莲膜联蛋白的鉴定及其在种子耐热性和活力中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温是影响植物生长和繁殖的最重要的环境压力之一。由于其固着生长的特性,植物更容易受到温度变动的影响。为应对高温对其产生的威胁,植物进化出了一系列的适应机制。膜联蛋白是一类多功能的蛋白,该蛋白家族的特点在于它们能结合钙离子和带负电荷的脂类。越来越多的证据表明植物膜联蛋白可能具有过氧化物酶的活性,暗示其与植物逆境应答相关,然而,植物膜联蛋白在高温逆境中的作用还未见报道。
     目前关于植物高温耐性的分子生物学研究已有不少,但极少是以种子为材料进行的,尽管植物种子是具有重要价值的基因材料。曾有研究指出莲种子具有耐受极端高温的能力,为寻找种子适应机制中的新基因/蛋白提供了宝贵的材料。本研究采用比较蛋白质组学的方法以寻找高温胁迫信号通路中的新蛋白,由此在莲种子中鉴定到膜联蛋白,将其命名为NnANN1,并研究了该蛋白在高温逆境以及种子活力中的功能。本研究的主要结果如下:
     1.为研究莲种子的基础耐热性,用高温处理成熟莲种子,结果约50%种子在90°C处理24h后仍能萌发。为鉴定莲种子中的高温响应蛋白,从未处理的对照种子和90°C处理24h的种子的胚中提取蛋白经双向电泳分离用于比较蛋白质组学研究。10个高温处理后含量上调2倍以上的蛋白得到鉴定,其中大部分为能量代谢相关或逆境相关蛋白。在这些热响应蛋白中,选取被鉴定为膜联蛋白的蛋白点2作进一步研究。
     2.实时定量PCR(qRT-PCR)和蛋白质印记(western blot)的结果显示,与未经处理的莲种子相比,经高温处理的种子中NnANN1的表达在mRNA水平和蛋白水平都有大幅提高,证实与上述蛋白质组学的结果一致,NnANN1是热响应蛋白。亚细胞定位分析发现NnANN1表现出典型的细胞质定位模式,qRT-PCR分析发现NnANN1主要在种子发育和萌发过程中大量表达,暗示该蛋白可能在种子发育和萌发中发挥作用。
     3.为证实NnANN1在体内的保护作用,在大肠杆菌细胞和植物种子中进行了功能研究。结果表明,与对照相比,在高温逆境下,NnANN1转化的大肠杆菌细胞和拟南芥的种子耐热性提高。此外,加速老化实验表明NnANN1的表达提高了转基因拟南芥种子的活力。相反,与野生型种子相比,拟南芥同源基因AtANN1、AtANN2的T-DNA插入突变株的种子对于高温逆境和加速老化处理表现得更为敏感。NnANN1转基因种子中观察到过氧化物酶活性提高,并伴随活性氧(ROS)释放水平的降低,这可能帮助阐释NnANN1在体内的保护功能。综上所述,本研究实验结果表明NnANN1在耐热性和种子活力中发挥着重要功能,支持NnANN1在清除ROS中的作用,为研究植物高温应答的分子机制,提高作物耐热性和种子活力开拓了新的可能性。
High temperature is one of the major environmental factors that negatively impact plant growth and productivity. As sessile organisms, plants are more vulnerable to temperature fluctuations. To cope with these challenges, plants have evolved a variety of adaptive mechanisms. Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. There is increasing evidence showed that plant annexins may acting as peroxidases and implicating their importance in plant stress responses. However, the involvement of plant annexins in high temperature stress response has not yet been described.
