荣昌猪BPI基因全长cDNA克隆及SNP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杀菌通透性增强蛋白(bactericidal/permeability-increasing protein,BPI)是人和哺乳动物内源性阳离子蛋白质,主要存在于多形核白细胞的嗜苯胺蓝颗粒中。它具有很强的杀菌(主要指革兰氏阴性细菌)活性、中和内毒素或脂多糖(lipopolysaccharide,LPS)活性和调理功能,在动物机体天然防御中起到很重要的作用。目前,人、牛、鼠的BPI基因序列都已清楚,但猪BPI基因全长cDNA序列未知。此外,人BPI基因外显子3和4区域存在多态性,猪BPI基因第4和10外显子的RFLP多态性与沙门氏菌的易感性有关,并被确定为抗病育种的候选基因。而被联合国粮农组织列为重点保护猪种的荣昌猪,其BPI基因外显子3和4区域的多态性还有待研究。
     本试验拟克隆出荣昌猪BPI基因的全长cDNA序列,并应用聚合酶链式反应-单链构象多态性(polymerase chain reaction-single strand conformation polymorphism,PCR-SSCP)技术,检测其第3和4外显子的单核苷酸多态性(single nucleotide polymorphism,SNP)位点。这些结果的获得,不仅可以为猪BPI功能研究、荣昌猪BPI基因多态性提供基础数据,而且对进一步寻找到合适的抗病育种或相关分子标记、分析BPI基因多态性与荣昌猪抗病力的相关性利荣昌猪的保种选育等研究具有基础贡献意义。
     试验的方法及技术路线:
     (1)荣昌猪BPI基因全长cDNA克隆及生物信息学分析:
     首先选取一头100日龄左右健康的荣昌猪,提取其前腔静脉血总RNA,然后进行RT-PCR得到cDNA第一链;再根据同源性克隆方法,结合3′-和5′-cDNA末端快速扩增(Rapid amlification of cDNA ends,RACE)技术,分别克隆出荣昌猪BPI序列的中间编码区序列、3′-非编码区序列(untranslated region,UTR)和5′-UTR;拼接出全长cDNA序列,并进行序列比对、结构功能预测等生物信息学分析鉴定。
     (2)荣昌猪BPI基因第3和4外显子序列SNP位点分析:
     随机选取120头健康的荣昌猪,提取其耳组织基因组DNA,再以其为模板扩增出第3和4外显子序列;PCR产物经12%聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,PAGE),120V,4℃持续14h,然后银染显带;统计不同带型出现的频率(即基因型频率)和等位基因频率,并将显示不同带型的PCR扩增产物克隆测序;最后根据测序结果比对分析出外显子3和4区段存在的SNP位点,并根据这些SNP位点在等位基因中的分布和等位基因频率,计算出各SNP位点的优势碱基频率。
     试验结果与结论:
     (1)本试验首次克隆得到了荣昌猪BPI基因全长cDNA序列,也是猪BPI基因全长cDNA序列的首次报道,其Genebank登录号为:EF436278。序列比对和结构功能预测显示,荣昌猪BPI同人、牛等物种BPI具有相似的结构和功能。
     (2)本试验应用PCR-SSCP分析方法,在荣昌猪BPI基因外显子3区段检测到一个新的SNP位点,即第397位的G→A突变,引起氨基酸由Arg替换为Gln,且产生带正电荷的Arg的碱基G为该位点的优势碱基,频率为0.7417。该位点的突变可能对荣昌猪BPI蛋白功能及机体天然免疫力有重要影响。外显子4区段共检测到4个SNP位点,它们是T512C,G551T,C563T,G599A。其中T512C,G551T,C563T为首次报道,G551T突变还产生了一个新的限制性内切酶MscⅠ或BalⅠ酶切位点(TGG/CCA)。第512、551、563、599位的优势碱基分别为C、G、C、G,出现的频率分别为0.6334,0.725,0.725,0.7501。此外,通过荣昌猪外显子4序列与猪EST序列比对分析,还发现了一个第479位的T→C突变。荣昌猪BPI基因外显子4区段的高度多态性,表明该区段有较大的遗传选择潜力。
     通过分析推断,本试验检测到的外显子3和4区段的某些SNP位点,可能成为猪机体抗某些革兰氏阴性病原菌或其引起的疾病的分子标记。
Bactericidal/permeability-increasing protein (BPI) is a highly cationic protein which is located mainly in the primary granules of polymorphonuclear leucocyte (PMN). BPI has a high affinity for LPS of Gram-negative bacteria. Binding of BPI to susceptible bacteria is followed by increasing outer membrane permeability, inhibition of growth and ultimately, irreversible loss of viability. In addition, BPI also possesses an opsonic function. Because of these important functions, BPI plays an important role in host initial defense. At present, the full-length cDNA sequences of BPI gene has been elucidated in several species, including human, bovine, brown rat and mouse, but not in pig. In addition, several polymorphic sites were found in exons 3 and 4 of human BPI gene. It has been shown that the restriction fragment length polymorphism (RFLP) sites in exons 4 and 10 of porcine BPI gene are related to the susceptibility of Salmonella cholerasuis in several pig breeds. The porcine BPI gene was considered as a candidate gene of breeding for disease resistance. However, the polymorphism of exons 3 and 4 in Rongchang pig BPI gene, a stress preserving pig breed by Food and Agriculture Organization of United Nations, is unclear.
