莲金属硫蛋白和热激蛋白基因在种子活力中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子活力是影响种子质量的一个重要性状,对于植物的繁殖和作物的产量有着重要的影响。但是,种子在贮藏的过程中,其活力和生活力逐渐下降,对于萌发过程中的环境因子变得越来越敏感,最终导致种子丧失萌发能力。尽管在种子活力领域已经开展了大量的研究工作,但是迄今为止对于影响种子活力的分子和遗传机制仍然不是十分清楚。
     莲(Nelumbo nucifera Gaertn.)是一种原始的被子植物,在中国已有大约5000年的栽培历史。经科学鉴定,莲种子保持着大约1300年的寿命记录,是目前为止发现的最长寿的种子之一。此外,莲种子也能耐受极端高温和土壤中的伽马射线辐射。据此,我们认为莲种子为鉴定与种子寿命和活力相关的基因提供了极好的植物基因资源。
     金属硫蛋白(Metallothioneins,MTs)是一类能够结合金属离子的低分子量、富含半胱氨酸的蛋白质,其主要参与维持重金属离子的稳态和活性氧的清除反应。在植物中,小分子热激蛋白(small heat shock proteins,sHSPs)极其丰富和多样,并且与多种非生物胁迫逆境有关。尽管植物MTs和sHSPs已经被广泛的研究,但是关于他们在种子中的功能却鲜有报道。在本文中,我们利用基因表达和植物转基因等方法,重点研究了莲MTs和sHSPs在植物种子中的功能。通过利用莲种子和转基因拟南芥种子,我们揭示了NnMT2a、NnMT3和NnHSP17.5在逆境条件下种子萌发活力中的重要作用,取得了以下的主要研究结果:
     1.我们分离了三个莲MT基因NnMT2a、NnMT2b和NnMT3以及一个细胞质II类的莲sHSP基因NnHSP17.5。
     2.实时定量PCR的结果表明,NnMT2a、NnMT2b和NnMT3转录本在莲种子发育和萌发过程中大量存在,并且在萌发的莲种子胚轴中能够被高盐和氧化胁迫大量上调。此外,正常的生长条件下NnHSP17.5在种子中特异表达,NnHSP17.5在萌发的莲种子胚轴中的表达能够被热激和氧化胁迫显著上调。
     3. SDS-PAGE电泳结果显示重组蛋白Trx-6His-NnMT2a、Trx-6His-NnMT3和6His-NnHSP17.5在大肠杆菌中高效表达。利用亲和层析的方法,我们成功的纯化了这些融合蛋白,并且将它们注射大白兔,制备了特异性的多克隆抗体。
     4.将植物瞬时表达载体导入到拟南芥悬浮细胞制备的原生质体后12-16 h,通过激光共聚焦显微镜对融合蛋白NnMT2a-YFP、NnMT3-YFP和NnHSP17.5-YFP在原生质体中的定位进行了观察,结果显示所有的融合蛋白都定位于细胞质和核质中。
     5.为了研究NnMT2a、NnMT3和NnHSP17.5在体内的功能,我们通过构建植物表达载体将这些基因分别置于CaMV35S启动子的调控下,通过遗传转化获得了转基因的拟南芥。半定量RT-PCR结果表明,NnMT2a和NnMT3在转基因植株的干种子和发育的果荚中都能检测到表达,NnHSP17.5也能在转基因株系的干种子中检测到表达。在蛋白水平上,我们通过Western blot证实这些蛋白在转基因干种子有积累,但是对照的野生型拟南芥种子中检测不到这些蛋白的存在。
     6.人工加速老化(accelerated aging,AA)通过模仿自然界的老化进程达到将种子快速老化的目的,从而用以评价种子的活力水平。本实验采用人工老化的方法研究了NnMT2a、NnMT3和NnHSP17.5在种子中的功能。结果显示,过表达NnMT2a、NnMT3或NnHSP17.5的转基因拟南芥种子与野生型种子相比表现出更强的抵抗人工老化的能力,表明这些基因在种子活力中发挥着重要的作用。另外,人工老化后转基因种子中的超氧化物歧化酶活性显著高于野生型种子。
     7. TTC活力染色可以用于种子生活力的检测。在人工老化后,野生型种子不能被TTC染上色的死种子的数量要远大于过表达NnMT2a和NnMT3的转基因种子。
     8.逆境条件下的萌发实验显示,过表达NnMT2a和NnMT3的转基因种子耐受高盐胁迫和氧化胁迫的能力显著高于野生型种子。另外,NnHSP17.5转基因拟南芥幼苗的耐热性明显增强。
     总之,这些基因在种子活力方面的生物学功能具有重要的理论价值和应用前景,如果将其转入到水稻、小麦、玉米和大豆等重要的农作物中,对于种质资源的保存和作物的产量或将产生积极的影响。
Seed vigor is an important seed quality for the success of plant propagation and food production. However, seeds gradually lose vigor and viability during storage, become more sensitive to stresses during germination and eventually lose germination ability. Although seed viability and vigor has been the subject of a number of studies, the underlying molecular mechanisms remain poorly understood.