     Although molecular aspects of high temperature tolerance in plants have been investigated, few studies have been conducted in seeds in spite of their importance as a source of valuable genetic materials. Sacred lotus (Nelumbo nucifera Gaertn.) seed appeared to have the ability to withstand extremely high temperatures. Therefore, it could provide an excellent system for discovering new components involved in seed’s adaptive mechanisms. In this study, comparative proteomic analysis was used to identify novel components in heat stress signaling and leading to the identification of a sacred lotus annexin NnANN1. The functions of NnANN1 in high temperature stress and in seed vigor were also assessed. The main results obtained in this study were as follows:
     1. To demonstrate basal thermotolerance of sacred lotus seeds, mature sacred lotus seeds were treated at high temperatures for 24 h. Approximately, 50% of sacred lotus seeds remained alive and geminated after subjected to 90°C treatment for 24 h. Proteins were extracted from embryo axes of sacred lotus seeds that were treated at 90°C for 24 h, and untreated embryos were used as control. To identify proteins responsive to high temperature in sacred lotus seeds, both treated and untreated protein samples were resolved by 2D gel electrophoresis for comparative proteomic analysis. Ten protein spots displaying more than two fold up-regulation in response to heat stress were identified and most of the proteins are energy metabolism-related or stress-related proteins. Among the heat-responsive proteins, protein spot 2 which was identified as an annexin was chosen for further study.
     2. The results of quantitative Real-time PCR (qRT-PCR) and western blot showed that compared to untreated seeds, the expression of NnANN1 increased considerably in both mRNA and protein level in high-temperature treated seeds, demonstrated that NnANN1 is heat responsive, concurring with the observations obtained from our proteomic analysis. Subcellular localization analysis of NnANN1 showed that NnANN1 exhibited a typical cytosolic localization, and qRT-PCR analysis revealed that NnANN1 is expressed preferentially during seed development and germination, suggesting some fundamental function of this protein in seed development and germination.
     3. In an attempt to prove the in vivo protective function for NnANN1, we studied its functions in both E.coli cells and plant seeds. Under heat stress, the NnANN1 transformed E. coli cells and Arabidopsis seeds showed increased tolerance to high temperature compared with control. Furthermore, as revealed by accelerated aging (AA), the expression of NnANN1 improved seed vigor in transgenic Arabidopsis. In contrast, seeds from T-DNA insertion mutants of the Arabidopsis paralogs AtANN1 and AtANN2 were more sensitive to heat stress and AA treatment. NnANN1 transgenic seeds showed enhanced peroxidase activities, accompanied with reduced ROS release level, which may help to explain its protective function in vivo. The results support the role of NnANN1 in ROS detoxification and indicate that NnANN1 plays an important role in thermotolerance and seed vigor. The identification of NnANN1 as a high temperature responsive protein with demonstrable effects on tolerance to high-temperature stress and AA treatment may present new possibilities for exploring molecular mechanisms of high-temperature response in plants and improving thermotolerance and seed vigor in crop plants.
引文
黄宗甄.莲子与荷花.生物学通报, 1964, 4: 14-16.
    李爱国,屈霞,李小科,余筱南.植物耐热性的研究进展.作物研究, 2007, 21: 493-497.
    汤学军,傅家瑞,黄上志.决定种子寿命的生理机制研究进展.种子, 1996, 86: 29-32.
    王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报, 2001, 18: 459-465.
    宰学明,吴国荣等.植物对高温逆境适应机理的研究进展.南京农专学报, 2002, 18: 20-22.
    张桂莲,陈立云,雷东阳,张顺堂.水稻耐热性研究进展.杂交水稻, 2005, 20: 1-5.
    Ainsworth, E. A., Ort, D. R. How do we improve crop production in a warming world? Plant Physiology, 2010, 154: 526-530.
    Alexandersson, E., Saalbach, G., Larsson, C.Kjellbom, P. Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant and Cell Physiology, 2004, 45: 1543-1556.
    Allakhverdiev, S. I., Feyziev, Y. M., Ahmed, A., Hayashi, H., Aliev, J. A., Klimov, V. V., Murata, N.Carpentier, R. Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. Journal of Photochemistry and Photobiology B: Biology, 1996, 34: 149-157.
    Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier, R., Mohanty, P. Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 2008, 98: 541-550.
    Almoguera, C., Prieto-Dapena, P., Díaz-Martín, J., Espinosa, J. M., Carranco, R., Jordano, J. The HaDREB2 transcription factor enhances basal thermotoleranceand longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biology, 2009, 9: 75-86.