     In this study, the full-length cDNA of Rongchang pig BPI gene was cloned and the SNP sites in exons 3 and 4 of this gene were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. There results will offer some basic data to the function studying of porcine BPI, the association research between BPI gene polymorphism and the disease resistance of Rongchang pig and the breeding and preservation of Rongchang pig. Some useful molecular markers of breeding for disease resistance are also expected to find in the possible SNP sites.
     The main technical route and methods of this work were carried out as follows:
     (1) Cloning and analysis of the full-length cDNA of BPI gene in Rongchang pig:
     Firstly, about 5 ml anticoagulant peripheral blood was gained from a 100d healthy Rongchang pig, the total RNA from this blood was extracted using the RNA extraction kit. Then the RNA was taken to convert mRNAs into cDNA. Following, the coding sequence, 3'-UTR and 5'-UTR of Rongchang pig BPI were cloned using homology cloning approach combined with 3' and 5' RACE. Finally, the full-length cDNA of Rongchang pig BPI gene was obtained by overlapping the three sequences. Assessment and analysis of the full-length sequence were done by bioinformatics methods.
     (2) SNP analysis of the exons 3 and 4 of Rongchang pig BPI gene:
     Firstly, the genomic DNA was extracted from 120 healthy Rongchang pigs' ear tissues. And the exons 3 and 4 fragments were amplified using the genomic DNA templates. Then these PCR products were detected by polyacrylamide gel electrophoresis (PAGE) at 120 V for 14 h at 4℃, and gels were developed with silver staining. The PCR products showing different patterns were purified and cloned into pMD18T vector for sequencing. Finally, the frequencies of difference genotypes were accounted and the allelic genes frequencies were calculated according to the former result. Further more, the SNP sites in exons 3 and 4 were found by sequence alignment of different allelic genes. Frequencies of the bases with higher appearance frequency in these SNP sites were calculated according to the distribution of SNP sites in all the allelic genes.
     The results and conclusions of this study were list as follows:
     (1) The full-length cDNA of Rongchang pig BPI gene was cloned for the first time in this study and it was also the first time reporting the full-length cDNA of porcine BPI gene. Its GeneBank accession number is EF436278. The structure and function of Rongchang pig BPI were similar to those of human, bovine and other species' BPI by sequences alignment and structure and function prediction.
     (2) There was one novel SNP (G397A) detected in the exon 3 of Rongchang pig BPI gene by PCR-SSCP. This mutation made Arg101Gln substitution and the base with higher appearance frequency in this SNP site is base G. Its appearance frequency is 0.7417. In the exon 4 fragment, three novel (T512C, G551T, C563T) of four SNPs (T512C, G551T, C563T, G599A) were detected and all of the SNPs were synonymous substitutions. The bases with higher appearance frequency in these SNP sites were base C, G, C and G and their appearance frequency were 0.6334, 0.725, 0.725 and 0.7501 respectively. In addition, another novel SNP (T479C) in exon 4 was found by aligning exon 4 sequence with porcine ESTs. The affluent polymorphism of exon 4 indicate its huge potentiality in genetic selection.
     Some of the SNP sites detected in this study may be important molecular markers of porcine disease resistance, specifically resistant to Gram-negative bacterias and its caused diseseses.
引文
[1] Fujii J, Otsu K, Zor zato F, et al. Identification of a mutation in porcine rynodine receptor associated with malignant hythermia. Science, 1991,253: 448-451.
    
    [2] Harbitz I, Kristensen T, Bosnes M, et al. DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615-Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian landrace pigs. Anim Genet.1992, 23(5):395-402.
    
    [3] Brenig B, Brem G. Molecular cloning analysis of the porcine "halothane" gene. Arch Tierz. 1992; 35: 129-35.
    
    [4] Markus Wehner, Henrik Rueffert, Fritjoff Koenig, et al. Functional characterization of malignant hyperthermia-associated RyR1 mutations in exon 44, using the human myotube model. Neuromuscular Disorders. 2004, 14: 429-437.
    
    [5] Erickson A K, Baker D R, Bosworth B T, et al. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins. Infect Immun. 1994, 62 (12): 5404-5410.
    
    [6] Jin L Z, Marquardt R R, Baidoo S K, Frohich A A. Characterization and purification of porcine small intestinal mucus receptor for Escherichia coli K88ac fimbrial adhesion. Immunol Med Microbiol. 2000, 27 (1): 17-22.
    
    [7] Sellwood R, Gibbons RA, Jones GW, et al. Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. J Med Microbiol. 1975, 8 (3):405-11.