     As a primitive angiosperm, sacred louts (Nelumbo nucifera Gaertn.) has been a special crop in China for nearly 5000 years. Sacred lotus seeds are characterized with 1300-year astonishing seed viability, and resistance to extreme high temperature and soilγ-radiation. Owing to these characteristics, sacred lotus seeds could therefore be an excellent plant genetic resource for identification of genes controlling seed viability and vigor.
     Metallothioneins (MTs) are small, cysteine-rich and metal-binding proteins which are involved in metal homeostasis and scavenging of reactive oxygen species. In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses. Although plant MTs and sHSPs have been intensively studied, their roles in seeds remain to be clearly established. In this study, we focus on the functions of NnMT2a, NnMT2b, NnMT3 and NnHSP17.5 in seeds by gene expression analysis and transgenic approach. We have used sacred lotus seeds and Arabidopsis seeds overexpressing NnMT2a, NnMT3 and NnHSP17.5 to study their unique roles in seed germination vigor under sub-optimal conditions. The main results are as following:
     1. We report the isolation and characterization of three MT genes, NnMT2a, NnMT2b and NnMT3, and a cytosolic class II sHSP gene NnHSP17.5 from sacred lotus seeds.
     2. The results of real-time RT-PCR showed that the transcripts of NnMT2a, NnMT2b and NnMT3 were highly expressed in developing and germinating sacred lotus seeds, and were dramatically up-regulated in response to high salinity and oxidative stresses. On the other hand, NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses.
     3. SDS-PAGE analysis revealed that the recombinant Trx-6His-NnMT2a, Trx-6His-NnMT3 and 6His-NnHSP17.5 were highly expressed in E. coli cells, and the fusion proteins were purified by nickel-resin affinity chromatography. After purification, the recombinant proteins were injected into rabbits to produce specific antibodies.
     4. Transient expression of NnMT2a-YFP, NnMT3-YFP and NnHSP17.5-YFP in protoplasts prepared from Arabidopsis suspension cultured cells was evaluated by confocal microscopy after electroporation 12-16 h. The results showed that all the tested YFP fusion proteins were localized in cytoplasm and nucleoplasm.
     5. In order to investigate the in vivo functions of NnMT2a, NnMT3 and NnHSP17.5, we generated transgenic Arabidopsis plants overexpressing these genes under the control of the cauliflower mosaic virus 35S promoter. RT-PCR analysis demonstrated that both NnMT2a and NnMT3 were overexpressed in dry mature seeds and green developing siliques of transgenic plants, while NnHSP17.5 was overexpressed in the dry mature seeds of transgenic plants. Similarly, immunoblot analysis of the protein extracts using specific antibodies confirmed the presence of NnMT2a, NnMT3 and NnHSP17.5 in the transgenic seeds but not in the wild-type seeds.
