转座子活性的功能。
     为了提高siRNA在体内的传递效率,本研究选择基于慢病毒载体的RNAi技术来抑制鸡PGCs细胞中Piwill基因的表达。首先,本研究通过分子克隆技术成功构建鸡Piwill基因过表达载体作为筛选miRNA干扰表达载体的靶质粒。细胞定位结果表明,该Piwill基因过表达载体能够成功表达一种细胞质蛋白。其次,本研究将miRNA干扰表达载体和Piwill基因过表达载体共转染HEK293细胞,利用Real-Time qPCR技术筛选出具有最佳干扰效果的miRNA干扰表达载体。接着,本研究将该miRNA干扰表达载体通过Gateway技术亚克隆至目的载体中成功构建了Piwill基因-miRNA曼病毒表达载体。最后,本研究将miRNA慢病毒表达载体与辅助质粒共转染293FT细胞生产慢病毒颗粒。慢病毒液滴度为1×108TU/ml。细胞侵染结果表明,该慢病毒液能够成功抑制Piwill基因的表达。
     为了检测Piwi基因在物种内的序列保守性,本研究以日本鹌鹑为参照群体,再次利用RT-PCR和RACE技术从成年鹌鹑睾丸组织中成功克隆了Piwil1基因的全长cDNA序列,包括一个2595bp的ORF,142bp的5'UTR和667bp的3'UTR。生物信息学分析结果表明,该ORF编码864个氨基酸残基,含有PAZ和PIWI两个Ago家族蛋白的保守结构域。与鸡Piwil1基因编码蛋白相比,N端缺失3个氨基酸残基。在成年鹌鹑中,PIWIL1蛋白在睾丸组织中特异性表达,表明PIWIL1蛋白在鸡和鹌鹑之间具有保守的功能。
     为了进一步探索禽类PIWI蛋白在精子发生和转座子调控中的作用机制,本研究利用深度测序技术获得成年鹌鹑性腺组织small RNAs表达谱。在睾丸组织中,small RNAs主要集中在24-27nt之间,主要定位于基因组中重复序列区域,其次是编码基因序列,与果蝇中piRNAs的分子遗传特征相类似,推测禽类piRNAs与果蝇piRNAs一样,在生殖系中参与维持异染色质结构,抑制重复序列转录和转座子转座。免疫沉淀的结果表明,与禽类PIWIL1蛋白相结合的主要是24~25nt之间的piRNAs,而在卵巢组织中,miRNAs的丰度最高,表明在禽类中PIWIL1蛋白也是通过piRNAs介导进行相关生物学功能调节的。
Piwi (P-element induced wimpy testis) gene involves in germline stem cell self-renewal, meiose, RNA silence and transcriptional regulation. In model organisms, it has been found that the epigenetic and transcriptional regulation of PIWI protein mediated by piRNAs (Piwi-interacting RNAs) was the key factor in the process of maintaining germline stem cells, gametogenesis and fertilization, but Piwi gene has rarely been reported in poultry. PIWI protein is widely present in a variety of animals, but its expression is mostly restricted in the gametogenesis and early embryonic development and the expression pattern is also inconsistent, which impedes the study on the mechanism of PIWI protein in the reproductive process. In this regard, the poultry has an incomparable superiority for that their gametes and embryos are easy to harvest and manual operation, providing a research platform for exploring the regulation mechanism of PIWI protein. As the major source of animal protein for most human populations, the poultry industry production is currently at a critical period of development and remains many problems to be solved. On the one hand, the reproductive capacity of poultry is declining and each year five to twelve percents of the azoospermia chicken were eliminated in commercial varieties. On the other hand, some RNA viruses, such as avian influenza virus, avian leukosis virus, brought huge losses to the poultry industry for that their frequent variation resulted in the failure of disease prevention and treatment. In this study, the Chinese indigenous chicken breed-Langshan chickens were selected as animal models and the relatively comprehensive and systematic research on the Piwill gene was carried out at the following four aspects of gene cloning, gene expression, transcriptional regulation, and function suppression respectively. Meanwhile, this study selected the Japanese quails as a reference group and characterized the expression profiles of quail Piwill gene and PIWI binding to piRNAs. This study will accumulate basic data for exploring the biological function of Piwi gene and the enhancement of reproductive capacity in poultry, as well as provide a new theoretical basis for the formation of germ cells and the development of novel RNA treatment method.