    Antunes, M., Sfakiotakis, E. M. Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of‘Hayward’kiwifruit. Postharvest Biology and Technology, 2000, 20: 251-259.
    Apel, K.Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.
    Arpat, A., Waugh, M., Sullivan, J. P., Gonzales, M., Frisch, D., Main, D., Wood, T., Leslie, A., Wing, R.Wilkins, T. Functional genomics of cell elongation in developing cotton fibers. Plant Molecular Biology, 2004, 54: 911-929.
    Avusoglu, K.Kabar, K. Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. EurAsian Journal of BioSciences, 2010: 70-79.
    Babiychuk, E. B., Monastyrskaya, K., Potez, S.Draeger, A. Intracellular Ca2+ operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death & Differentiation, 2009, 16: 1126–1134.
    Bae, M. S., Cho, E. J., Choi, E. Y.Park, O. K. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant Journal, 2003, 36: 652-663.
    Bai, S., Willard, B., Chapin, L. J., Kinter, M. T., Francis, D. M., Stead, A. D. Jones, M. L. Proteomic analysis of pollination-induced corolla senescence in petunia. ournal of Experimental Botany, 2010, 61: 1089-109.
    Bailly, C. Active oxygen species and antioxidants in seed biology. Seed Science Research, 2004, 14: 93-107.
    Bailly, C., Benamar, A., Corbineau, F., and C Me, D. Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiologia Plantarum, 1998, 104: 646-652.
    Balasubramanian, K., Bevers, E. M., Willems, G. M., Schroit, A. J. Binding of Annexin V to membrane products of lipid peroxidation. Biochemistry, 2001, 40: 8672-8676.
    Balbuena, T. S., Silveira, V., Junqueira, M., Dias, L. L. C., Santa-Catarina, C.,Shevchenko, A.Floh, E. I. S. Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). Journal of Proteomics, 2009, 72: 337-352.
    Banks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J. C., Blackstock, W., Pappin, D. J., Selby, P. J. Proteomics: new perspectives, new biomedical opportunities. The Lancet, 2000, 356: 1749-1756.
    Ba?ón, S., Fernandez, J. A., Franco, J. A., Torrecillas, A., Alarcón, J. J., Sánchez-Blanco, M. J. Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Scientia Horticulturae, 2004, 101: 333-342.
    Barjaktarovi, Nordheim, A., Lamkemeyer, T., Fladerer, C., Madlung, J.Hampp, R. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. Journal of Experimental Botany, 2007, 58: 4357-4363.
    Berridge, M. V., Tan, A. S., McCOY, K. D.Wang, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica, 1996, 4: 14-19.
    Blackbourn, H. D., Walker, J. H., Battey, N. H. Calcium-dependent phospholipid-binding proteins in plants. Planta, 1991, 184:67-73.
    Boudet, J., Buitink, J., Hoekstra, F. A., Rogniaux, H., Larre, C., Satour, P., Leprince, O. Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiology, 2006, 140: 1418-1436.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    Breton, G., Vazquez-Tello, A., Danyluk, J., Sarhan, F. Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant and Cell Physiology, 2000, 41: 177-184.
    Buitink, J., Leprince, O. Intracellular glasses and seed survival in the dry state. Comptes Rendus Biologies, 2008, 331: 788-795.
    Buitink, J., Leger, J. J., Guisle, I., Vu, B. L., Wuillème, S., Lamirault, G., Bars, A. L., Meur, N. L., Becker, A., Küster, H. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to desiccation tolerant stages in Medicago truncatula seeds. Plant Journal, 2006, 47: 735-750.
    Calvert, C. M., Gant, S. J.Bowles, D. J. Tomato annexins p34 and p35 bind to F-actin and display nucleotide phosphodiesterase activity inhibited by phospholipid binding. Plant Cell, 1996, 8: 333-42.
    Cantero, A., Barthakur, S., Bushart, T. J., Chou, S., Morgan, R. O., Fernandez, M. P., Clark, G. B., Roux, S. J. Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiology and Biochemistry, 2006, 44: 13-24.