     6. The in vivo functions of NnMT2a, NnMT3 and NnHSP17.5 in seeds were evaluated by subjecting dry mature seeds of transgenic and wild-type lines to accelerated aging (AA) treatments, which was used to mimic natural aging to assess seed vigor. Transgenic Arabidopsis seeds overexpressing NnMT2a, NnMT3 or NnHSP17.5 displayed improved resistance to AA treatment, indicating their significant roles in seed germination vigor. These transgenic seeds also exhibited higher superoxide dismutase activity compared to wild-type seeds after AA treatment.
     7. Vital stain with tetrazolium salt can be used to demonstrate the differences in seed viability. After AA treatment, the wild-type line displayed a higher number of dead seeds than those of the transgenic lines overexpressing NnMT2a and NnMT3, as indicated by the numbers of unstained seeds.
     8. We also showed that NnMT2a and NnMT3 conferred improved germination ability to high salinity and oxidative stress on transgenic Arabidopsis seeds. In addition, improved basal thermotolerance was observed in the transgenic seedlings overexpressing NnHSP17.5.
     In summary, the biological roles of NnMT2a, NnMT3 and NnHSP17.5 in seed vigor are of significantly theoretical and practical values, which may be applicable to agricultural crops such as rice, wheat, maize and soybean for the success of germplasm conservation and crop yield.
引文
常团结,朱祯(2002)植物金属硫蛋白研究进展(一)--植物MT的分类、特征及其基因结构.生物技术通报3:5-10
    陈晓军,叶春江,吕慧颖,徐民新,李葳,张利明,王超,罗淑萍,朱保葛(2006) GmHSFA1基因克隆及其过量表达提高转基因大豆的耐热性.遗传28:1411-1420
    程红焱,宋松泉,朱诚,郑光华(2005)超干种子耐贮藏性的细胞学及生理生化基础.云南植物研究27:11-18
    傅家瑞(1980)关于种子活力的问题.植物生理学通讯4:13-17
    黄上志,傅家瑞(1992)花生种子贮藏蛋白质与活力的关系及其在萌发时的降解模式.植物学报34:543-550
    黄上志,汤学军,张玲,傅家瑞(2003)莲种子的耐热性及抗氧化酶活性.植物生理与分子生物学学报29:421-424
    黄祥富,黄上志,傅家瑞(1999)植物热激蛋白的功能及其基因表达的调控. 植物学通报16:530-536
    李有春,刘仲齐(1995)遗传背景对小麦T型杂种种子活力的影响.西南农业学报8:13-19
    刘军,黄上志(2000)不同活力玉米种子胚萌发期间热激蛋白的合成.植物学报42:253-257
    刘军,黄上志,傅家瑞,汤学军(2001)种子活力与蛋白质关系的研究进展. 植物学通报18:46-51
    麻浩,黎克衡(2001)大豆种子脂肪氧化酶的缺失对种子劣变的影响.中国油料作物学报23:16-19
    马娟,王铁固,余宁安,张怀胜,陈士林,杨亚松(2010)种子活力遗传和QTL定位研究进展.河南农业科学8:156-159
    马守才,张改生,王军卫,卢碧霞,李宏茹(2004)小麦种子活力性状的遗传变异和相关研究.西北植物学报24:1674-1679
    齐麟(2006)中国莲金属硫蛋白和小分子热激蛋白基因克隆及其表达分析.硕士论文.中山大学
    全先庆(2007)花生金属硫蛋白基因的克隆及AhMT2α基因的功能鉴定.博士论文.山东师范大学. 20
    全先庆,张洪涛,单雷,毕玉平(2006)植物金属硫蛋白及其重金属解毒机制研究进展.遗传28:375-382
    宋松泉,程红焱,姜孝成(2008)种子生物学.北京:科学出版社
    孙群,王建华,孙宝启(2007)种子活力的生理和遗传机理研究进展.中国农业科学40:48-53
    王青峰,宫庆友,沈凌云,李小琴(2007)超甜玉米种子活力研究.种子26:4-7
    余瑛,夏玉先,蔡绍皙(2003)植物小分子热休克蛋白.中国生物工程杂志23:38-41
    赵春梅,刘箭(2006)过量表达内质网小分子热激蛋白增强番茄的衣霉素抗性. 植物生理与分子生物学学报32:427-432
    祖元刚,房思良,聂明珠(2007)长春花金属硫蛋白基因原核表达载体的构建及表达研究.植物研究27:588-592
    Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochemical and Biophysical Research Communications 323:72-78
    Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Molecular Biology 29: 1093-1099
    Almoguera C, Prieto-Dapena P, Díaz-Martín J, Espinosa JM, Carranco R, Jordano J (2009) The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biology 9:75
    An Z, Li C, Zu Y, Du Y, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. Journal of Experimental Botany 57:3575-3582
    Bailly C, Benamar A, Corbineau F, Come D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum 97:104-110
    Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331:806-814
    Banti V, Loreti E, Novi G, Santaniello A, Alpi A, Perata P (2008) Heat acclimation and cross-tolerance against anoxia in Arabidopsis. Plant Cell and Environment 31:1029-1037
    Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SP, Koornneef M (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiology 124: 1595-1604
    Bernal-Lugo I, Leopold AC (2008) Seed stability during storage: raffinose content and seed glassy state. Seed Science Research 5: 75-80
    Bhalerao R, Keskitalo J, Sterky F, et al (2003) Gene expression in autumn leaves. Plant Physiology 131:430-442
    Brkljacic JM, Samardzic JT, Timotijevic GS, Maksimovic VR (2004) Expression analysis of buckwheat (Fagopyrum esculentum Moench) metallothionein-like gene (MT3) under different stress and physiological conditions. Journal of Plant Physiology 161:741-746
    Carranco R, Espinosa JM, Prieto-Dapena P, Almoguera C, Jordano J (2010) Repression by an auxin/indole acetic acid protein connects auxin signaling withheat shock factor-mediated seed longevity. Proceedings of the National Academy of Sciences of the United States of America 107:21908-21913
    Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestsova E, Westhoff P, Van Dorsselaer A, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 11:1569-1580
    Charng Y, Liu H, Liu N, Hsu F, Ko S (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology 140:1297-1305
    Clerkx EJ, Vries HB, Ruys GJ, Groot SP, Koornneef M (2003) Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity. Plant Physiology 132:1077-1084
    Clerkx EJM, Blankestijn DVH, Ruys GJ, Groot SPC, Koornneef M (2004) Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum 121: 448-461
    Clerkx EJM, Vries HB, Ruys GJ, Groot SPC, Koornneef M (2004) Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum 121: 448-461
    Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53:159-182
    Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Molecular Biology 25:479-492
    Cui K, Peng S, Xing Y, Xu C, Yu S, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. TAG Theoretical and Applied Genetics 105: 745-753
    Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z (2008) Non-redundant functions ofsHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Molecular Biology 67:363-373
    Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122:403-414
    DeRocher AE, Vierling E (1994) Developmental control of small heat shock protein expression during pea seed maturation. The Plant Journal 5:93-102
    Devaiah SP, Pan X, Hong Y, Roth M, Welti R, Wang X (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. The Plant Journal 50: 950-957
    Ding Y, Cheng H, Song S (2008) Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds. Science in China Series C: Life Sciences 51:842-853
    Feng XM, Qiao Y, Mao K, Hao YJ (2010) Ectopic overexpression of AtmiR398b gene in tobacco influences seed germination and seedling growth. Plant Cell, Tissue and Organ Culture 102: 53-59
    Fischer EH, Davie EW (1998) Recent excitement regarding metallothionein. Proceedings of the National Academy of Sciences of the United States of America 95: 3333
    Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breeding 118: 167-173
    Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily. Dalton Transactions 47: 6663-6675
    Garc AM, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiology 118: 387
    Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiology 155: 1750-1751
    Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. Journal of Plant Physiology 164:126-136
    Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytologist 159:369-381
    Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology 146: 1697-1706
    Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nature Structural and Molecular Biology 12:842-846
    Huang S, Tang X, Zhang L, Fu J (2003) Thermotolerance and activity of antioxidative enzymes in lotus seeds. Journal of Plant Physiology and Molecular Biology 29:421-424 (in Chinese)
    Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell and Environment 32:1046-1059
    Kalemba EM, Pukacka S (2008) Changes in late embryogenesis abundant proteins and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds. Environmental and Experimental Botany 63:274-280
    Kille P, Winge DR, Harwood JL, Kay J (1991) A plant metallothionein produced in E. coli. FEBS Letters 295: 171-175
    Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE protein3 mRNA. Plant and Cell Physiology 51:1079-1083
    Kirschner M, Winkelhaus S, Thierfelder JM, Nover L (2000) Transient expressionand heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. The Plant Journal 24: 397-412
    Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annual Review of Pharmacology and Toxicology 39:267-294
    Koh M, Kim HJ (2001) The effects of metallothionein on the activity of enzymes involved in removal of reactive oxygen species. Bulletin-korean Chemical Society 22: 362-366
    Kotak S, Larkindale J, Lee U, Koskull-Doring Pv, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10: 310-316
    Kumar G, Knowles NR (1993) Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiology 102:115-124
    L?w D, Br?ndle K, Nover L, Forreiter C (2000) Cytosolic heat-stress proteins Hsp17. 7 class I and Hsp17. 3 class II of tomato act as molecular chaperones in vivo. Planta 211: 575-582