     Firstly, this study has successfully cloned the full-length cDNA sequence of chicken Piwill gene from the Langshan testicular tissue at12weeks of age with reference to the mRNA sequence of the red jungle fowl Piwill gene by RT-PCR and RACE technology. This sequence includes an ORF of2604bp,5'UTR of161bp and3'UTR of660bp. It is predicted that the ORF encoded867amino acid residues and contained the two conserved domain PAZ and PIWI that characterized by Ago family proteins. The result of sequence analysis on the promoter region of PIWIL1gene indicates that a long489bp CpG island exists. However, there is no a TATA box in the region of-25to-30bp upstream of the transcription initiation site that is a typical DNA sequence element in the eukaryotic gene promoter.
     To reveal the tissue and cellular expression patterns of Piwill gene, this study has detected the mRNA expression of Piwill gene in different tissues of Langshan chicken at12weeks of age (testis, brain, hypothalamus, kidney, adrenal, thyroid and ovary) and different germline cells (PGCs, SSCs, Spermatogonia/Spermatocytes and mature sperms) by Real-Time qPCR technology. The result shows that the mRNA expression of Piwill gene in testes was significantly higher than that of other tissues, and the mRNA expression of Piwill gene in spermatogonia/spermatocytes of adult testis and mature sperms was significantly higher than that of PGCs and SSCs. The higher mRNA expression of Piwill gene in mature sperm suggests that Piwill gene may play a role in the process of sperm insemination.
     To explore the role of Piwill gene in chicken spermiogenesis, this study has detected the mRNA expression of Piwill gene in six tissues (testis, brain, hypothalamus, kidney, adrenal, and thyroid) at five life stages (respectively0,5,10,12,27weeks of age) in Langshan chickens by Real-Time qPCR technology. The result shows that the mRNA expression of testicular Piwill gene increases with the growth of individuals, while the mRNA expression of Piwill gene in other tissues maintains the basic level. In testes, before10weeks of age, the mRNA expression of Piwill gene is lower and stable; after10weeks of age, the mRNA expression of Piwill gene rises sharply. The mRNA expression of Piwill gene at27weeks of age is35~40times that of0week of age. The mRNA expression of Piwill gene increased significantly in testis reaching sexual maturity and is higher in spermatogonia/spermatocytes and mature sperm, suggesting that Piwill gene expression should be essential to maintain chicken spermatogenesis. In addition, this study also detected the mRNA expression of Piwill gene in ovaries at above five life stages in Langshan chickens. The result shows that the mRNA expression of Piwill gene decreased with the growth of individuals, which is opposite to that in testes.
     To explore the role of Piwill gene in the gonad development of chick embryos, this study has detected the mRNA expression of Piwill gene in the male and female gonads during the embryonic period by Real-Time qPCR technology. In male gonads, the mRNA expression of Piwill gene showes a bimodal distribution with peaks at embryonic14.5day and17.5~18.5days respectively, suggesting that the high expression of Piwill gene in this point may be related to the "DNA re-methylation" and self-renewal of spermatogonia stem cells. In female gonads, the mRNA expression of Piwill gene shows a unimodal distribution with a strong peak at embryonic16.5-17.5days when the primary oocytes have entered into the prophase of meiosis I, suggesting that Piwill gene may play an important role in the process of oocyte meiosis I.