    
    [8] Bertschinger HU, Stamm M, Vogeli P. Inheritance of resistance to oedema disease in the pig: experiments with an Escherichia coli strain expressing fimbriae 107. Vet Microbiol. 1993, 35 (1-2):79-89.
    
    [9] Gibbons RA, Sellwood R, Burrows MR, et al. Inheritance of resistance to neonatal E.coli diarrhoea in the pig: examination of the genetic system. Theor Appl Genet. 1977, 51: 65-70.
    
    [10] Bijlsma IG, Bouw J. Inheritance of K88-mediated adhesion of Escherichia coli to jejunal brush borders in pigs: a genetic analysis. Vet Res Commun. 1987, 11(6): 509-18.
    
    [11] Jorgensen CB, Cirera S, Anderson SI, et al. Linkage and comparative mapping of the locus controlling susceptibility towards E.coli F4ab/ac diarrhoea in pigs. Cytogenet Genome Res. 2003, 102 (1-4): 157-62.
    
    [12] Philippe A. Grange, Alan K. Erickson, Steven B. Levery, et al. Identification of an intestinal neutral glycosphingolipid as a phenotype-specific receptor for the K88ad fimbrial adhesin of Escherichia coli. Infect Immun. 1999, 67 (1): 165-172.
    
    [13] Python P, Jorg H, Neuenschwander S, et al. Inheritance of the F4ab, F4ac and F4ad E.coli receptors in swine and examination of four candidate genes for F4acR. J Anim Breed Genet. 2005,122 Suppl 1:5-14.
    
    [14] Michaels RD, Whipp SC, Rothschild MF. Resistance of Chinese Meishan, Fengjing, and Minzhu pigs to the K88ac strain of Escherichia coli. Am J Vet Res. 1994, 55 (3): 333-8.
    [15] Grange P, Vedrine B, Mouricout M. Adhesion of K88ab fimbriated E. coli in piglet small intestines in relation with iron transport molecules. Adv Exp MedBiol. 1997, 412: 357-61.
    [16] 刘鑫,施启顺,柳小春,等.不同猪种肠毒性大肠杆菌(ETEC)F4受体的微卫星标记遗传效应分析.遗传,2006,28(8):945—948.
    [17] Vogeli P, Kuhn B, Kuhne R, et al. Evidence for linkage between the swine L blood group and the loci specifying the receptors mediating adhesion of K88 Escherichia coli pilus antigens. Anim Genet. 1992, 23(1):19-29.
    [18] Vogeli P, Bertschinger HU, Stamm M, Genes specifying receptors for F18 fimbriated Escherichia coli, causing oedema disease and postweaning diarrhoea in pigs, map to chromosome 6. Anim Genet. 1996, 27(5): 321-8.
    [19] Meijerink E, Fries R, Vogeli P, et al. Two α (1, 2) fucosyl transferase genes on porcine chromosome 6q1.1 are closely linked to the blood group inhibitor(S) and Escherichia coli F18 receptor (ECF_(18)R) loci. Mammalian Genome. 1997, 8: 736~741.
    [20] Edwin Meijerink, Stefan Neuenschwander, Ruedi Fries, et al. A DNA polymorphism influencing α (1, 2) fucosyl transferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichla coli F18 adhesin. Immanogenetics. 2000, 52 (1-2): 129-136.
    [21] 姜勋平,刘永刚,熊远著,等.猪futl基因对肉质和胴体性状的影响.遗传,2005,27(4):566-570.
    [22] Ridker PM, Cook NR, Cheng S, et al. Alanine for proline substitution in the peroxisome proliferators activated receptor gamma-2 (PPARG2) gene and the risk of incident myocardial infarction. Arterioscler Thromb Vasc Biol. 2003, 23 (5): 859-63.
    [23] Doney AS, Fischer B, Cecil JE, et al. Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes. Diabetologia. 2004, 47(3): 555-8.
    [24] Weiss J, Elsbach P, Olsson I, et al. Purification and partial characterization of a potent bactericidal and membrane-active protein from granules of human polymorphonuclear leukocytes. J Biol Chem. 1978,253 (8):2664-72.
    [25] Elsbach P. The bactericidal/permeability-increasing protein (BPI) in antibacterial host defense. J Leukoc Biol, 1998, 64: 14-18.
    [26] Elsbach P, Weiss J. Bactericidal/permeability increasing protein and host defense against gram-negative bacteria and endotoxin. Curr Opin lmmunol. 1993, 5(1): 103-7.
    [27] Gray PW, Corcorran AE, Eddy RL Jr. The genes for the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI) are encoded in the same region of human chromosome 20. Genomics. 1993, 15(1): 188-90.
    [28] Beamer LJ, Carroll SF, Eisenberg D. Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science. 1997, 276 (5320): 1861-1864.
    [29] Beamer LJ, Carroll SF, Eisenberg D. The three-dimensional structure of human bactericidal/permeability-increasing protein: implications for understanding protein-lipopolysaccharide interactions. Biochemical Pharmacology, 1999, 57(3): 225-229.