    Carroll, A. D., Moyen, C., Van Kesteren, P., Tooke, F., Battey, N. H.Brownlee, C. Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell, 1998, 10: 1267-76.
    Carter, C., Pan, S., Zouhar, J., Avila, E. L., Girke, T., Raikhel, N. V. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell, 2004, 16: 3285.
    Charng, Y., Liu, H., Liu, N., Hsu, F., Ko, S. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology, 2006, 140: 1297-1305.
    Chen, S. N., Song, Y. Q., Li, Z. G.Gong, M. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Functional Plant Biology, 1997, 24: 371-379.
    Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533.
    Clark, G. B., Lee, D., Dauwalder, M., Roux, S. J. Immunolocalization and histochemical evidence for the association of two different Arabidopsis annexins with secretion during early seedling growth and development. Planta, 2005, 220: 621-631.
    Clark, G. B., Rafati, D. S., Bolton, R. J., Dauwalder, M., Roux, S. J. Redistribution of annexin in gravistimulated pea plumules. Plant Physiology and Biochemistry, 2000, 38: 937-947.
    Clark, G. B., Sessions, A., Eastburn, D. J., Roux, S. J. Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiology, 2001, 126: 1072-1084.
    Clark, G. B.,Dauwalder, M.Roux, S. J. Immunological and biochemical evidence for nuclear localization of annexin in peas. Plant Physiology and Biochemistry, 1998, 36: 621-627.
    Coolbear, P. Mechanisms of seed deterioration. In Seed Quality: Basic Mechanisms and Agricultural Implications, A.S. Basra, ed (New York: Food Products Press), pp. 223-277.
    Corbineau, F., Gay Mathieu, C., Vinel, D.C., Me, D. Decrease in sunflower (Helianthus annuus) seed viability caused by high temperature as related to energy metabolism, membrane damage and lipid composition. Physiologia Plantarum, 2002, 116: 489-496.
    de Carvalho Niebel, F., Lescure, N., Cullimore, J. V.Gamas, P. The Medicago truncatula MtAnn1 gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. Molecular Plant-Microbe Interactions, 1998, 11: 504-513.
    De Carvalho-Niebel, F., Timmers, A. C., Chabaud, M., Defaux-Petras, A., Barker, D. G. The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant Journal, 2002, 32: 343-352.
    Delouche, J. C., Baskin C. C. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science and Technology, 1973, 1: 427-452.
    Ding, Y., Cheng, H., Song, S. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds. Science in China Series C: Life Sciences, 2008, 51: 842-853.
    Divya, K., Jami, S. K., Kirti, P. B. Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Molecular Biology, 2010, 73: 293-308.
    Draeger, A., Monastyrskaya, K., Babiychuk, E. B. Plasma membrane repair and cellular damage control: the annexin survival kit. Biochemical Pharmacology, 2011, 81:703-712.
    Egli, D. B., TeKrony, D. M., Heitholt, J. J., Rupe, J. Air temperature during seed filling and soybean seed germination and vigor. Crop Science, 2005, 45: 1329-1335.
    Ellis, R. H. Seed and seedling vigour in relation to crop growth and yield. Plant Growth Regulation, 1992, 11: 249-255.
    Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R. D., Burstin, J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology, 2003, 133: 664-682.
    Genge, B. R.,Wu, L. N., Wuthier, R. E. Identification of phospholipid-dependent calcium-binding proteins as constituents of matrix vesicles. Journal of Biological Chemistry, 1989, 264: 10917-10921.
    Gerke, V., Moss, S. E. Annexins: from structure to function. Physiological Reviews, 2002, 82: 331-71.
    Gerke, V., Creutz, C. E. Moss, S. E. Annexins: Linking Ca2+ signalling to membrane dynamics. Nature Reviews Molecular Cell Biology, 2005, 6: 449-461.
    Gidrol, X., Sabelli, P. A., Fern, Y. S., Kush, A. K. Annexin-like protein from Arabidopsis thaliana rescues delta oxyR mutant of Escherichia coli from H2O2 stress. Proceedings of the National Academy of Sciences, 1996, 93: 11268-11273.