     Previous studies have shown that Piwi gene was mainly expressed in the germline cells with the specificity of the germline. Our preceding results also show that the mRNA expression of chicken Piwill gene differs among tissues and cells. To explore the specific expression mechanism of Piwill gene in chicken, this study firstly has searched out the core promoter region of Piwill gene using a series of deletion mutants of the promoter region. A series of deletion fragments of the promoter region of Piwill gene were inserted into the upstream of luciferase reporter gene5'-end and successfully constructed seven recombinant vectors containing the chicken promoter sequence. Then, these seven recombinant vectors were respectively co-transfected GC-1(germline cells) and COS-7cells (non-germline cells) with Renilla luciferase reporter gene vector (internal control). The result of luciferase activity assay shows that the5'flanking sequence from-90to-43is important for its transcriptional activity. The transcription regulation in eukaryotes depends largely on the interaction between cis-acting elements and trans-acting factors. Because the Piwill gene lacks a TATA box, putative transcription elements were identified using the TFSEARCH software. A CCAAT box (-56--52) and a TCCC box (-34to-31) was observed within the core promoter region from-90to-16, which are putative binding sites of transcription factors NF-Y and Ik-2respectively. To functionally determine the importance of these elements, site-directed mutagenesis was performed and three mutants were constructed respectively, containing a single mutated CCAAT box, a single mutated TCCC box and their double mutant. Subsequently, these three mutants were respectively co-transfected GC-1and COS-7cells with the internal control plasmid. The result of luciferase activity assay shows that the promoter activity of all mutants reduced, as compared to the wild type construction, suggesting that both the CCAAT box and TCCC box are important for the promoter activity of Piwill gene.
     Based on the previous results, the chicken Piwill gene is highly expressed in the adult testes. However, as compared to the mammals, the harvest of all levels of spermatogenic cells in the seminiferous epithelium of seminiferous tubules is under exploration. Considering that PGCs are progenitor cells in germline in which chicken Piwill gene is expressed and the technology of PGCs harvest and culture in vitro is relatively mature, this study choose PGCs as the cell model for exploring Piwill gene function. To explore the function of Piwill gene in the chicken germline, the mRNA expression of Piwill gene was down regulated in chicken PGCs using DNA vector-based RNAi technology-shRNA expression cassettes. It is found that different siRNA target sequences showed a different gene silencing effect on the mRNA expression of Piwill gene with a drop of9to36%. Subsequently, two ORFs of CR1-B and CR1-F subfamily were examined by Real-Time qPCR technology after most efficient knock-down in chicken PGCs. The result shows that only the mRNA expression of CR1-F ORF1increased in knock-down PGCs compared with control, to some extent suggesting that Piwill gene play a role in inhibiting the transposon activity.
     To accomplish more efficient delivery of siRNA in vitro, this study tested lentivirus vector-based RNAi technology to suppress the mRNA expression of Piwill gene in chicken PGCs. The over-expression cassette of chicken Piwill gene was firstly successfully constructed served as the target of miRNA interference sequences. The result of cellular localization shows that the over-expression cassette of chicken Piwill gene successfully encoded a cytoplasmic protein. Secondly, miRNA interference expression cassettes were respectively co-transfected HEK293cells with Piwill over-expression cassette. The most efficient miRNA interference cassette would be screened out using Real-Time qPCR technology. Then, the miRNA interference expression cassette was successfully subcloned into the destination vector via Gateway technology to be a Piwil1-miRNA lentiviral expression vector. Finally, the miRNA lentiviral expression vector was co-transfected293FT cells with lentiviral packaging vectors to produce a lentiviral stock. The lentivirus titer is1×108TU/ml. The result of cell transduction shows that the lentivirus construct could successfully reduce the expression of Piwill gene.
     To investigate the conservative fuction of Piwi gene in poultry, this study selected the Japanese quails as a reference group and has successfully cloned the full-length cDNA sequence of quail Piwill gene from the adult testicular tissue by RT-PCR and RACE technology. This sequence includes an ORF of2595bp,5'UTR of142bp and3'UTR of667bp. It is predicted that the ORF encoded864amino acid residues with deletion of N-terminal3acid residues compared to that of chicken Piwil1gene, and contained the two conserved domain PAZ and PIWI that characterized by Ago family proteins. In adult quails, the PIWIL1protein is also specifically expressed in testes, suggesting that it has a conserved fuction between chicken and quail. In order to further explore the regulation mechanism of PIWI protein in spermiogenesis and transposon activity, this study cloned the sequences of small RNAs from adult quail gonads by deep sequencing technology and characterized PIWIL1binding to small RNAs. Small RNAs show a strong peak at24~27nt in the testicular RNA library and map primarily to repeat sequences followed by encoded gene sequences, which are similar to the Drosophila piRNAs, suggesting that poultry piRNAs could play a role in maintaining the structure of heterochromatin and controlling the repetitive sequences transcription and tranposon transposition. PIWIL1protein binds to24~25nt piRNAs in the immunoprecipitation library, while miRNAs are abundant in the ovarian RNA library with a peak of22nt, suggesting that the biological fuction of PIWIL1protein is mediated by piRNAs in poultry.