    [30] Beamer LJ, Carroll SF, Eisenberg D. The BPI/LBP family of proteins: A structural analysis of conserved regions. Protein Sci. 1998, 7(4): 906-914.
    [31] Taylor AH, Heavner G, Nedelman M, et al. Lipopolysaccharide (LPS) neutralizing peptides reveal a lipid A binding site of LPS binding protein. J Biol Chem. 1995, 270:17934-17938.
    [32] Lamping N, Hoess A, Yu B, et al. Effects of site-directed mutagenesis of basic residues (Arg 94,Lys 95, Lys 99) of lipopolysaccharide (LPS)-binding protein on binding and transfer of LPS and subsequent immune cell activation. J Immunol. 1996, 157: 4648-4656.
    [33] Weiss J, Beckerdite-Quagliata S, Elsbach P. Resistance of gram-negative bacteria to purified bactericidal leukocyte proteins: relation to binding and bacterial lipopolysaccharide structure. J Clin Invest. 1980, 65(3): 619-28.
    [34] Mannion BA, Weiss J, Elsbach P, Separation of sublethal and lethal effects of polymorphonuclear leukocytes on Escherichia coli. J Clin Invest. 1990, 86(2): 631-41.
    [35] Chean Eng Ooi, Jerrold Weiss, Peter Elsbach, et al. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/Permeability-increasing protein. Journal of Biological Chemistry. 1987, 262 (31): 14891-14894.
    [36] Jaroslav A. Hubacek, Christa Buchler, Charalampos Aslanidis, et al. The genomic organization of the genes for human lipopolysaccharide binding protein (LBP) and bactericidal permeability increasing protein (BPI) is highly conserved. Biochemical and Biophysical Research Communications. 1997, 236: 427-430.
    [37] Nicole M. Iovine, Peter Elsbach, Jerrold Weiss. An opsonic function of the neutrophil bactericidal/permeability increasing protein depends on both its N- and C-terminal domains. Proc. Natl. Acad. Sci. USA. 1997, 94: 10973-10978.
    [38] Christopher K Tuggle, Thomas J Stabel, Xianwei Shi, et al. Genetic markers for improved disease resistance in animals (BPI). United States, Kind Code: A1, Patent Application: 20040234980, 2004 Nov 25.
    [39] 周红,郑江,肖光夏.猪源杀菌性通透增加蛋白对革兰氏阴性菌的作用.中华传染病杂志,1992,17(1):47-48.
    [40] 周红,袁建成,周立新,等.杀菌性/通透性增加蛋白中和内毒素的作用的体内外研究.中华医学杂志,1999,79(4):304-305.
    [41] 周红,郑江,秦孝建,等.抗人BPI抗体对猪源BPI体外生物活性的增强作用.第三军医大学学报,2002,24(1):76—78.
    [42] Vidal SM, Malo D, Vogan K, et al. Natural resistance to infection with intracellular parasites isolation of a candidate gene for Beg. Cell. 1993, 73: 469-485.
    [43] Barton CH, White JK, Roach TIA, et al. NH2 terminal sequence of macrophage-expressed natural resistance associated macrophage protein (Nramp) encodes a prolin/serine-rich putative Ser homology 3-bingding domain. J Exp Med. 1994, 179: 1683-7.
    [44] Cellier M, Shustik C, Dalton W, et al. The human NRAMPI gene, as a marker of professional primary phagocytes: studies in blood cells, and in HL-60 promyelocytic leukemia. J Leukoc Biol. 1997, 61: 96-105.
    [45] Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997, 388 (6641):482-8.
    [46] Cellier M, Govoni G, Vidal S, et al. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med. 1994, 180 (5): 1741-52.
    [47] Mock B, Krall M, Blackwell J, et al. A genetic map of mouse chromosome I near the Lsh-Ity-Bcg disease resistance locus. Genetics. 1990, 7: 57-64.
    [48] Sun HS, Wang L, Rothschild MF, et al. Mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) gene to pig chromosome 15. Anim Genet. 1998, 9 (2): 138-40.
    [49] Vidal SM, Tremblay ML, Govoni G, et al. The Ity/Lsh/Bcg locus resistance to infection with intracellular parasites is abrogated by disruption of the Nrampl gene. J Exp Med. 1995,182:655-666.
    [50] Hu J, Bumstead N, Barrow P, et al. Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res. 1997, 7(7): 693-704.
    [51] Isaacs a, Lindenmann J. Virus interference. I. The interferon. Proc R Soc LondB Biol Sci. 1957 Sep 12; 147 (927): 258-67.
    [52] Isaacs A, Lindenmann J, Valentine RC. Virus interference. Ⅱ. Some properties of interferon. Proc R Soc Lond B Biol Sci. 1957 Sep 12; 147 (927): 268-73.
    [53] Domeika K. Porcine immunoregulatory cytokines. With special reference to their induction by CpG-containing DNA. Doctor's dissertation. Swedish University of Agricultural Sciences. Uppsala, 2003.
