大豆半胱氨酸蛋白酶基因GmCASc的克隆及初步功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质核互作雄性不育在作物杂种优势利用中起重要作用,研究其遗传基础和机制具有重要的理论和实践意义。本研究在大豆质核互作雄性不育系和保持系的差异蛋白质组学研究基础上,进一步对差异表达蛋白半胱氨酸蛋白酶进行基因克隆并对其功能进行初步分析,获得如下结果:
     1.根据半胱氨酸蛋白酶的质谱数据,在大豆基因组数据库中搜索,发现一个相似性很高的基因,采用PCR技术扩增得到其全长cDNA,命名为GmCASc,该基因包含一个1101bp的阅读框,编码366个氨基酸,推导的GmCASc分子量为40.8kD、等电点为7.49;同源性分析表明GmCASc与毛果杨(Populus trichocarpa,XP 002323761)、葡萄(Vitis vinifera, XP_002264984)、蓖麻(Ricinus communis、XP 002525857)和水稻(Oryza saliva Japonica Group, EAZ27173)的CASPASE同源性分别是54%、52%、56%和44%;生物信息学分析表明,GmCASc具有CASPASE结构域,属于胱天蛋白酶亚家族,该蛋白是一个非跨膜的亲水蛋白。
     2、利用实时荧光定量PCR方法检测大豆不同组织器官和不同胁迫条件下GmCASc的表达情况,结果显示GmCASc在质核互作雄性不育系NJCMS1A、NJCMS2A和其相应保持系NJCMS1B、NJCMS2B的根、茎、叶、花中都有表达,以茎中基因的相对表达量最高;不育系NJCMS1A花中GmCASc的相对表达量低于保持系NJCMS1B,而不育系NJCMS2A花中GmCASc的相对表达量高于保持系NJCMS2B; GmCASc在叶片中响应生物和非生物胁迫的应答各不相同,低温胁迫下,GmCASc表达下调,盐胁迫、SMV及机械损伤均引起GmCASc mRNA的累积。
     3、应用酵母双杂交系统研究大豆半胱氨酸蛋白酶、V型H+-ATP酶亚基、腺苷酸脱氨酶、寡尿苷酸结合酶、Cullin、β-香树素合成酶、MADS-box蛋白、淀粉分枝酶间的相互作用,结果发现只有转化pGBKT-7-GmCASc与pGADT-7-MADS-box的酵母阳性克隆能够在SD/-Ade/-Leu/-Trp/-His平板上生长并显示β-gal活性,表明GmCASc与MADS-box之间存在相互作用,推测GmCASc与MADS-box可能在细胞凋亡信号转导通路中协同相互作用,从而引起大豆质核互作雄性不育。
Cytoplasmic-nuclear male sterility (CMS) plays an important role in the utilization of crop heterosis. It is of important significance on the theory and practice to study the genetic base and mechanism of CMS. Based on the differential proteomic studies of soybean cytoplasmic-nuclear male-sterile lines and their maintainer lines, the cloning and preliminary functional analysis of the cysteine protease gene were carried on in this paper.
     The main results were as follows:
     1. According to the mass spectrum data of the cysteine protease, a gene highly homology with the sequence of the cysteine protease was found through searching the database of soybean genome. Then the cysteine protease gene was cloned in soybean and named GmCASc.The GmCASc had an ORF of 1101 bp and encoded 366 amino acids. The molecular weight of the deduced GmCASc protein was 40.8 KD and the theoretical pi was 7.49. Homologous analysis of the amino acid sequences showed that GmCASc shared 54%, 52%,56%,44% homology with those of the caspases from Populus trichocarpa, Vitis vinifera, Ricinus communis, Oryza sativa respectively. Bioinformatics analysis indicated that GmCASc had a caspase domain and belonged to CASc superfamily. GmCASc was a non-transmembrane hydropathic protein.
     2. The expression of GmCASc in different soybean organs and under different stress conditions was analyzed by real time quantitative PCR. GmCASc was found to be expressed in root, stem, leaf and flower of soybean cytoplasmic-nuclear male-sterile lines NJCMS1A, NJCMS2A and their corresponding maintainer lines NJCMS1B, NJCMS2B. The relative expression quantity of GmCASc showed the highest level in the stem. The relative expression quantity of GmCASc in the flower of NJCMS1A was lower than that of NJCMS1B, while the relative expression quantity of GmCASc in the flower of NJCMS2A was higher than that of NJCMS2B. The expression quantity of GmCASc in the leaves acted differently under biotic and abiotic stress conditions. The GmCASc expression was down-regulated under low temperature stress, but accumulated under salt stress, SMV, and mechanical damage treatment.
     3. The yeast two-hybrid system was used to study the interations among cysteine protease, V-type H+-ATP enzyme subunit, AMP deaminase, oligouridylate bindin protein, Cullin,β-amyrin synthase, MADS -box protein, and starch branching enzyme. The results showed that only the positive yeast clone transformed with pGBKT-7-GmCASc and pGADT-7-MADS-box could grow on the SD/-Ade/-Leu/-Trp/-His plate and displayed the activity ofβ—gal. The above results showed that there was interaction between GmCASc and MADS-box. It was infered that the synergistic interaction of GmCASc and MADS-box in cell apoptosis and signal transduction might be one reason of soybean cytoplasmic-nuclear male sterility.
引文
1. Kaul M L H. Male sterility in higher plants[M]. Berlin:Springer-verlag,1988
    2. Sears E R. Cytological phenomena connected with self-sterility in flowering plants. Genetics,1937,22 (1):30-81
    3. Edwardson J R, Corbett M K. Asexual transmission of cytoplasmic male sterility. Proc Natl Acad Sci, 1961,47(5):1-6
    4. Glover J, Grelon M, Craig S, Chaudhury A, Dennis E. Cloning and characterization of MS5 from Arabidopsis:a gene critical in male meiosis. Plant J,1998,15(3):45-56
    5. Ross K J, Fransz P, Armstrong S J, Vizir I, Mulligan B, Franklin F C, Jones G H. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res,1997,(8):1-9
    6. Davis W H.Route to hybrid soybean production.U S Plant,1985
    7. Levings C S 3rd, Pring D R. Restriction endonuclease analysis of mitochondrial DNA from normal and texas cytoplasmic male-sterile maize. Science,1976,193(4):158-160
    8. Dewey R E, Timothy D H, Levings CS 3rd. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet,1991,20(6):75-82
    9. Stamper S E, Dewey R E, Bland M M, Levings C S 3rd. Characterization of the gene urfl3-T and an unidentified reading frame, ORF 25, in maize and tobacco mitochondria.. Curr Genet,1987,12(6): 57-63
    10. Bernd W.Structure-function relationship in class CA1 cyteine peptidase propeptidase[J].Acta Biochemical Polonica,2003,50(3):691-713
    11. Senatore A, Trobacher C P, Greenwood JS. Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol,2009,149(2):75-90
    12. Beers E P, Woffenden B J, Zhao C. Plant proteolytic enzymes:possible roles during programmed cell death.Plant Mol Biol,2000,44(3):399-415
    13. Ueda T, Seo S, Ohashi Y, Hashimoto J. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene. Plant Mol Biol,2000,44(5):49-57
    14. Gietl C, Schmid M. Ricinosomes:an organelle for developmentally regulated programmed cell death in senescing plant tissues. Naturwissenschaften,2001,88(2):49-58
    15. Coupe S A, Watson L M, Ryan D J, Pinkney T T, Eason J R. Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea:cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues. J Exp Bot,2004,55(394):59-68
    16. Becker C, Shutov A D, Nong V H, Senyuk V I, Jung R, Horstmann C, Fischer J, Nielsen N C, MUntzK. Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase from germinating vetch(Vicia sativa L.) seeds. Eur J Biochem,1995,228(2):56-62