引文
[1]Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J.1998,17(1):170-180.
    [2]Carmell MA, Xuan Z, Zhang MQ, Hannon GJ. The Argonaute family:tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.2002, 16(21):2733-2742.
    [3]Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics.2003,82(3):323-330.
    [4]Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: The novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci.2000, 25:481-482.
    [5]Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature.2001,409(6818):363-366.
    [6]Parker JS, Roe SM, Barford D. Crystal structure of a PIWI protrein suggests mechanisms for siRN A recognition and slicer activity. EMBO J.2004,23(24):4727-4737.
    [7]Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of Argonaute and its implication for RISC slicer activy. Science.2004,305(5689):1434-1437.
    [8]Tahbaz N, Koib FA, Zhang H, Jaronczyk K, Filipowicz W, Hobman TC. Characterization of the interaction between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep.2004, 5(2):189-194.
    [9]Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell.2000,101(1):25-33.
    [10]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993,75(5):843-854.
    [11]Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Lonino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T. A novel class of small RNAs bind to MILI protein in mouse testes. Nature.2006,442(7099):203-207.
    [12]Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature.2006,442(7099):199-202.
    [13]Grivna ST, Beyret E, Wang Z, Lin HF. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev.2006,20(13):1709-1714.
    [14]Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE. Characterization of the piRNA complex from rat testes. Science.2006,313(5785):363-367.
    [15]Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposonderived siRNAs in oocytes and germline small RNAs in testes. Genes Dev.2006, 20(13):1732-1743.
    [16]Lin H, Spradling AC. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development.1997,124:2463-2476.
    [17]Cox DN, ChaoA, Baker J, Chang L, Qiao D, Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.1998, 12(23):3715-27.
    [18]Deng W, Lin H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell.2002,2:819-830.
    [19]Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development.2004,131:839-849.
    [20]Carmell MA, Girard A, van de Kant HJ, Bourchis D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell.2007,12(4):503-514.
    [21]Harris AN, Macdonald PM. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development.2001,128(14):2823-2832.
    [22]Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC. A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science.2007,315(5818):1587-1590.
    [23]Houwing S, Berezikov E, Ketting RF. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J.2008,27(20):2702-2711.
    [24]Illmensee K, Mahowald AP. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci U S A.1974, 71(4):1016-1020.
    [25]Mahowald AP. Assembly of the Drosophila germ plasm. Int Rev Cytol.2001,203:187-213.
    [26]Megosh HB, Cox DN, Campbell C, Lin H. The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol.2006,16(19):1884-1894.
    [27]Caudy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.2002,16(19):2491-2496.
    [28]Thomson T, Liu N, Arkov A, Lehmann R, Lasko P. Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mech Dev.2008, 125(910):865-873.
    [29]Szakmary A, Cox DN, Wang Z, Lin H. Regulatory relationship among piwi, pumilio, and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr Biol. 2005,15(2):171-178.
    [30]Cox DN, Chao A, Lin H. Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development.2000,127(3):503-514.
    [31]Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell.2008,31(6):785-799.
    [32]Unhavaithaya Y, Hao Y, Beyret E, Yin H, Kuramochi-Miyagawa S, Nakano T, Lin H. MILI, a piRNA binding protein, is required for germline stem cell self-renewal and appears to positively regulate translation. J Biol Chem.2009,284(10):6507-6519.
    [33]Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, Yokoyama M, Noce T. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev.2000,14(7):841-853.
    [34]Nantel F, Monaco L, Foulkes NS, Masquilier D, LeMeur M, Henriksen K, Dierich A, Parvinen M, Sassone-Corsi P. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature.1996,380(6570):159-162.
    [35]Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs:progress and prospect. Annu Rev Cell Dev Biol.2009,25:355-376.
    [36]Schupbach T, Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 1991,129(4):1119-1136.
    [37]Wilson JE, Connell JE, Macdonald PM. aubergine enhances oskar translation in the Drosophila ovary. Development.1996,122(5):1631-1639.