    Goel, A., Goel, A.K., and Sheoran, I.S. Changes in oxidative stress enzymes duringartificial ageing in cotton (Gossypium hirsutum L.) seeds. Journal of Plant Physiology, 2003, 160: 1093-1100.
    Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., Kawaide, H., Kamiya, Y., Yoshioka, T. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Journal of Experimental Botany, 2004, 55: 111-118.
    Gong, M., Li Y.J., Chen S. Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 1998, 153: 488-496.
    Gorecka, K.M., Konopka-Postupolska, D., Hennig, J., Buchet, R., Pikula, S. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2005, 336: 868-875.
    Gorecka K.M., Thouverey C., Buchet C.R., Pikula S. Potential role of annexin AtANN1 from Arabidopsis thaliana in pH-mediated cellular response to environment stimuli. Plant and Cell Physiology, 2007, 48: 792–803.
    Guilioni, L., Wery, J., Tardieu, F. Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs? Annals of Botany, 1997, 80: 159-168.
    Gulen, H., Eris, A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 2004, 166: 739-744.
    Hall, A. E. Crop responses to environment. Boca Raton, FL: CRC Press, 2001. Hamid, S., Roya, R., Yohei, N., Ali, E., Ferdous, J., Nasrin, M., Setsuko, K. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Science, 2010, 8:19-33.
    Hammerschmidt, R.,Nuckles, E. M., Kuc, J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 1982, 20: 73-76.
    Hashimoto, M., Toorchi, M., Matsushita, K., Iwasaki, Y., Komatsu, S. Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein and Peptide Letters, 2009, 16: 685-697.
    Havaux, M. Carotenoids as membrane stabilizers in chloroplasts. Trends In Plant Science, 1998, 3: 147-151.
    Heatherly, L. G. Drought stress and irrigation effects on germination of harvested soybean seed. Crop Science, 1993, 33: 777-781.
    Hodges, D. M., DeLong, J. M., Forney, C. F., Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604-611.
    Hofmann, A., Proust, J., Dorowski, A., Schantz, R., Huber, R. Annexin 24 from Capsicum annuum - X-ray structure and biochemical characterization. Journal of Biological Chemistry, 2000, 275: 8072-8082.
    Hofmann, A.,Delmer, D. P., Wlodawer, A. The crystal structure of annexin Gh1 from Gossypium hirsutum reveals an unusual S-3 cluster - Implications for cellulose synthase complex formation and oxidative stress response. European Journal of Biochemistry, 2003, 270: 2557-2564.
    Hofmann, N. R. The plasma membrane as first responder to heat stress. Plant Cell, 2009, 21: 2544-2544.
    Hoshino, D., Hayashi, A., Temmei, Y., Kanzawa, N., Tsuchiya, T. Biochemical and immunohistochemical characterization of Mimosa annexin. Planta, 2004, 219: 867-875.
    Hoshino, T., Mizutani, A., Chida, M., Hidaka, H., Mizutani, J. Plant annexin form homodimer during Ca2+-dependent liposome aggregation. Biochemistry and molecular biology international, 1995, 35: 749-755.
    Hu, S., Brady, S. R., Kovar, D. R., Staiger, C. J., Clark, G. B., Roux, S. J., Muday, G. K. Identification of plant actin binding proteins by F-actin affinity chromatography. Plant Journal, 2000, 24: 127-137.
    Hundertmark, M.Hincha, D. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC genomics, 2008, 9: 118-139.
    Iba, K. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology,2002, 53: 225-245.
    Ismail, A. M., Hall, A. E. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science, 1999, 39: 1762-1768.
    Jami, S. K., Clark, G. B., Turlapati, S. A., Handley, C., Roux, S. J., Kirti, P. B. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiology and Biochemistry, 2008, 46: 1019-1030.
    Jami, S. K., Hill, R. D., Kirti, P. B. Transcriptional regulation of annexins in indian mustard, Brassica juncea and detoxification of ROS in transgenic tobacco plants constitutively expressing AnnBj1. Plant Signaling & Behavior, 2010, 5: 618-621.