    [54] Vilcek J. Novel interferons. Nat ImmunoL 2003 Jan; 4(1):8-9.
    [55] 万建青,吴文学,夏春.毕赤酵母表达猪干扰素-γ基因及其抑制蓝耳病病毒效果.生物工程学报,2002,18(6):683—686.
    [56] Suradhat S, Intrakamhaeng M, Damrongwatanapokin S. The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection. Vet Immunol Immunopathol. 2001 Dec; 83(3-4):177-89.
    [57] Chinsangaram J, Piccone ME, Grubman MJ, et al. Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. J Virol. 1999 Dec; 73(12): 9891-8.
    [58] Masutani K, Miyake K, Nakashima H, et al. Impact of interferon-gamma and interleukin-4 gene polymorphisms on development and progression of IgA nephropathy in Japanese patients. Am J Kidney Dis. 2003 Feb; 41(2):371-9.
    [59] Lopez-Maderuelo D, Arnalich F, Serantes R, et al. Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med. 2003, 167(7): 970-5.
    [60] Lindenmann J. Resistance of mice to mouse-adapted influenza A virus. Virology. 1962, 16:203-4.
    [61] Lee SH, SilviaM. Functional diversity of Mx proteins: variations on a theme of resistance to infection. Genome Reserch. 2002, 12(4): 527-530.
    [62] Nagata K, Mibayashi M. The Mx protein that confers the resistance to influenza virus. Nippon Rinsho. 1997, 55 (10): 2654-2659.
    [63] Jae-Hong Ko, Hee-Kyung Jin, Atsushi Asano, et al. Polymorphisms and the differential antiviral activity of the chicken Mx Gene. Genome Res. 2002, 12: 595-601.
    [74] Muller M, Winnacker E L, Brem G. Molecular cloning of porcine Mx cDNAs: new members of a family of interferon inducible proteins with homology to GTP binding proteins. J Interferon Res. 1992, 12:119-129.
    [75] Thomas AV, Palm M, Broers AD, et al. Genomic structure, promoter analysis, and expression of the porcine (Sus scrofa) Mx1 gene. Immunogenetics. 2006, 58 (5-6): 383-9.
    [66] Morozumi T, Sumantri C, Nakajima E et al. Three types of polymorphisms in exon 14 in porcine Mx1 gene. Biochem Genet. 2001, 39 (7-8): 251-60.
    [67] Chung HK, Lee JH, Kim SH et al. Expression of interferon-alpha and Mx1 protein in pigs acutely infected with porcine reproductive and respiratory syndrome virus (PRRSV). J Comp Pathol. 2004, 130(4):299-305
    [68] Asano A, Ko JH, Morozumi T, et al. Polymorphisms and the antiviral property of porcine Mx1 protein. Journal of Veterinary Medical Science, 2002, 64(12): 1085-1089.
    [69] Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005 Jun; 6(6):551-7.
    [70] Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995, 374(1): 1-5.
    [71] Hashimoto C, Hudson K L, Anderson K V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmemhrane protein. Cell. 1988, 52: 269-279.
    [72] Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86: 973-983.
    [73] Medzhitov R, Preston-Hurlburt P, Janeway C A. A human homologue of the droacphila toll protein signals activation of adaptive immunity. Nature. 1997, 388 (6640): 394-397.
    [74] Zarember K A, Godowski P J. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol, 2002, 168(2): 554-561.
    [75] Delneste Y, Beauvillain C, Jeannin P. Innate immunity: structure and function of TLRs. Med Sci (Paris). 2007 Jan; 23(1):67-73.
    [76] Sin BP, Chauhan RS, Singhal LK. Toll-like receptors and their role in innate immunity. Current Science. 2003, 85 (8): 1156-1164.
    [77] Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003, 21: 335~376.
    [78] Aldra S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol, 2004, 4 (7): 499~511.
    [79] Qureshi ST, Lariviere L, Leveque G, et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med. 1999, 189 (4): 615-25.
    [80] Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999, 162 (7): 3749-52.
    [81] Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and gram-positive bacterial cell wall components. Immunity. 1999, 11(4): 443-51.
    [82] Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000 Jun; 25(2): 187-91.
    [83] Thomas AV, Broers AD, Vandegaart HF, et al. Genomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene. Molecular Immunology, 2006, 43(6): 653-659.
    [84] Echard G, Yerle M, Gellin J, et al. Assignment of the major histocompatibility complex to the p1.4----q1.2 region of chromosome 7 in the pig (Sus scrofa domestica L.) by in situ hybridization. Cytogenet Cell Genet. 1986, 41(2): 126-8.
    [85] Oddgeirsson O, Simpson SP, Morgan AL, et al. Relationship between the bovine major histocompatibility complex (BoLA), erythrocyte markers and susceptibility to mastitis in Icelandic cattle. Anim Genet. 1988, 19(1): 11-6.