    [38]Wang G, Reinke V. A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol.2008,18(12):861-867.
    [39]Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D Jr, Luo S, Schroth GP, Carrington JC, Bartel DP, Mello CC. PRG-1 and 21URNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell.2008,31(1):67-78.
    [40]Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell.2002,110(6):689-699.
    [41]Qiao D, Zeeman AM, Deng W, Looijenga LH, Lin H. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene.2002,21(25):3988-3999.
    [42]Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, Jin G, Zhang J, Wu J, Meng L, Shou C. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer.2006,118(8):1922-1929.
    [43]田瑞卿,刘民,李欣,汤华.PIWIL1在不同肿瘤细胞中的差异性表达[J].中国生物化学与分子生物学报,2008,(11):1072-1075.
    [44]Lee JH, Schutte D, Wulf G, Fuzesi L, Radzun HJ, Schweyer S, Engel W, Nayernia K. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet.2006,15(2):201-211.
    [45]Chen L, Shen R, Ye Y, Pu XA, Liu X, Duan W, Wen J, Zimmerer J, Wang Y, Liu Y, Lasky LC, Heerema NA, Perrotti D, Ozato K, Kuramochi-Miyagawa S, Nakano T, Yates AJ, Carson WE 3rd, Lin H, Barsky SH, Gao JX. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS ONE.2007,2(3):e293.
    [46]Leedham SJ, Wright NA. Expansion of a mutated clone:from stem cell to tumour. J Clin Pathol.2008,61(2):164-171.
    [47]Devor EJ, Huang L, Samollow PB. piRNA-like RNAs in the marsupial Monodelphis domestica identify transcription clusters and likely marsupial transposon targets. Mamm Genome. 2008,19(78):581-586.
    [48]Murchison EP, Kheradpour P, Sachidanandam R, Smith C, Hodges E, Xuan Z, Kellis M, Grutzner F, Stark A, Hannon GJ. Conservation of small RNA pathways in platypus. Genome Res. 2008,18(6):995-1004.
    [49]Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T. The small RNA profile during Drosophila melanogaster development. Dev Cell.2003,5(2):337-350.
    [50]Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science.2006,313(5785):320-324.
    [51]Chang GB, Chen R, Zhang Y, Dai AQ, Ma T, Chen GH. Cloning and Analysis of piRNAs from Testes of Three Species. Thai J Vet Med.2011,41(2):193-197.
    [52]陈蓉,常国斌,张颖,陈国宏,胡国顺,栾德琴,刘艳,戴爱琴.鹌鹑piRNAs和Piwill基因克隆及表达研究[J].中国农业科学,2011,08:1727-1735.
    [53]张颖,常国斌,陈蓉,戴爱琴,栾德琴,李建超,马腾,华登科,陈国宏.鸡pilRNAs分子的克隆及表达规律分析[J].畜牧兽医学报,2012,06:857-866.
    [54]Zhang Y, Li J, Chen R, Dai A, Luan D, Ma T, Hua D, Chen G, Chang G. Cloning, characterization and widespread expression analysis of testicular piRNA-like chicken RNAs. Mol Biol Rep.2013,40(4):2799-2807.
    [55]Yang H, Wang X, Liu X, Liu X, Li L, Hu X, Li N. Cloning and expression analysis of piRNA-like RNAs:adult testis-specific small RNAs in chicken. Mol Cell Biochem.2012, 360(1-2):347-52.
    [56]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA generating loci as master regulators of transposon activity in Drosophila. Cell.2007,128(6):1089-1103.
    [57]Pane A, Wehr K, Schupbach T. zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell.2007,12(6):851-862.
    [58]Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science.2008, 322(5906):1387-1392.
    [59]Wang J, Saxe JP, Tanaka T, Chuma S, Lin H. Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol.2009,19(8):640-644.
    [60]Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, Kondoh G, Okawa K, Chujo T, Suzuki T, Hata K, Martin SL, Noce T, Kuramochi-Miyagawa S, Nakano T, Sasaki H, Pillai RS, Nakatsuji N, Chuma S. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell.2009,17(6):775-787.
    [61]Sarot E, Payen-Groschene G, Bucheton A, Pelisson A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics.2004,166 (3):1313-1321.
    [62]Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SC. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science.2004,303(5658):669-672.