    Kalifa, Y., Perlson, E., Gilad, A., Konrad, Z., Scolnik, P. A., Barzvi, D. Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant, Cell and Environment, 2004, 27: 1459-1468.
    Khan, M. M., Hendry, G. A. F., Atherton, N. M., Vertucci-Walters, C. W. Free radical accumulation and lipid peroxidation in testas of rapidly aged soybean seeds: a light-promoted process. Seed Science Research, 1996, 6: 101-107.
    Kibinza, S., Vinel, D., C Me, D., Bailly, C., Corbineau, F. Sunflower seed deterioration as related to moisture content during ageing, energy metabolism and active oxygen species scavenging. Physiologia Plantarum, 2006, 128: 496-506.
    Kim, K. H., Alam, I., Lee, K. W., Sharmin, S. A., Kwak, S. S., Lee, S. Y., Lee, B. H. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnology Letters, 2010, 32: 571-576.
    Kim, S. T., Wang, Y., Kang, S. Y., Kim, S. G., Rakwal, R., Kim, Y. C., Kang, K. Y. Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. Journal of Proteome Research, 2009, 8: 3598-3605.
    Kmetz, K. T., Schmitthenner, A. F., Ellett, C. W. Soybean Seed Decay: Prevalence ofInfection and Symptom Expression Caused by Phomopsis sp., Diaporthe phaseolorum var. sojae, and D. phaseolorum var. caulivora. Phytopathology, 1978, 68: 836-840.
    Kolupaev, Y. E.,Akinina, G. E., Mokrousov, A. V. Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress. Russian Journal of Plant Physiology, 2005, 52: 199-204.
    Konopka-Postupolska, D., Clark, G., Goch, G., Debski, J., Floras, K., Cantero, A., Fijolek, B., Roux, S., Hennig, J. The role of annexin 1 in drought stress in Arabidopsis. Plant Physiology, 2009, 150: 1394-1410.
    Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., Scharf, K. D. Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007, 10: 310-316.
    Kovacs, I., Ayaydin, F., Oberschall, A., Ipacs, I., Bottka, S., Pongor, S., Dudits, D., Toth, E. C. Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa. Plant Journal, 1998, 15: 185-197.
    Kranner, I., Minibayeva, F. V., Beckett, R. P., Seal, C. E. What is stress? Concepts, definitions and applications in seed science. New Phytologist, 2010, 188: 655-673.
    Kurek, I., Chang, T. K., Bertain, S. M., Madrigal, A., Liu, L., Lassner, M. W., Zhu, G. H. Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell, 2007, 19: 3230-3241.
    Kush, A., Sabapathy, K. Oxy5, a novel protein from Arabidopsis thaliana, protects mammalian cells from oxidative stress. The International Journal of Biochemistry & Cell Biology, 2001, 33: 591-602.
    Laino, P., Shelton, D., Finnie, C., De Leonardis, A. M., Mastrangelo, A. M., Svensson, B., Lafiandra, D., Masci, S. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics, 2010, 10: 2359-2368.
    Laohavisit, A., Davies, J. M. Multifunctional annexins. Plant Science, 2009, 177: 532-539.
    Laohavisit, A., Davies, J. M. Annexins. New Phytologist, 2011, 189: 40-53.
    Laohavisit, A., Brown, A. T., Cicuta, P., Davies, J. M. Annexins: components of the calcium and reactive oxygen signaling network. Plant Physiology, 2010, 152: 1824-1829.
    Laohavisit, A., Mortimer, J. C., Demidchik, V., Coxon, K. M., Stancombe, M. A., Macpherson, N., Brownlee, C., Hofmann, A., Webb, A. A., Miedema, H., Nicholas H. Battey, Julia M. Davies. Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell, 2009, 21: 479-93.
    Larkindale, J., Knight, M. R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 2002, 128: 682-695.
    Larkindale, J., Hall, J. D., Knight, M. R., Vierling, E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 2005, 138: 882-897.
    Law, R. D., Crafts-Brandner, S. J. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Physiology, 1999, 120: 173-182.
    Lee, D. G., