四个猪种间BPI蛋白基因外显子3和4的SNP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杀菌/通透性增强蛋白(bactericidal/permeability-increasing protein,BPI)是人和哺乳动物的内源性阳离子蛋白质,主要存在于多形核白细胞的嗜苯胺蓝颗粒中。它具有很强的杀菌(主要指革兰氏阴性细菌)、中和内毒素或脂多糖(lipopolysaccharide,LPS)的活性和调理功能,在动物机体天然防御中起到很重要的作用。目前,人、牛、鼠、的BPI基因序列都已清楚。人BPI基因外显子3和4区域存在多态性,猪BPI基因第4和10外显子的RFLP多态性与沙门氏菌的易感性有关,并被确定为抗病育种的候选基因。在我们的前期研究中克隆了荣昌猪BPI基因的全长cDNA序列,并发现荣昌猪BPI基因外显子3和外显子4上存在丰富的多态位点。不同猪种(地方猪种、引进品种和培育品种)之间BPI基因外显子3和外显子4区域的多态性如何,是否存在差异,是本课题需要在前期研究中需要进一步研究的问题。
     本研究以渝荣Ⅰ号配套猪B系、A系、C系三个专门化品系和荣昌猪为实验对象,应用聚合酶链式反应—单链构象多态性(polymerase chain reaction-single strand conformationpolymorphism,PCR-SSCP)技术,检测四个猪种BPI基因第3和4外显子的单核苷酸多态性(singlenucleotide polymorphism,SNP),并将显示不同带型的PCR扩增产物克隆测序,利用DNAman分子生物学软件对测序结果进行分析比对,找出BPI基因外显子3和外显子4的突变位点,统计不同猪种的基因型频率,计算等位基因频率和各SNP位点的优势碱基。
     通过试验分析得出外显子3的SNP结果如下:荣昌猪BPI基因外显子3存在两个SNP位点,即第376位的A→C突变和397位的A→G突变变。A376C位突变引起氨基酸由Gln替换为Pro,氨基酸的疏水性由0.28增加到0.60。A397G位引起氨基酸由Gln替换为Arg,且产生带正电荷的Arg。B系猪外显子3存在两个突变,即第371位的T→C突变和445位的A→G,T371C的突变未引起氨基酸的变化。A445 G位引起氨基酸由Lys替换为Arg,疏水性减弱。C系猪产生了一个突变,即435的A→G突变,氨基酸由Ile替换为Val,且产生的氨基酸疏水性降低。A系猪未检测到SNP位点。
     外显子4上的SNP情况:荣昌猪外显子4区段共检测到6个SNP位点,它们分别是第512位C→T(C512T)、第551位T→G(T551G)、第563位C→T(C563T)、第573位T→C(T573C)、第599位G→A(G599A)和第607位T→C(T607C)突变。其中C512T,T551G,C563T,G599A为无义突变。T551G突变使限制性内切酶MscⅠ或BalⅠ酶切位点(TGG/CCA)消失。第573位的T→C突变,引起了氨基酸由Ser替换为Pro,突变引起氨基酸疏水性降低。第607位T→C的突变引起了氨基酸由Val替换为Ala,使得氨基酸疏水性降低,SunⅠ或SplⅠ酶切位点(C/GTACG)也消失。荣昌猪BPI基因外显子4区段的高度多态性,表明该区段有较大的遗传选择潜力。B系猪存在3个SNP位点,即512位的C→T(C512T)、551位的T→G(T551G)和599位的G→A(G599A)突变。此三个突变未引起氨基酸的变化。T551G突变使限制性内切酶MscⅠ或BalⅠ酶切位点(TGG/CCA)消失。A系C系猪仔外显子4未检测到SNP位点。
     从四个猪种外显子3和外显子4的SNPs位点的分析可以看出,荣昌猪的多态信息含量丰富,此外B系猪也较丰富的多态性,A系C系多态性不丰富。本试验检测到的外显子3和4区段的某些SNP位点,可能成为猪机体抗某些革兰氏阴性病原菌或其引起的疾病的分子标记。
Bactericidal/permeability-increasing protein(BPI)is a highly cationic protein which is located mainly in the primary granules of polymorphonuclear leucocyte(PMN).BPI has a high affinity for LPS of Gram-negative bacteria.Binding of BPI to susceptible bacteria is followed by increasing outer membrane permeability,inhibition of growth and ultimately,irreversible loss of viability.In addition,BPI also possesses an opsonic function.Because of these important functions,BPI plays an important role in host initial defense.At present,the full-length cDNA sequences of BPI gene has been elucidated in several species,including human,bovine,brown rat,mouse,and pig of rongchang. In addition,several polymorphic sites were found in exons 3 and 4 of human BPI gene.It has been shown that the restriction fragment length polymorphism(RFLP)sites in exons 4 and 10 of porcine BPI gene are related to the susceptibility of Salmonella cholerasuis in several pig breeds.The porcine BPI gene was considered as a candidate gene of breeding for disease resistance.we have found several polymorphic sites in exons 3 and 4 of rongchang pig in our investigation we have done.However,Are different of polymorphism of exons 3 and 4 between Rongchang pig and other strain pigs(native,import,crossbreed pigs)BPI gene,and are the differens obvious is unclear.
     In this study,the pig breeds be investigated are rongchang,A,B and Cstrain pigs which were pure breeds elected by four generations.the SNP sites in exons 3 and 4 of this gene were detected by polymerase chain reaction-single strand conformation polymorphism(PCR-SSCP)analysis.Then. the PCR products showing different patterns were purified and cloned for sequencing.Finally,the frequencies of difference genotypes were accounted and the allelic genes frequencies were calculated according to the former result.Further more,the SNP sites in exons 3 and 4 were found by sequence alignment of different allelic genes.Frequencies of the bases with higher appearance frequency in these SNP sites were calculated according to the distribution of SNP sites in all the allelic genes.
     In the exon 3 fragment,There was two novel SNPs(A376C,A397G)detected in the exon 3 of Rongchang pig BPI gene by PCR-SSCP.The A376C made Gln94Pro substitution,the hydrophobicity increase from 0.28 to 0.60.the A397G mutation made Arg101 Gin substitution,two novel SNPs(T371C,A445G)were detected in the exon 3 of B strain pigs BPI gene by PCR-SSCP,the T371C mutation was synonymous substitutions.the A445G mutation made Lys 117Arg substitution,and the hydrophobicity drop from -0.89 to -1.05.There was one novel SNP(A435G) detected in the exon 3 of Cstrain pigs BPI gene by PCR-SSCP,it made Lle114Val substitution,the hydrophobicity drop from 0.83 to 0.78.there was no novel SNP be found in A lineage pig.
     In the exon 4 fragment,six novel(T512C,G551T,C563T,T573C,G599A,T607C)of SNPs were detected,four of them(T512C,G551T,C563T,G599A)were synonymous substitutions.The G551T novel made a restriction endonuclease Msc I orBal I(TGG/CCA)disappear.the novel(T573C) made Ser160Pro substitution,and the hydrophobicity drop from 0.6 to 0.46.the novel(T607C)made Val171Ala substitution,hydrophobicity drop from -1.21 to -1.61.Three SNPs which were same whith three of the rongchang pig's SNPs were found in B strain of pigs,there were T512C, G551T,G599A.SNPs were not found in A and C strain pigs.
     The affluent polymorphism of exon 4 indicate its huge potentiality in genetic selection.
     Some of the SNP sites detected in this study may be important molecular markers of porcine disease resistance,specifically resistant to Gram-negative bacterias and its caused diseseses.
引文
[1]Trask B et al.Genet,1993,15:133-145.
    [2]Phillips MS et al.Genomcis ,1996,34:24-41.
    [3] Fujii J, Otsu K, Zor zato F, et al. Identification of a mutation in porcine rynodine receptor associated with malignant hythermia. Science, 1991, 253:448-451.
    [4] Harbitz I, Kristensen T, Bosnes M, et al. DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615-Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian landrace pigs. Anim Genet.\992, 23(5):395-402.
    [5] Brenig B, Brem G. Molecular cloning analysis of the porcine "halothane" gene. Arch Tierz. 1992;35:129-35.
    [6] Markus Wehner, Henrik Rueffert, Fritjoff Koenig, et al. Functional characterization of malignant hyperthermia-associated RyR1mutations in exon 44, using the human myotube model. Neuromuscular Disorders. 2004,14: 429-437.
    [7] Erickson A K, Baker D R, Bosworth B T, et al. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins. Infect Immun. 1994, 62 (12): 5404-5410.
    [8] Jin L Z, Marquardt R R, Baidoo S K, Frohich A A. Characterization and purification of porcine small intestinal mucus receptor for Escherichia coli K88ac fimbrial adhesion. Immunol Med Microbiol. 2000,27 (1): 17-22.
    [9] Sellwood R, Gibbons RA, Jones GW, et al. Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. J Med Microbiol. 1975, 8 (3):405-411.
    [10] Bertschinger HU, Stamm M, Vogeli P. Inheritance of resistance to oedema disease in the pig: experiments with an Escherichia coli strain expressing fimbriae 107. Vet Microbiol. 1993, 35 (1-2):79-89.
    [11] Gibbons RA, Sellwood R, Burrows MR, et al. Inheritance of resistance to neonatal E.coli diarrhoea in the pig: examination of the genetic system. Theor Appl Genet. 1977, 51: 65-70.
    [12] Bijlsma IG, Bouw J. Inheritance of K88-mediated adhesion of Escherichia coli to jejunal brush borders in pigs: a genetic analysis. Vet Res Commun. 1987,11(6): 509-518.
    [13]Jorgensen CB,Cirera S,Anderson SI,et al.Linkage and comparative mapping of the locus controlling susceptibility towards E.coli F4ab/ac diarrhoea in pigs.Cytogenet Genome Res.2003,102(1-4):157-162.
    [14]Philippe A.Grange,Alan K.Erickson,Steven B.Levery,et al.Identification of an intestinal neutral glycosphingolipid as a phenotype-specific receptor for the K88ad fimbrial adhesin of Escherichia coli,Infect Immun.1999,67(1):165-172.
    [15]Python P,Jorg H,Neuenschwander S,et al.Inheritance of the F4ab,F4ac and F4ad E.coli receptors in swine and examination of four candidate genes for F4acR.J Anim Breed Genet.2005,122 Suppl 1:5-14.
    [16]Michaels RD,Whipp SC,Rothschild ME Resistance of Chinese Meishan,Fengjing,and Minzhu pigs to the K88ac strain of Escherichia coll.Am J Vet Res.1994,55(3):333-338.
    [17]Grange P,Vedrine B,Mouricout M.Adhesion of K88ab fimbriated E.coli in piglet small intestines in relation with iron transport molecules.Adv Exp Med Biol.1997,412:357-361.
    [18]刘鑫,施启顺,柳小春,等.不同猪种肠毒性大肠杆菌(ETEC)F4受体的微卫星标记遗传效应分析.遗传,2006,28(8):945-948.
    [19]Vogeli P,Kuhn B,Kuhne R,et al.Evidence for linkage between the swine L blood group and the loci specifying the receptors mediating adhesion of K88 Escherichia coli pilus antigens.Anita Genet.1992,23(1):19-29.
    [20]Vogeli P,Bertschinger HU,Stamm M,Genes specifying receptors for F18 fimbriated Escherichia coli,causing oedema disease and postweaning diarrhoea in pigs,map to chromosome 6.Anim Genet.1996,27(5):321-328.
    [21]Meijerink E,Fries R,Vogeli P,et al.Two a(1,2)fucosyl transferase genes on porcine chromosome 6q1.1 are closely linked to the blood group inhibitor(S)and Escherichia coli F18receptor(ECF_(18)R)loci.Mammalian Genome.1997,8:736-741.
    [22]Edwin Meijerink,Stefan Neuenschwander,Ruedi Fries,et al.A DNA polymorphism influencing a(1,2)fucosyl transferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichla coli F18 adhesin,Immanogenetics.2000,52(1-2):129-136.
    [23]姜勋平,刘永刚,熊远著,等.猪futl基因对肉质和胴体性状的影响.遗传,2005,27(4):566-570.
    [24]Ridker PM,Cook NR,Cheng S,et al.Alanine for proline substitution in the peroxisome proliferators activated receptor gamma-2 (PPARG2) gene and the risk of incident myocardial infarction. Arterioscler Thromb Vasc Biol. 2003,23 (5): 859-863.
    [25] Doney AS, Fischer B, Cecil JE, et al. Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes. Diabetologia. 2004, 47(3): 555-558.
    [26] Cellier M., Govoni G., vidal S., et al. Human natural resistance as. so xiated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tisue specific expression.Exp Med, 1994.180:1741 -1752.
    [27] Vidal SM, Malo D, Vogan K, et al. Natural resistance to infection with intracellular parasites isolation of a candidate gene for Bcg. Cell. 1993,73:469-485.
    [28] Barton CH, White JK, Roach TIA, et al. NH2 terminal sequence of macrophage-expressed natural resistance associated macrophage protein (Nramp) encodes a prolin/serine-rich putative Ser homology 3-bingding domain. J Exp Med. 1994,179: 1683-1687.
    [29] Gruenheid S., CekkierM., vidalS., et al. Identification and char. acterization of a second mouse Nramp gene.Genomics,1995,25:514-525.
    [30] Cellier M, Shustik C, Dalton W, et al. The human NRAMPI gene, as a marker of professional primary phagocytes: studies in blood cells, and in HL-60 promyelocytic leukemia. J Leukoc Biol. 1997,61:96-105.
    [31] Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997, 388 (6641):482-488.
    [32] Cellier M, Govoni G, Vidal S, et al. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J ExpMed. 1994,180(5): 1741-1752.
    [33] Mock B, Krall M, Blackwell J, et al. A genetic map of mouse chromosome I near the Lsh-Ity-Bcg disease resistance locus. Genetics. 1990, 7: 57-64.
    [34] Sun HS, Wang L, Rothschild MF, et al. Mapping of the natural resistance-associated macrophage protein 1 (NRAMPI) gene to pig chromosome 15. Anim Genet. 1998,9 (2): 138-140.
    [35]Vidal SM,Tremblay ML,Govoni G,et al.The Ity/Lsh/Bcg locus resistance to infection with intracellular parasites is abrogated by disruption of the Nrampl gene.J Exp Med.1995,182:655-666.
    [36]Hu J,Bumstead N,Barrow P,et al.Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC.Genome Res,1997,7(7):693-704.
    [37]Christopher K Tuggle,Thomas J Stabel,Xianwei Shi,et al.Genetic markers for improved disease resistance in animals(BPI).United States,Kind Code:A1,Patent Application:20040234980,2004 Nov 25.
    [38]晏光荣,马海明.分子标记在动物抗病育种中的研究进展.国外畜牧科技,2001,28(6):32-34.
    [39]吴宏梅,王立贤.猪NRAMP1基因PCR-RFLP多态性与免疫相关指标及生产性状的关联分析中国动物遗传育种研究进展.中国农业出版社,2005,264-270.
    [40]施启顺,谢新民,柳小春,等.中国动物遗传育种研究(第十一次全国动物遗传学术会议论文集).北京:中国农业科技出版社.
    [41]Vgeli P.,Bertschinger H U.,Stamm M.,et al.Stranzinger G.Evi.dence for linkage of genes of the halo—thane(HAL)linkage strainscausing oedema disease and postw-eaning diarrhoea in Swis Lan.drace pigs.Animal Genetics.1996,27:321-328.
    [42]施启顺,黄生强,等.不同猪种E.coli F18受体基因的多态性.遗传学报,2003,30(3):221-224.
    [43]晏学明,任军,郭源梅,等.猪a1—岩藻糖转移酶基因(FUT1)在26个地方猪种中的遗传变异研究.遗传学报,2003.30(9):830-834.
    [44]晏学明,郭源梅,丁能水,等.不同品种猪a1—岩藻糖转移酶基因遗传变异初析.中国畜牧杂志,2004,40(3):8-10.
    [45]姜勋平,刘永剐,熊远著,等.猪FUT1基因对肉质和胴体性状的影响.遗传,2005,27(4):566-570
    [46]Isaacs a,Lindenmann J.Virus interference.Ⅰ.The interferon.Proc R Soc Lond B Biol Sci.1957Sep 12;147(927):258-267.
    [47]Isaacs A,Lindenmann J,Valentine RC.Virus interference.Ⅱ.Some properties of interferon.Proc R Soc Lond B Biol Sci.1957 Sep 12;147(927):268-273.
    [48]Domeika K.Porcine immunoregulatory cytokines.With special reference to their induction by CpG-containing DNA.Doctor's dissertation.Swedish University of Agricultural Sciences.Uppsala,2003.
    [49]Vilcek J.Novel interferons._Nat Immunol.2003 Jan;4(1):8-9.
    [50]万建青,吴文学,夏春.毕赤酵母表达猪干扰素-γ基因及其抑制蓝耳病病毒效果.生物工程学报,2002,18(6):683-686.
    [51]Suradhat S,Intrakamhaeng M,Damrongwatanapokin S.The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection Vet Immunol Immunopathol.2001 Dec;83(3-4):177-189.
    [52]Chinsangaram J,Piccone ME,Grubman MJ,et al.Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon.J Virol.1999 Dec;73(12):9891-9898.
    [53]Masutani K,Miyake K,Nakashima H,et al.Impact of interferon-gamma and intedeukin-4gene polymorphisms on development and progression of IgA nephropathy in Japanese patients.Am J Kidney Dis.2003 Feb;41(2):371-379.
    [54]Lopez-Maderuelo D,Arnalich F,Serantes R,et al.Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis.Am J Respir Crit Care Med.2003,167(7):970-5.
    [55]Lindenmann J.Resistance of mice to mouse-adapted influenza A virus..Virology,1962,16:203-204.
    [56]Lee SH,SilviaM.Functional diversity of Mx proteins:variations on a theme of resistance to infection.Genome Reserch.2002,12(4):527-530.
    [57]Nagata K,Mibayashi M.The Mx protein that confers the resistance to influenza virus.Nippon Rinsho.1997,55(10):2654-2659.