    17. Muntz K, Blattner F R, Shutov A D.Legumains-a family of asparagines-specific cysteine endopeptidases involved in propolypeptide processing and protein breakdown in plants[J].Journal of Plant Phsiology,2002,159(12):1281-1293
    18. Schlereth A, Standhardt D, Mock H P, Miintz K. Stored cysteine proteinases start globulin mobilization in protein bodies of embryonic axes and cotyledons during vetch (Vicia sativa L.) seed germination. Planta,2001,212(56):18-27
    19. Mayer K, Schuller C, Wambutt R,et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature,1999,402(63):69-77
    20. Grudkowska M, Zagdanska B. Multifunctional role of plants cysteine proteinases[J].Acta Biochemical Polonica,2004,51(3):609-624
    21. Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inze D, Van Breusegem F. Type Ⅱ metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem,2004,279(44):29-36
    22. Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J,1999,19(1):43-53
    23. Jennifer T J, John E M. A salt-and dehydration-inducible pea gene,Cyp15a,encodes a cell-wall protein with sequence similarity to cysteine proteasa[J].Plant Molecular Biology,1995,28(5):1055-1065
    24. Toyooka K, Okamoto T, Minamikawa T. Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol,2000,148(3):53-64
    25. Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene,1993,129(2):75-82
    26. Hassan H,Souad A,Edward N B,et al.Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato(Lycipersicon esculentum)[J].Genome,2001,44(7):368-374
    27. Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I.Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J,1999,19(1):43-53
    28. Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve S J, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S. Gene expression in autumn leaves.Plant Physiol,2003,131(2): 30-42
    29. Noh Y S, Amasino R M. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol,1999,41(2):81-94
    30.Carol W,Michael K L,Gareth G,et al.Cysteine protease gene expression and proteolytic activity during senescence of Alstoemeria petals[J].Journal of Experimental Botany,2002,53(6):233-240
    31. Eason J R, Ryan D J, Watson L M, Hedderley D, Christey MC, Braun RH, Coupe SA. Suppression of the cysteine protease, aleurain, delays floret senescence in Brassica oleracea. Plant Mol Biol, 2005,57(5):45-57
    32. Linthorst H J, Brederode F T, van der Does C, Bol J F. Tobacco proteinase inhibitor I genes are locally, but not systemically induced by stress.Plant Mol Biol,1993,21(6):85-92
    33. Matarasso N, Schuster S, Avni A. A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-l-carboxylic Acid synthase gene expression. Plant Cell,2005,17(4):5-16
    34. Danon A, Rotari V I, Gordon A, Mailhac N, Gallois P. Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death.. J Biol Chem, 2004,279(1):79-87
    35. He R, Drury G E, Rotari V I, Gordon A, Willer M, Farzaneh T, Woltering E J, Gallois P. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem,2008,283(2):74-83
    36. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989,340(23):5-6
    37. Buck V, Allen K E, Sorensen T, Bybee A, Hijmans E M, Voorhoeve P M, Bernards R, La Thangue N B. Molecular and functional characterisation of E2F-5, a new member of the E2F family.Oncogene, 1995,11(1):1-8
    38. Brent R, Ptashne A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell,1985,43(6):729-736
    39. James P, Halladay J,Craig E A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics,1996,144(3):1425-1436
    40. Jogi A, Persson P,Grynfeld A, et al. Modulation of basic helix21ppp2helix transcription complex formation by Id proteins during neuronal differentiation[J]. J Biol Chem,2002,277 (11):9118-9126
    41. Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction.Cell,1997,90(2):929-938
    42. Liao M, Fang F. Yeast one—hybrid system one effective method study DNA—protein interaction [J].Zhongguo yi xue ke xue yuan xue bao,2000,22(4):388-391
    43. Brachmann R K, Boeke J D. Tag games in yeast:the two2hybrid system and beyond current opinion in Biotechnology,1997,8 (5):561-568
    44. Vidal M, Brachmann R K, Fattaey A, et al. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions [J]. Proc Natl Acad Sci U S A, 1996,93(19):15-20
    45. Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP21 repressor by a novel method for detecting protein-protein interaction [J]. Mol Cell Biol,1997,17 (6):3094-3102
    46. Dangl J.L. Jones J.D. Plant pathogens and integrated defence responses to infection. Nature,2001, 411(4):826-833
    47. Uren A G, O'Rourke K, Aravind L A, Pisabarro M T, Seshagiri S, Koonin E V, Dixit V M. Identification of paracaspases and metacaspases:two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell,2000,6(4):1-7
    48. Lam E. Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol,2004,5(4): 5-15
    49. Panter S, Dickman M.Programmed cell death in plants during development and stress responses[J].Cell Engineering,2004,4(6):107-152
    50. Narcin P U, Elif D B, Mehmet A T.Programmed cell death in plants[J].Journal of cell and Biology,2005,4(6):9-23
    51. del Pozo O, Lam E. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol,1998,8(24):R896
    52. De Jong A J, Hoeberichts F A, Yakimova E T, Maximova E, Woltering E J.Chemical-induced apoptotic cell death in tomato cells:involvement of caspase-like proteases. Planta,2000,211(5): 56-62
    53. Clarke A, Desikan R, Hurst R D, Hancock J T, Neill S J. NO way back:nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J,2000,24(5):67-77
    54. Tian R H,Zhang G Y,Yan C H,Dai Y R.Involvement of poly(ADP-ribose)polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobaco suspension cells. FEBS Lett, 2000,474(3):11-15
    55. Watanabe N, Lam E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem,2005,280(15): 1-9
    56. Rui H E,Georgina E D,Vitalie I R,et al.Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidop sis[J].Journal of Biological Chemistry,2008,283(2):774-783
    57. Hoeberichts F A, Ten Have A, Woltering E J. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves[J].Planta,2003,217(22):517-522
    58. Hao L, Goodwin P H, Hsiang T. Expression of a metacaspase gene of Nicotiana benthamiana after inoculation with Colletotrichum Destructivum or Pseudomonas syringae pv.tomato,and the effect of silencing the gene on the host response[J].PlantCell Rep,2007,26 (10):1879-1888
    59. Vacca R A,Valenti D,Bobba A,Merafina R S,Passarella S,Marra E.Cytochrome c is released in a reactive oxy-gen species-dependent manner and is degraded via caspase- like proteases in tobacco bright-yellow 2 cells en route to heat shock-induced cell death.Plant Physiol,2006,141(23):208-219
    60. Wang K K.Calpain and Caspase:can you tell the difference?[J].Trends Neurosic,2000,23(9):20-26
    61. Han L H, Zhao Y S,Jia X Q.Mathematical modeling identified c-FLIP as an apoptotic switch in death receptor induced apoptosis[J].Apoptosis,2008,13(6):1198-1204
    62. Reape T J, McCabe P F. Apoptotic-like regulation of programmed cell death in plants. Apoptosis, 2010,15(3):49-56
    63. Xu Q, Zhang L. Plant caspase-like proteases in plant programmed cell death. Plant Signal Behav, 2009,4(9):2-4
    64. Reape T J, McCabe P F. Apoptotic-like programmed cell death in plants.New Phytol,2008,180(1): 13-26
    65. Kusaka K,Tada Y,Shigemi T,et al.Coordinate involvement of cysteine protease and nuclease in the executive phase of plant apoptosis[J].Federation of European Biochemical Societies Letters,2004,578(3):363-367
    66. Singh V K,Wood S M,Knowles V L,et al.Phosphite accelerates programmed cell death in phosphate-starved oilseed rape(Brassica napus) suspension cell culture[J].Planta,2003,218(2):233-239
    67. Mazal S,Beatrice B,Massimo D,et al.The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants[J].The Plant Cell,1999,11(3):431-443
    68. Rogers H J. Cell death and organ development in plants. Curr Top Dev Biol,2005;71(4):25-61.
    69. Liu X Q, Xu X, Tan Y P, Li S Q, Hu J, Huang J Y, Yang D C, Li Y S, Zhu Y G. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativaL.). Mol Genet Genomics,2004,271(5):86-94
    70.朱英国.水稻雄性不育生物学[M].武汉大学出版社.2000
    71.曾维英.大豆质核互作雄性不育系和保持系的差异蛋白质组研究[D].南京农业大学,2007
    72.张启发.中国科学家阐明Boro Ⅱ型水稻细胞质雄性不育和育性恢复的分子机理.分子植物育种,2006,4(4):451-452
    73.孙寰,赵丽梅,黄梅.大豆质-核互作不育系研究[J].科学通报,1993,38(16):1535-1536
    74.丁德荣,盖钧镒,崔章林,杨守萍,邱家驯.大豆质核互作雄性不育系NJCMS1A及其保持系NJCMS1B的选育与验证[J].科学通报,1998,43(17):1901-1902
    75.白羊年,盖钧镒.大豆质核互作雄性不育系NJCMS1A恢复源与保持源的鉴定[J].大豆科学,2003,22(03):161-165
    76.盖钧镒,丁德荣,崔章林,邱家驯.大豆质核互作雄性不育系NJCMS1A的选育及其特性[J].中国农业科学,1999,32(5):23-27
    77.丁德荣,盖钧镒.南方地区大豆雄性不育材料的传粉[J].大豆科学,2000,19(1):74-79
    78.董建生,杨守萍,喻德跃,盖钧镒.大豆质核互作雄性不育系NJCMS2A的育性恢复性遗传和育性恢复基因的SSR标记[J].大豆科学,2008,27(2):181-185
    79.赵团结,盖钧镒.大豆不育细胞质资源的发掘与鉴定[J].作物学报,2006,32(11):1604-1610
    80.李磊,杨庆芳,胡亚敏,祝利海,葛浩新.栽培大豆双亲基因互作型不育材料的发现及其遗传推断[J].安徽农业科学.1995,23(2):301-306
    81.陈培,张磊.大豆质核互作雄性不育系W931A及其保持系不同器官的可溶性蛋白的电泳分析[J].种子,2009,28(10):33-35
    82.许占友,李磊,常汝镇,邱丽娟,汀茂斌,李智,于伟,李向华.大豆质核互作雄性不育系核不育基因的遗传分析[J].中国农业科学,1999,32(增刊):1-8
    83.张磊,戴瓯和,黄志平,李杰坤.大豆质核互作M型雄性不育系的选育及其育性表现[J].中国农业科学,1999,32(04):24-32
    84.张磊,戴瓯和,张丽亚.大豆质核互作雄性不育系W-(945)A、W_(948)A的选育[J].大豆科学,1999,18(04):327-330
    85.张磊,黄志平,李杰坤.大豆M型质核互作雄性不育恢复基因的遗传研究[J].安徽农业科学,2007,35(9):2513-2515
    86.汤复跃,周立人,程潇,张磊,陈培,江莹芬.大豆M型细胞质雄性不育恢复基因SSR标记初步定位[J].大豆科学,2008,27(3):383-386
    87.赵丽梅,孙寰,黄梅.大豆细胞质雄性不育系ZA的选育和初步研究[J].大豆科学,1998,17(3):268-270
    88.赵丽梅,王玉民,孙寰.大豆细胞质雄性不育恢复基因的SSR标记[J].大豆科学,2007,26(6):835-839
    89.李文斌,华子春.胞浆死亡信号衔接蛋白FADD[J]药物生物技术,2003,10(5):317-324
    90.任会荣,钱令嘉.线粒体通透性转换孔、细胞色素与细胞凋亡[J].生命的化学,2002,22(4):316-318
    91.穆蕊,张方东,郑用琏,张祖新.玉米CMS-S小孢子败育过程中的细胞程序性死亡[J].作物学报,2006,32(5):666-670
    92.孙清萍,汪莉,易平,朱英国.红莲型水稻不育系统花粉发育不同时期MADS-box基因家族的表达分析[J].武汉植物学研究,2002,20(5):325-328
    93.袁自强,钱晓茵,刘军,刘建东,钱旻,杨金水.两个水稻MADS盒基因cDNA的克隆与分析[J].自然科学进展,2002,10(2):129-134
    94.周琳磷,宋国琦,李红燕,胡银岗,何蓓如.一个与小麦雄性不育育性转换相关的MADS-box转录因子基因[J].作物学报,2008,34(4):598-604
    95.韩利涛.大豆细胞质雄性不育系与保持系基因差异表达的cDNA-AFLP分析及atp6基因RNA编辑研究[D].南京农业大学,2009
    96.李红霞.黏型小麦雄性不育系育性相关基因的遗传分析与表达谱研究[D].西北农林科技大学,2008
    97.李红燕.YM型小麦温敏雄性不育系育性转换特性及分子机理研究[D].西北农林科技大学,2009
    98.汪立法.甜菜M14品系特异表达基因M14-341在模式植物中的表达研究[D].黑龙江大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700