    [86] Mallard BA, Leslie KE, Dekkers JC, et al. Differences in bovine lymphocyte antigen associations between immune responsiveness and risk of disease following intramammary infection with Staphylococcus aureus. JDairy Sci. 1995, 78(9):1937-44.
    [87] Bacon LD, Witter RL. Influence of turkey herpesvirus vaccination on the B-haplotype effect on Marek's disease resistance in 15.B-congenic chickens. Avian Dis. 1992, 36 (2): 378-85.
    [88] Klaus Wimmersl, Karl Schellander, Siriluck. Ponsuksili. BF, HP, DQB and DRB are associated with haemolyticcomplement activity, acute phase protein reaction and antibody response in the pig. Veterinary Immunology and Immunopathology. 2004, 99:215-228.
    [89] Fuxiang Chen, Jin Xie, Yun Zhou, et al. Novel SLA-DR Alleles of Three Chinese Pig Strains and the Related Function in Human T Cell Response. Cellular& Molecular Immunology. 2004, 1(3): 212-218.
    [90] Tissot RG, Beattie CW, Amoss MS Jr. The swine leucocyte antigen (SLA) complex and Sinclair swine cutaneous malignant melanoma. Anim Genet. 1989, 20(1):51-7.
    [91] Lunney JK, Murrell KD. Immunogenetic analysis of Trichinella spiralis infections in swine. Vet Parasitol. 1988, 29(2-3): 179-93.
    [92] 方美英,胡晓湘,李宁,等.小梅山、中梅山及大约克猪的SLA-DQB基因外显子2 RFLP多态性分析.遗传学报,2002,29(8):685-687.
    [93] 徐如海,王昆,孙东晓,等.猪MHC-DQB、DRB近端调控区序列及其多态性.遗传,2005,32(3):282-288.
    [94] 吴谡琦,张进兴,洪旭光,等.分子标记技术的进展及其应用.高技术通讯,2001,4:99-103.
    [95] 刘云国,陈松林,李八方,等.DNA分子标记在水生动物遗传学上的研究进展.海洋科学,2005,29(10):58-64.
    [96] 魏丕芳,于慧,李同树,等.标记辅助选择在动物育种中的应用.山东农业大学学报(自然科学版),2006,37(2):316-318.
    [97] Botstein D, White R L, Skolnick M H, et al. Construction of a genetic linkage map on men using restriction fragment length polymorphisms. Am J Hum Genet, 1980, (32): 314-331.
    [98] 刘云芳,剡根强,王新.RFLP技术在动物遗传育种中的应用.内蒙古畜牧科学,2002,2:17-19.
    [99] 汤复跃,周立人.RAPD和RFLP在大豆研究中的有关进展.安徽农学通报,2006,12(6):52-53.
    [100] 雷初朝,陈宏,杨公社.中国部分黄牛品种mtDNA遗传多态性研究.遗传学报,2004,31(1):57-62.
    [101] 何志平,吕学斌,陈晓晖.利用PCR-RFLP技术测定种猪的氟烷基因型.西北农林科技大学报(自然科学版),2002,30(2):48-50.
    [102] Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaxyotic genomes. Nucl Acids. 1984, 12: 4127-4138.
    [103] Jeffrey A J. Hyper variable minisatellite regions in human DNA. Nature. 1985, 314: 67-73.
    [104] 狄冉,马月辉.微卫星遗传标记及其在绵、山羊中的研究进展.家畜生态学报,2006,27(1):96-100.
    [105] Su Xin zhuan, Ferdig Michael T, Huang Yarning, et al. A genetic map and recombination parameters of the human malaria parasite Plasmedium falciparum. Science. 1999, 256(5443): 1351-1353.
    [106] 赵宗胜,王根林,马玉萍,等.绵羊微卫星标记与部分毛用性状的关系研究.畜牧兽医学报,2006,37(9):864-869.
    [107] 席瑞珍,李建丽,马仲彬,等.微卫星DNA的研究进展.上海畜牧兽医通讯,2004,4:2-4.
    [108] Takahashi H. Characterzation of swine short interspersed repetitive sequence. Anim Genet, 1992, 23: 443-448.
    [109] 管峰,杨利国,曹少先.DNA指纹技术及其在动物遗传育种中的应用.中国草食动物,2003,23(4):40-42.
    [110] Williams JG K, Kubelik A R, Kivak K J, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 1990, 18:6531-6535.
    [111] Pooler M R, Scroza R. Inheritance and reliability of RAPD markers in mapping and genetic distance studies in peach. Ort Sci,1993, 8: 208-215.
    [112] 张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998,5:15-22.
    [113] 黄勇富.中国主要地方猪种遗传多样性及起源分化研究:[四川农业大学博士论文].四川雅安:四川农业大学,1996.
    [114] Zabeau M. Selective restriction fragment amplication: ageneral method for DNA finger printing. Euro-pean Pattern Application, 1993, 5: 348-358.
    [115] 江昱.动物育种中AFLP分子标记技术的应用.西南民族大学学报.自然科学版,2004,30(2):205-209.