    [58]Jae-Hong Ko,Hee-Kyung Jin,Atsushi Asano,et al.Polymorphisms and the differential antiviral activity of the chicken Mx Gene.Genome Res.2002,12:595-601.
    [59]Muller M,Winnacker E L,Brem G.Molecular cloning of porcine Mx cDNAs:new members of a family of interferon inducible proteins with homology to GTP binding proteins.J Interferon Res.1992,12:119-129.
    [60]Thomas AV,Palm M,Broers AD,et al.Genomic structure,promoter analysis,and expression of the porcine(Sus scrofa)Mx1 gene._Immunogenetics.2006,58(5-6):383-389.
    [61] Morozumi T, Sumantri C, Nakajima E et al. Three types of polymorphisms in exon 14 in porcine Mx1 gene. Biochem Genet. 2001,39 (7-8): 251-260.
    [62] Chung HK, Lee JH, Kim SH et al. Expression of interferon-alpha and Mxl protein in pigs acutely infected with porcine reproductive and respiratory syndrome virus (PRRSV). J Comp Pathol. 2004,130(4):299-305.
    [63] Asano A, Ko JH, Morozumi T, et al. Polymorphisms and the antiviral property of porcine Mx1 protein. Journal of Veterinary Medical Science, 2002, 64 (12): 1085-1089.
    [64] Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005 Jun; 6(6):551-557.
    [65] Zanetti M, Gennaro R, Romeo D. Cathelicidins:a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995, 374 (1): 1-5.
    [66] Hashimoto C, Hudson K L, Anderson K V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988, 52: 269-279.
    [67] Lemaitre B,Nicolas E,Michaut L,et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86: 973-983.
    [68] Medzhitov R, Preston-Hurlburt P, Janeway C A. A human homologue of the droacphila toll protein signals activation of adaptive immunity. Nature. 1997,388 (6640): 394-397.
    [69] Zarember K A, Godowski P J. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol, 2002,168(2): 554-561.
    [70] Delneste Y, Beauvillain C, Jeannin P. Innate immunity: structure and function of TLRs. Med Sci (Paris). 2007 Jan; 23(1):67-73.
    [71] Sin BP, Chauhan RS, Singhal LK. Toll-like receptors and their role in innate immunity. Current Science. 2003, 85 (8): 1156-1164.
    [72] Takeda K, Kaisho T, Akira S.Toll-like receptors. Annu Rev Immunol. 2003,21: 335-376. [73] Aldra S,Takeda K.Toll-like receptor signaling. Nat Rev Immunol, 2004,4 (7): 499-511.
    [74]Qureshi ST,Lariviere L,Leveque G,et al.Endotoxin-tolerant mice have mutations in Toll-like receptor 4(Tlr4)Exp Med.1999,189(4):615-625.
    [75]Hoshino K,Takeuchi O,Kawai T,et al.Cutting edge:Toll-like receptor 4(TLR4)-deficient mice are hyporesponsive to lipopolysaccharide:evidence for TLR4 as the Lps gene product.J Immunol.1999,162(7):3749-3752.
    [76]Takeuchi O,Hoshino K,Kawai T,et al.Differential roles of TLR2 and TLR4 in recognition of Gram-negative and gram-positive bacterial cell wall components._Immunity.1999,11(4):443-451.
    [77]Arbour NC,Lorenz E,Schutte BC,et al.TLR4 mutations are associated with endotoxin hyporesponsiveness in humans.Nat Genet.2000 Jun;25(2):187-191.
    [78]Thomas AV,Broers AD,Vandegaart HF,et al.Genomic structure,promoter analysis and expression of the porcine(Sus scrofa)TLR4 gene.Molecular Immunology,2006,43(6):653-659.
    [79]Echard G,Yerle M,Gellin J,et al.Assignment of the major histocompatibility complex to the p1.4-q1.2 region of chromosome 7 in the pig(Sus scrofa domestica L.)by in situ hybridization.Cytogenet Cell Genet.1986,41(2):126-128.
    [80]Owen JB.,Axford RFE..Breding for disease Resistance in Farm An.imals.CAB International Wallinggford,1991,73-75.
    [81]Sachs D H.,Gerrnana S.,El-Gamil M.,et al.Class Ⅱ genes ofminiature swine:1.Clas Ⅱ gene characterization by RFLP and by isolation from a genomic library.Immunogentles,1988,28:22-29.
    [82]Nielsen V H.,Thomsen B..Pur I1 RFLPs at SLA clas Ⅱ loci:DQA and DRA1.Animal Genetics,1997,28:151-152.
    [83]HuettAS.,InnesDA J.,MooreM J.,et al.Identificationof a novel HaeⅢ PCR—RFLPs in the SIA—DQB gene.An imal Genetics,1999,30(5):382-405.
    [84]方美英,胡晓湘.等.小梅山、中梅山及大约克猪的SLA-DQB基因外显子2PCR—RFLP多态性分析.遗传学报,2002,29(8):685-687.
    [85]谈永松,周波,等.五指山、二花脸和皮特兰猪的SLA—DRB基因外显子2PCR—RFLP及PCR—SSCP多态性分析.遗传学报,2005,32(2):163-169.
    [86]Dentener M A,Francot G J,Buurman W A.Bactericidal/permeability increasing peotein,a lipopolysaccharide specific protein on the surface of human peripheral blood monocytes.Indect Dis,1996,173(1):252-255.
    [87]Calafat J,et al.Blood 1998,4770-4775.
    [88]Takahashi M,Horiuehi Y,Tezuka T.Presence of bactericidal/permeability increasing peotein in human and rat skin.Exp Dermatd,2004,t3(1):55-60.
    [89]Levy O,Canny G,Serhan CN,et al.Expression of BPI(bactericida /Permeability-increasing protein)in human mueosal epithelia.Bio-ehem Soc Trans,2003,31(4):795-800.
    [90]Balow E,Gullang U,Olsson I.Structural requirements for intraeellul arprocassing and sorting of bactericidal/permeability-increasingprotein(BP1):comparison with lipopo-saceharlde-binding protein IJ J.Leukoe Bid,2000.68(5):669-678.
    [91]Brenig B,Brem G.Molecular cloning analysis of the porcine "halothane" gene.Arch Tierz.1992,35:129-135.
    [92]周红,郑江,秦孝建,等.抗人BPI抗体对猪源BPI体外生物活性的增强作用.第三军医大学学报,200,24(1):76-78.
    [93]Jerrold Weiss,Peter Elsbach..Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear,leukocytes.New York University School of Medicine.1977,2664-2672.
    [94]Chean Eng OoiSJ,errold WeissSJ.A 25-kDa NH2-terminal Fragment CarriesA 11 the Antibacterial Activities of the Human Neutrophil 60-kDa Bactericidal/Permeability-increasing Protein.New York,10016:14891-14894.
    [95]Gray PW,Flaggs G,Leong SR.Cloning of the cDNA of a human neutrophil bactericidal protein.J Biol Chem.1989,264:9505-9509.
    [96]Mannion BA,Kalatzis ES,Weiss J.Preferential binding of the neutrophil granule derived bactericidal/permeability increasing protein to target bacteria.Immunol,1989,142:2807-2812.
    [97]Little RG,Kelner DN,Lim E.Functional domains of recombinant bactericidal/permability increasing proteinr(rBPI23).J Biol chem.1994,269(3):1865-1872.
    [98]Jaroslav A.Hubacek,Christa Buchler,Charalampos Aslanidis,et al.The genomic organization of the genes for human lipopolysaccharide binding protein(LBP)and bactericidal permeability increasing protein(BPI)is highly conserved.Biochemical and Biophysical Research Communications.1997,236:427-430.
    [99]P.J.斯卡诺恩,N.维德尔.杀细菌/通透性增加蛋白在制备用于治疗创伤出血病人的药物中的应用:美国,WO1997/044056[P].1997.11.27.
    [100]Iovine NM,Elsbach P,Weiss J.An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N2and C2terminal domains.Proc Natl Acad Sci USA.1997,94:10973-10978.
    [101]Khan A,Lambert LJ,Remington J.Recombinant bactericidal/permeability-increasing protein (rBPI21)in combination with sulfadiazine is active against Toxoplasma gondii.Antimicrob Agents Chemother.1999,43:758-762.
    [102]Vander Schaft DW,Toebes EA,Haseman JR.Bactericidal/permeability-increasing protein (BPI)inhibits angiogenesis via induction of apoptosis in vascular endothelial cells.Blood 2000,96(1):176-181.
    [103]Nell MJ,Koerten HK,Grote JJ.Inhibition of endotoxin effects on cultured human middle ear epithelium by bactericidal permeability-increasing protein.Am J Otol.2000,21(5):6252.
    [104]Newman SL,Gootee L,Gabay J E,et al.Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against Histoplasma capsulatum,Infect Immun.2000,68(10):5668-5672.
    [105]Nishimura H,Gogami A,Miyagawa Y.Bactericidal/permeability-increasing protein promotes complement activation for neutrophil- mediated phagocytosis on bacterial srufacel Immunology.2001,103:519-5251.
    [106]G·蒂奥芬,L·S·格林纳,A·霍维茨.BPI-免疫球蛋白融合蛋白质:美国,CN93109046.6.1994.12.28.
    [107]马越云,马文煜.IGFab-BPI融合蛋白真核表达载体的构建及其在CI-IO细胞中的表达.细胞与分子免疫学杂志,2001,17(5):470-472.
    [108]马越云,马文煜,于文彬.IgG Fab-BPI融合蛋白质及其DNA序列:中国,001138685[P].2001.07.
    [109]安云庆,刘箐.一种包含BPI基因的重组病毒及含有其的药物组合物及其用途:中国200410056642.X[P].2006.02.15.
    [110]章璐,靖学芳.提高重组抗菌蛋白BPI在E.coli中表达水平和复性率的研究.中日友好医院学报,2005,19(5):291-295.
    [111]郭向华,李晨.AAV2—BPI700-Fc′/170.重组病毒导人小鼠对致死量大肠埃希菌感染的保护作用机制.中国微生物学和免疫学杂志,2006,26(2):150-154.
    [112]Levy O.A neutrophil2derived anti-infective molecule:bactericidal/permeability2increasing protein.Antimicrob AgentsChemother.2000,44:65-69.
    [113]Manni0n BA.WeiBB J.Elsbech P.Separation of sublethal and lcthal cf--f ct8 of the bactericidal / permeability increasing protein on Eseherichiac nli.Clin Investig,1990,85(3):853-860.
    [114]Weiss J,Beckerdite-Quagliata S,Elsbach P.Resistance of gram-negative bacteria to purified bactericidal leukocyte proteins:relation to binding and bacterial lipopolysaccharide structure.J Clin lnvest.1980,65(3):619-628.
    [115]Mannion BA,Weiss J,Elsbach P.Separation of sublethal and lethal effects of polymorphonuclear leukocytes on Escherichia coli.J Clin Invest.1990,86(2):631-641.
    [116]Chean Eng Ooi,Jerrold Weiss,Peter Elsbach,et al.A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/Permeability-increasing protein.Journal of Biological Chemistry.1987,262(31):14891-14894.
    [117]Jaroslav A.Hubacek,Christa Buchler,Charalampos Aslanidis,et al.The genomic organization of the genes for human lipopolysaccharide binding protein(LBP)and bactericidal permeability increasing protein(BPI)is highly conserved.Biochemical and Biophysical Research Communications.1997,236:427-430.
    [118]Vogeli P,Kuhn B,Kuhne R,et al.Evidence for linkage between the swine L blood group and the loci specifying the receptors mediating adhesion of K88 Escherichia coli pilus antigens.Anim Genet.1992,23(1):19-29.
    [119]柯岩.BPI抗菌作用及其临床应用的展望.中国生物制品学杂志,2007,1(13):126-128.
    [120]Bauer RJ,White ML.WedelN,et al.A phaseI safety and pharmacoki'nctic study of a recomb inant amino terrainal fragment of bactericidal/ permeability,increasing protein in healthy male volunteers.Shock,1996,5(2):91-96.
    [121]Lew O.A neutrophil-derived anti.infectivc molecule:bactericidal/permeability increasing protein.Antimicrob Agents Chemothcr,2000,44(11):65-69.
    [122]Levin M.Quint PA,Cold8tein B.et al.Recombinant bactericidal/permeability increasing protein(rBPI21)as adjunctive treatment for children with~vere meningecoccal sepsis:a mmdomised triallJ J.Lancct,2000,356(9234):961-967.
    [123]彭海英,朱家勇.杀菌/通透性增加蛋白的研究现状及展望.医学综述,2006,12(1):1-3.
    [124]吴谡琦,张进兴,洪旭光,等.分子标记技术的进展及其应用.高技术通讯,2001,4:99-103.
    [125]刘云国,陈松林.DNA分子标记在水生动物遗传学上的研究进展.海洋科学,2005,29(10):58-64.
    [126]魏丕芳,王慧,李同树,等.标记辅助选择在动物育种中的应用.山东农业大学学报(自然科学版),2006,37(2):316-318.
    [127]Botstein D,White R L,Skolnick M H,et al.Construction of a genetic linkage map on men using restriction fragment length polymorphisms.Am J Hum Genet,1980,(32):314-331.
    [128]刘云芳,剡根强,王新.RFLP技术在动物遗传育种中的应用.内蒙古畜牧科学,2002,2:17-19.
    [129]汤复跃,周立人.RAPD和RFLP在大豆研究中的有关进展.安徽农学通报,2006,12(6):52-55.
    [130]方美英,胡晓湘,李宁,等.小梅山、中梅山及大约克猪的SLA-DQB基因外显子2 RFLP多态性分析.遗传学报,2002,29(8):685-687.
    [131]雷初朝,陈宏,杨公社.中国部分黄牛品种mtDNA遗传多态性研究.遗传学报,2004,31(1):57-62.
    [132]何志平,吕学斌,陈晓晖.利用PCR-RFLP技术测定种猪的氟烷基因型.西北农林科技大学报(自然科学版),2002,30(2):48-50.
    [133]Tautz D,Renz M.Simple sequences are ubiquitous repetitive components of eukaxyotic genomes.Nucl Acids.1984,12:4127-4138.[134]Jeffrey A J.Hyper variable minisatellite regions in human DNA.Nature.1985,314:67-73.
    [135]狄冉,马月辉.微卫星遗传标记及其在绵、山羊中的研究进展.家畜生态学报,2006,27(1):96-100.
    [136]Su Xin zhuan,Ferdig Michael T,Huang Yaming,et al.A genetic map and recombination parameters of the human malaria parasite Plasmedium falciparum.Science.1999,256(5443):1351-1353.
    [137]赵宗胜,王根林,马玉萍,等.绵羊微卫星标记与部分毛用性状的关系研究.畜牧兽医学报,2006,37(9):864-869.
    [138]席瑞珍,李建丽,马仲彬,等.微卫星DNA的研究进展.上海畜牧兽医通讯,2004,4:2-4.
    [139]Tolle R.Information technology tools for efficient SNP studies.Am J Pharmacogenomics,2001,1(4):103-314.
    [140]Alain V.Et al.Areview on SNP and other type of molecular markers and their use in animal genetics.genet.sel.Evol.2002(34):275-305.
    [141]杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展.国外医学(遗传学分册),2000(4):392-394.
    [142]张正东.SNPs功能学研究-理论、策略和实践.2008.
    [143]Otstein D.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Hum Genet.1980,32:314.
    [144]欧阳建华,黄建安.PCR-SSCP技术的研究进展.上海畜牧兽医通讯,2002(4):10-11.
    [145]欧阳建华.单核苷酸多肽性及其检测方法.江西农业大学学报.2003,25(25):920-923.
    [146]沈靖,王润田,徐希平.筛查未知SNPs的变化高效液相色谱(DHPLC)技术,国外医生(遗传学分册),2001(6):341-344.
    [147]Antionarakis SE.Recommendations for a nomenclature system for human gene mutations.Nomenclature Working Group.Hum Mutat,1998,11(1):1-3.
    [148]Fornage M,Doris P A.Single-nucleotide polymorphism genotyping for disease association studies.Methods Mol Med,2004,108:159-172.
    [149]Gubern C,Lopez-Bermejo A,Biarnes J,et al.Natural antibiotics and insulin sensitivity:the role of bactericidal/permeability-increasing protein.Diabetes.2006,55(1):216-24.
    [150]李春喜,王志和,王文林.生物统计学.北京:科学出版社,2003.
    [151]安雅臣,冯福民,袁聚祥,等.NRAMP1基因INT4和3′-UTR位点多态性与肺结核易感性的研究.中华流行病学杂志,2006,27(1):37-40.
    [152]李艳秋,栗霄立,王力宁,等.中性粒细胞集落刺激因子基因多态性与系统性红斑狼疮相关性的研究.中华风湿病学杂志,2006,10(9):517-522.
    [153]Beulah H Gray,Judith R Haseman,Kevin H Mayo.B/PI-derived synthetic peptides:synergistic effects in tethered bactericidal and endotoxin neutralizing peptides.Biochimica et Biophysica Acta.1995,1244(1):185-190.
    [154]Little RG,Kelner DN,Lim E,et al.Functional domains of recombinant bactericidal/permeability increasing protein(rBPI23).J Biol Chem.1994,269(3):1865-1872.
    [155]史宪伟,张亚平.猪杀菌/浸入增效蛋白(BPI)基因的cDNA克隆、基因表达、基因定位、多态性及沙门氏菌抵抗力分析.第六届动物遗传学讨论.2002.
    [156]储明星译,师守塑校.数量遗传学导论.北京:中国农业科技出版社,2000.
    [157]Ofer Levy,Sara Martin,Eric Eichenwald,et al.Impaired innate immunity in the newborn:newborn neutrophils are deficientin bactericidal/permeability-increasing protein.Pediatrics.1999,104:1327-1333.
    [158]Boson D,White R L,Skolnick M,et al,Construction of a genetic linkage map in man using restriction fragment length polymouphism.American Journal of Human Genetic.1980,32:314-331.
    [159]Beamer LJ,Carroll SF,Eisenberg D.The BPI/LBP family of proteins:A structural analysis of conserved regions.Protein Sci.1998,7(4):906-914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700