    Lane B, Kajioka R, Kennedy T (1987) The wheat-germ Ec protein is a zinc-containing metallothionein. Biochemistry and Cell Biology 65: 1001-1005
    Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. The EMBO journal 16: 659-671
    Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiology 122: 189-198
    Lee J, Donghwan S, Won-yong S, Inhwan H, Youngsook L (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Molecular Biology 54: 805-815
    Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. Journal of Experimental Botany 61:2499-2506
    Les DH, Garvin DK, Wimpee CF (1991) Molecular evolutionary history of ancient aquatic angiosperms. Proceedings of the National Academy of Sciences of the United States of America 88:10119-10123
    Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant Journal 52: 133-146
    Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiology 141:47-60
    Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A (2007) Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiology 145:1588-1599
    Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. Journal of the American Chemical Society 79: 4813-4814
    Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Mart NC (2010) The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Science Research 20: 79-87
    Martin RC, Liu PP, Nonogaki H (2005) Simple purification of small RNAs from seeds and efficient detection of multiple microRNAs expressed in Arabidopsis thaliana and tomato (Lycopersicon esculentum) seeds. Seed Science Research 15: 319-328
    Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryzasativa L.) seedlings using serial analysis of gene expression (SAGE). The Plant Journal 20: 719-726
    McDonald MB (1999) Seed deterioration: physiology repair and assessment. Seed Science and Technology 27:177-238
    Medina-Escobar N, Cardenas J, Munoz-Blanco J, Caballero JL (1998) Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein. Plant Molecular Biology 36: 33-42
    Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nature Protocols 2:2348-2353
    Mir G, Domenech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. Journal of Experimental Botany 55:2483-2493
    Miura K, Lin S, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). TAG Theoretical and Applied Genetics 104: 981-986
    Mizzen CA, Cartel NJ, Yu WH, Fraser PE, McLachlan DR (1996) Sensitive detection of metallothioneins-1, -2 and -3 in tissue homogenates by immunoblotting: a method for enhanced membrane transfer and retention. Journal of Biochemical and Biophysical Methods 32: 77-83
    M?ller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58:459-481
    Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005) Developing pineapple fruit has a small transcriptome dominated by metallothionein. Journal of Experimental Botany 56: 101-112
    Mu C, Wang S, Zhang S, Pan J, Chen N, Li X, Wang Z, Liu H (2011) Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meioticprophase I in David Lily. Plant Cell Reports 30:1981-1989
    Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding 13:165-175
    Murphy A, Zhou J, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology 113: 1293-1301
    Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: Protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. The Plant Cell 17:1829-1838
    Oge L, Bourdais G, Bove J, et al (2008) Protein repair l-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. The Plant Cell 20:3022-3037
    Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ (2009) BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiology 151:241-252
    Prieto-Dapena P, Castano R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology 142:1102-1112
    Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies 331:796-805
    Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology 148:620-641
    Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal 49: 592-606
    Reynolds TL, Crawford RL (1996) Changes in abundance of an abscisicacid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Molecular Biology 32: 823-829
    Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochemical Journal 295:1-10
    Rodrguez-Llorente ID, Prez-Palacios P, Doukkali B, Caviedes MA, Pajuelo E (2010) Expression of the seed-specific metallothionein mt4a in plant vegetative tissues increases Cu and Zn tolerance. Plant Science 178: 327-332
    Roman A. Volkov IIPA (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Molecular Biology 57: 487-502
    Romero-Isart N, Vasak M (2002) Advances in the structure and chemistry of metallothioneins. Journal of Inorganic Biochemistry 88: 388-396
    Rosnoblet C, Aubry C, Leprince O, Vu BL, Rogniaux H, Buitink J (2007) The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds. The Plant Journal 51:47-59
    Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperatures. Plant Physiology 117:651-658
    Samardzic JT, Nikolic DB, Timotijevic GS, Jovanovic ZS, Milisavljevic MD, Maksimovic VR (2010) Tissue expression analysis of FeMT3, a drought and oxidative stress related metallothionein gene from buckwheat (Fagopyrum esculentum). Journal of Plant Physiology 167:1407-1411
    Samardzic JT, Nikolic DB, Timotijevic GS, Jovanovic ZS, Milisavljevic MD, Maksimovic VR (2010) Tissue expression analysis of FeMT3, a drought and oxidative stress related metallothionein gene from buckwheat (Fagopyrum esculentum). Journal of Plant Physiology 167:1407-1411
    Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shockprotein enhances thermotolerance in tobacco plants. FEBS Letters 557:265-268
    Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell 16:1419-1432
    Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225-237
    Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. American Journal of Botany 82:1367-1380
    Shin JH, Kim SR, An G (2009) Rice aldehyde dehydrogenase7 is needed for seed maturation and viability. Plant Physiology 149:905-915
    Soltani A, Zeinali E, Galeshi S, Latifi N (2001) Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea coast of Iran. Seed Science and Technology 29: 653-662
    Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal 27:407-415
    Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta 1577:1-9
    Tellmann G (2006) The E-Method: a highly accurate technique for gene-expression analysis. Nature Methods 3: i-ii
    Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochimica et Biophysica Acta 827:36-44
    Vierling E (1991) The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 42:579-620
    Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteinsand molecular chaperones in the abiotic stress response. Trends in Plant Science 9:244-252
    Wang Z, Li P, Fredricksen M, Gong Z, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science 166: 609-616
    Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany 47:325-338
    Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A higher plant DNA ligase is an important determinant of seed longevity. The Plant Journal 63:848-860
    Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiology 112:747-757
    Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiology 135:1447-1456
    Wu Y, Wang Q, Ma Y, Chu C (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Science 168:847-853
    Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Research 37: 916-930
    Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany 60:339-349
    Yang X, Doser TA, Fang CX, Nunn JM, Janardhanan R, Zhu M, Sreejayan N, Quinn MT, Ren J (2006) Metallothionein prolongs survival and antagonizes senescence-associated cardiomyocyte diastolic dysfunction: role of oxidativestress. The FASEB Journal 20:1024-1026
    Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology 70:219-229
    Yu LH, Umeda M, Liu JY, Zhao NM, Uchimiya H (1998) A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene 206:29-35
    Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiology 146:1637-1650
    Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG (2005) Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crop Research 91:161-170
    Zhao C, Shono M, Sun A, Yi S, Li M, Liu J (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. Journal of Plant Physiology 164:835-841
    Zheng H, Ting YU, Li SU, SiLBin YU, ZhiLHong Z, YingLGuo Z (2004) Identification of chromosome regions associated with seedling vigor in rice. Acta Genetica Sinica 31:596-603
    Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research 18:1456-1465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700