    [63]Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SC, Lin H. Drosophila PIWI associates with chromatin and interacts directly with HP la. Genes Dev.2007, 21(18):2300-2311.
    [64]Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science.2007, 316(5825):744-747.
    [65]Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev.2008,22(7):908-917.
    [66]Xu M, You Y, Hunsicker P, Hori T, Small C, Griswold MD, Hecht NB. Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol Reprod.2008,79(1):51-57.
    [67]Epplen JT, Leipoldt M, Engel W, Schmidtke J. DNA sequence organization in avian genomes. Chromosoma.1978,69:307-321.
    [68]Vandergon TL, Reitman M. Evolution of chicken repeat 1 (CR1) elements:Evidence for ancient subfamilies and multiple progenitors. Mol Biol Evol.1994,11:886-898.
    [69]Wicker T, Robertson JS, Schulze SR, Feltus FA, Magrini V, Morrison JA, Mardis ER, Wilson RK, Peterson DG, Paterson AH, Ivarie R. The repetitive landscape of the chicken genome. Genome Res.2005,15(1):126-136.
    [70]Haas NB, Grabowski JM, Sivitz AB, Burch JB. Chicken repeat 1 (CR1) elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames. Gene.1997,197:305-309.
    [71]Kapitonov VV, Jurka J. The esterase and PHD domains in CR1-like non-LTR retrotransposons. Mol Biol Evol.2003,20(1):38-46.
    [72]Stumph WE, Hodgson CP, Tsai MJ, O'Malley BW. Genomic structure and possible retroviral origin of the chicken CR1 repetitive DNA sequence family. Proc Natl Acad Sci U S A. 1984,81(21):6667-6671.
    [73]Petrov DA, Hartl DL. High rate of DNA loss in Drosophila melanogaster and Drosphila virilis groups. Mol Biol Evol.1998,15(3):293-302.
    [74]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature.2001, 409(6822):860-921.
    [75]Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature.2002,420(6915):520-562.
    [76]SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet.1998,20(1):43-45.
    [77]Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J.2001,26(3):307-316.
    [78]Lewin B. Replicative and nonreplicative transposition may pass through common intermediates. Oxford University Press,1994.
    [79]Jurka J. RepBase update:A database and an electronic journal of repetitive elements. Trends Genet.2000,16(9):418-420.
    [80]Delany ME, Daniels LM, Swanberg SE, Taylor HA. Telomeres in the chicken:Genome stability and chromosome ends. Poult Sci.2003,82(6):917-926.
    [81]Matzke MA, Varga F, Berger H, Schernthaner J, Schweizer D, Mayr B, Matzke AJ. A 41-42 bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes. Chromosoma.1990,99(2):131-137.
    [82]Wang X, Li J, Leung FC. Partially inverted tandem repeat isolated from the pericentric region of chicken chromosome 8. Chromosome Res.2002,10(1):73-82.
    [83]Klein S, Ellendorff F. Localization of XhoI repetitive sequences on autosomes in addition to the W chromosome in chickens and its relevance for sex diagnosis. Anim Genet.2000, 31(2):104-109.
    [84]Rodemer ES, Ihmer A, Wartenberg H. Gonadal development of the chick embryo following microsurgically caused agenesis of the mesonephros and using interspecific quail-chick chimaeras. J Embryol Exp Morphol.1986,98:269-285.
    [85]李碧春,周冠月,孙思宇,秦洁,吴洪.鸡早期胚胎精原细胞和睾丸发生发育关系的研究[J].畜牧兽医学报,2005,(07):680-685.
    [86]Waldeyer W. Eierstock und Ei. Leipzig:Engelmann,1870.
    [87]李碧春,陈国宏,赵东伟,王克华,钱菊汾.鸡胚PGCs迁移与性腺发育关系的研究[J].扬州大学学报,2002,(01):18-22.
    [88]马骏.基因表达与调控.高等教育出版社,2006
    [89]Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters:insights from genome-wide studies. Nat Rev Genet.2007, 8(6):424-436.
    [90]Trinklein ND, Aldred SJ, Saldanha AJ, Myers RM. Identification and functional analysis of human transcriptional promoters. Genome Res.2003,13(2):308-312.
    [91]Kim TH, Barrera LO, Qu C, Van Calcar S, Trinklein ND, Cooper SJ, Luna RM, Glass CK, Rosenfeld MG, Myers RM, Ren B. Direct isolation and identification of promoters in the human genome. Genome Res.2005,15(6):830-839.
    [92]李姗姗,迟彦,李凌飞,马玺,平文祥,于冲,周东坡.启动子克隆方法研究进展[J].中国生物工程杂志,2005,(07):9-16.
    [93]杨晓娜,赵昶灵,李云,李会容,苏丽,周燕琼.启动子序列克隆和功能分析方法的研究进展[J].云南农业大学学报(自然科学版),2010,(02):283-290.
    [94]Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA. An improved method for walking in uncloned genomic DNA. Nucleic Acids Res.1995,23(6):1087-1088.
    [95]Legocki RP, Legocki M. Baldwin TO, Szalay AA. Bioluminescence in soybean root nodules: Demonstration of a general approach to assay gene expression in vivo by using bacterial luciferase. Proc Natl Acad Sci U S A.1986,83(23):9080-9084.
    [96]Oubrahim H, Wang J, Stadtman ER, Chock PB. Molecular cloning and characterization of murine caspase-12 gene promoter. Proc Natl Acad Sci U S A.2005,102(7):2322-2327.
    [97]董玉玮,侯进慧,朱必才,李培青,庞永红.表观遗传学的相关概念和研究进展[J].生物学杂志,2005,(01):1-3.
    [98]Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol.2005,45:629-656.
    [99]Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A.1992,89(5):1827-1831.
    [100]Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation specific PCR:a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A.1996, 93(18):9821-9826.
    [101]Lian ZQ, Wang Q, Li WP, Zhang AQ, Wu L. Screening of significantly hypermethylated genes in breast cancer using microarray-based methylated-CpG island recovery assay and identification of their expression levels. Int J Oncol.2012,41(2):629-638.
    [102]Liu BL, Cheng JX, Zhang W, Zhang X, Wang R, Lin H, Huo JL, Cheng H. Quantitation detection of multiple gene promoter hypermethylation in tumor tissue, serum, and cerebrospinal fluid predicts prognosis of malignant gliomas. Neuro Oncol.2010,12(6):540-548.
    [103]Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell.1995, 81(4):611-620.
    [104]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998, 391(6669):806-811.
    [105]Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science.1999,286(5441):950-952.
    [106]Cogoni C, Macino G. Homology-dependent gene silencing in plants and fungi:a number of variations on the same theme. Curr Opin Microbiol.1999,2(6):657-662.
    [107]Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature.2000,404(6775):293-296.
    [108]Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell.2000,101(1):25-33.
    [109]Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol.2000,2(2):70-75.
    [110]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature.2001, 411(6836):494-498.
    [111]Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature.2001,409(6818):363-366.
    [112]Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol.2000, 10(19):1191-1200.
    [113]Eckstein F. Small non-coding RNAs as magic bullets. Trends Biochem Sci.2005, 30(8):445-452.
    [114]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature.2003,425(4):415-419.
    [115]Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science.2004,303(56542):95-98.
    [116]Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J.2002,21(17):4663-4670.
    [117]Brummelkamp TR, Bernards R, Agami R. A System for stable expression of short interfering RNAs in mammalian cells. Science.2002,296(5567):550-553.
    [118]Tuschl T. Expanding small RNA interference. Nat Biotechnol.2002,20(5):446-448.
    [119]Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3'overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol.2002, 20(5):497-500.
    [120]Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A. 2002,99(8):5515-5520.
    [121]Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell.2002,2(3):243-247.
    [122]Wojtkowiak A, Siek A, Alejska M, Jarmolowski A, Szweykowska-Kulinska Z, Figlerowicz M. RNAi and viral vectors as useful tools in the functional genomics of plants. Construction of BMV-based vectors for RNA delivery into plant cells. Cell Mol Biol Lett.2002,7(2A):511-522.
    [123]Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P. Lentiviral-mediated RNA interference. Hum Gene Ther.2002,13(18):2197-2201.
    [124]Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet.2003,33(3):401-406.
    [125]Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science.1985,230(4732):1350-1354.