    [116] 鄢绯寰,左正宏,陈美,等.我国部分家鸭和野鸭遗传多样性及亲缘关系的AFLP分析.厦门大学学报:自然科学版,2005,44(5):729-733.
    [117] Ziegle J, Weller J, Kuiper M, et al. AFLP map of the dog. genome. Animal Genetics. 1996, 27(Suppl. 2): 71.
    [118] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as singe-strand conformation polymorphisms. Proc Natl Acad Sci USA. 1989, 86 (8): 2766-2770.
    [119] 王全喜.蒙古马MSTN基因克隆及序列分析和部分品种多态性研究:[蒙古农业大学博士论文].内蒙古呼和浩特:内蒙古农业大学,2005.
    [120] 薛燕,常洪,常国斌.PCR-SSCP技术在动物育种中的研究进展.畜牧兽医杂质,2005,24(3):21-24.
    [121] 丁国杰,刘娣,李景芬.猪Mrf5基因外显子1的多态性分析.江苏农业科学,2006,3:125-127.
    [122] 张冬杰,杨国伟,刘娣.猪雌激素受体基因(ESR)一个新多态位点的发现.遗传,2005,28(1):36-38.
    [123] Collins F S, Brooks L D, Chakravartic A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res, 1998, 8(12): 1229-1231.
    [124] 杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展.中国医学抖学院学报,2000,22(4):392-394.
    [125] Li W, Sadler LA. Low nucleotide diversity in man. Genetics. 1991, 129: 513-523.
    [126] Syvanen AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet. 2001 Dec; 2(12):930-42.
    [127] 周娟娟,洪素云.单核苷酸多态性的研究应用进展.现代免疫学,2004,24(6):523-525.
    [128] Fodor SP, Read JL, Pirrung MC, et al. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991, 251(4995):767-73.
    [129] 李凌,马文丽.DNA芯片技术研究进展.中国生物化学与分子生物学报,2000,16(2):151-155.
    [130] Shalon D, Smith S J, Brown PO, et al. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genonme Res. 1996, 6(7): 639-645.
    [131] Marshall A, Hodgson J. DNA chips: An array of possibilities. Nat Biotechnol. 1998, 16(1): 27-31.
    [132] 肖驰,曹三杰,文心田,等.PRRS-CSF-PCV2诊断DNA芯片构建研究.畜牧兽医学报,2006,37(8):799-803.
    [133] 沈俊儒,吴建勇,张剑,等.甘蓝型油菜华油杂6号及其亲本的基因差异表达研究.中国农业科学,2006,39(1):23-28.
    [134] Einbond LS, Su T, Wu HA, et al. Gene expression analysis of the mechanisms whereby black cohosh inhibits human breast cancer cell growth. Anticancer Res. 2007, 27 (2): 697-712.
    [135] 徐俊杰,徐静,王海涛.人、猴、兔BPI活性部位基因的克隆和序列分析.微生物免疫学进展,2001,29(4):15-17.
    [136] F.M.奥斯伯,R.E.金斯顿,J.G.塞德曼,等.精编分子生物学实验指南.第四版,北京:科学出版社,2005,25-26.
    [137] Kozak M. An analysis of 5'-noncoding sequence from 669 vertebrate messenger RNAs. Nucleic Acids Res. 1987, 15 (20): 8125-8148.
    [138] http://lau.ExPASy.org/tools/pi_tool.html
    [139] www.expasy.ch/tools/protparam.html
    [140] www.cbs.dtu.dk/services/SignalP/
    [141] www.predictprotein.org/
    [142] http://swissmodel.expasy.org//SWISS-MODEL.html
    [143] http://expasy.org/prosite/
    [144] http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
    [145] 杨远萍,刘春,王子龙,等.家蚕组织蛋白酶D基因的克隆、序列分析及其表达谱研究.昆虫学报,2006,49(2):172-178.
    [146] 张德礼,丁培国,凌伦奖,等.人类新基因C17orf32的电子克隆和编码区序列RT-PCR验证.生物化学与生物物理进展,2002,29(4):543-549.
    [147] 张义,邹雄,单宁宁.介绍一种外周血单个核细胞RNA提取方法.临床检验杂志,2004,22(1):71.
    [148] 张桂红,林海波,江经纬,等.猪(杜长大三元杂)自细胞介素-6基因的克隆及序列分析.黑龙江畜牧兽医,2006,7:18-20.
    [149] 李俊燕,周克夫.胸腺素α原基因的克隆及在大肠杆菌中的融合表达.厦门大学学报(自然科学版),2006,45(5):722-725.
    [150] Antao VP, Lai SY, Tinoco I Jr. A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 1991, 19(21):5901-5.
    [151] Manjula Das, Isabelle Harvey, Lee Lee Chu, et al. Full-length cDNAs: more than just reaching the ends. Physiol Genomics. 2001, 6: 57-80.
    [152] 李爱丽,姜涛,马峙英,等.提高PCR产物的几种有效方法.生物技术通报,2002,6:33-35.
    [153] 祁克宗,程玉磊,涂健.鸡、猪BPI氨基端的基因克隆和鉴定.广西农业生物科学,2006,25(增刊):110-115.
    [154] 张芳.荣昌猪白细胞介素-2基因的克隆及原核表达:[四川农业大学硕士论文].四川雅安:四川农业大学,2006.
    [155] 应牡英,夏涛,陈小冬,等.梅山猪Ghrelin和Motilin基因克隆、结构分析及组织表达谱.江西农业大学学报,2006,28(4):559-565.
    [156] 田勇,李学伟,李芳琼,等.四川省外种猪雌激素受体基因对繁殖和生长性状的影响.中国畜牧杂志,2004,40(9):9-13.
    [157] 景志忠,窦永喜,罗启慧,等.猪白介素家族重要基因的克隆、表达及其结构与功能预测分析.中国农业科学,2006,39(3):612-619.
    [158] 榻雄标,罗廷荣,黄伟坚,等.猪IFN-α_1和IFN-β_1基因的克隆与序列分析.动物医学进展,2006,27(4):60-63.
    [159] Weiss J, Victor M., Elsbach P. Role of charge and hydrophobic interactions in the action of the bactericidal/permeability increasing protein of neutrophils on gram-negative bacteria. J Clin Invest. 1983, 71: 540-9.
    [160] Weiss J, Muello K, Victor M, Elsbach P. The role of lipopolysaccharides in the action of the bactericidal/permeability-increasing neutrophil protein on the bacterial envelope. J Immunol. 1984, 132: 3109-15.
    [161] 郑集,陈钧挥.普通生物化学.第三版,北京:高等教育出版社,1998,101-106.
    [162] Gary Kleiger, Lesa J. Beamer, Robert Grothe, et al. The 1.7 A crystal structure of BPI: a study of how two dissimilar amino acid sequences can adopt the same fold. J Mol Biol. 2000, 299(4): 1019-1034.
    [163] Kwon K S, Yu M H. Effect of glycosylation on the stability of alphal-antitrypsin toward urea denaturation and thermal deactivation. Biechim Biophys Acta. 1997, 1335: 265-272.
    [164] Sharon N, Lis H. Carbohydrates in cell recognition. Sci Am. 1993 Jan; 268(1):82-9.
    [165] Beulah H Gray, Judith R Haseman, Kevin H Mayo. B/PI-derived synthetic peptides: synergistic effects in tethered bactericidal and endotoxin neutralizing peptides. Biochimica et Biophysica Acta. 1995, 1244(1): 185-190.
    [166] Little RG, Kelner DN, Lim E, et al. Functional domains of recombinant bactericidal/permeability increasing protein (rBPI23). J Biol Chem. 1994, 269(3): 1865-72.
    [167] Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991, 196: 80-3.
    [168] 储明星译,师守塑校.数量遗传学导论.北京:中国农业科技出版社,2000.
    [169] 李春喜,王志和,王文林.生物统计学.北京:科学出版社,2003.
    [170] Boson D, White R L, Skolnick M, et al, Construction of a genetic linkage map in man using restriction fragment length polymouphism. American Journal of Human Genetic. 1980, 32: 314-331.
    [171] 张毅,向钊,朱丹.荣昌猪与外品种猪哺乳仔猪死亡原因研究.中国畜牧兽医,2004,31(5):46-48.
    [172] Ofer Levy, Sara Martin, Eric Eichenwald, et al. Impaired innate immunity in the newborn: newborn neutrophils are deficientin bactericidal/permeability-increasing protein. Pediatrics. 1999, 104: 1327-1333.
    [173] Klein W, Tromm A, Folwaczny C, et al. A polymorphism of the bactericidal/permeability increasing protein (BPI) gene is associated with Crohn's disease. J Clin Gastroenterol. 2005 Apr; 39(4):282-3.
    [174] Gubern C, Lopez-Bermejo A, Biames J, et al. Natural antibiotics and insulin sensitivity: the role of bactericidal/permeability-increasing protein. Diabetes. 2006, 55 (1):216-24.
    [175] 安雅臣,冯福民,袁聚祥,等.NRAMP1基因INT4和3′-UTR位点多态性与肺结核易感性的研究.中华流行病学杂志,2006,27(1):37-40.
    [176] 李艳秋,栗霄立,王力宁,等.中性粒细胞集落刺激因子基因多态性与系统性红斑狼疮相关性的研究.中华风湿病学杂志,2006,10(9):517-522.
    [177] Morris R W, Kaplan N L. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol, 2002, 23(3): 21-233.
    [178] Hoehe M R, Kopke K, Wendel B, et al. Sequence variability and candidate gene analysis in complex disease: association of mu opioid receptor gene variation with substance dependence. Hum Mol Genet. 2000, 9(19): 2895-2908.
    [179] Davidson S. Research suggests importance of haplotypes over SNPs. Nat Biotechnol. 2000, 18(11): 1134-1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700