    [126]Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions. Biotechnology (N Y).1993,11 (9):1026-1030.
    [127]Chiang PW, Song WJ, Wu KY, Korenberg JR, Fogel EJ, Van Keuren ML, Lashkari D, Kurnit DM. Use of a fluorescent-PCR reaction to detect genomic sequence copy number and transcriptional abundance. Genome Res.1996,6(10):1013-1026.
    [128]Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res.1996,6(10):995-1001.
    [129]Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996,6(10):986-994.
    [130]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001,25(4):402-408.
    [131]俸艳萍,张淑君,彭秀丽,龚炎长.用双重PCR法鉴定鸡的性别[A].中国畜牧兽医学会家禽学分会.家禽研究最新进展——第十一次全国家禽学术讨论会论文集[C].中国畜牧兽医学会家禽学分会,2003:3.
    [132]王嘉力,贾存灵,苏利红,魏泽辉.家鸡CHD1基因PCR快速性别鉴定方法的建立及其在早期鸡胚中的应用[J].家禽科学,2009,(12):3-7.
    [133]Kim TH, Yun TW, Rengaraj D, Lee SI, Lim SM, Seo HW, Park TS, Han JY. Conserved functional characteristics of the PIWI family members in chicken germ cell lineage. Theriogenology.2012,78(9):1948-1959.
    [134]李碧春,陈国宏,王克华,钱菊汾.鸡胚胎性腺发生发育的研究[J].中国家禽,2001,(08):58-61.
    [135]Smith CA, Roeszler KN, Bowles J, Koopman P, Sinclair AH. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol.2008,8:85.
    [136]Castaneda J, Genzor P, Bortvin A. piRNAs, transposon silencing, and germline genome integrity. Mutat Res.2011,714(1-2):95-104.
    [137]毕静,丁宁,王宁,李辉.鸡脂蛋白酯酶基因启动子的克隆及活性分析[J].畜牧兽医学报,2010,(06):651-656.
    [138]高广亮,冷丽,张会丰,贺綦,李辉,王启贵.鸡肝脏型脂肪酸结合蛋白基因启动子活性分析[J].中国兽医学报,2012,09:1344-1348.
    [139]徐琪,陈阳,黄正洋,张扬,陈昌义,赵荣雪,李秀,段修军,陈国宏.鸭CD8基因启动子的分析及其转录活性[J].中国农业科学,2012,12:2468-2473.
    [140]赵荣雪,赵文明,徐琪,段修军,董飚,孙国波,毕瑜林,李秀,张扬,黄正洋,陈国宏.鹅PIT-1基因启动子区转录调控的研究[J].畜牧兽医学报,2012,02:220-225.
    [141]Hou Y, Yuan J, Zhou X, Fu X, Cheng H, Zhou R. DNA Demethylation and USF Regulate the Meiosis-Specific Expression of the Mouse Miwi. PLoS Genet.2012,8(5):e1002716.
    [142]Sun P, Loh HH. Transcriptional regulation of mouse delta-opioid receptor gene. Role of Ikaros in the stimulated transcription of mouse delta-opioid receptor gene in activated T cells. J Biol Chem.2002,277(15):12854-12860.
    [143]Sun P, Loh HH. Ikaros-2 and Upstream Stimulatory Factor Synergize in Trans-Activating Mouse-Opioid Receptor Gene in T Cells. J Biol Chem.2003,278(4):2304-2308.
    [144]Juliano C, Wang J, Lin H. Uniting germline and stem cells:the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet.2011,45:447-469.
    [145]丁红梅,徐世永,邵根宝,孙岩,王蒙,刘红林.慢病毒载体体外转染鸡胚原始生殖细胞[J].农业生物技术学报,2007,(04):612-616.
    [146]王燕丽,郝柱,李艳玲,彭静,沈一飞,袁肖笑,王颖,徐宁迎.梅岭土鸡原始生殖细胞的生物学特性[J].农业生物技术学报,2012,(04):397-403.
    [147]Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett.2005,579(26):5830-5840.
    [148]Xu H, Wang X, Du Z, Li N. Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Lett.2006,580(15):3610-3616.
    [149]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell.2007,128(6):1089-1103.
    [150]Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev Cell.2007,12(l):45-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700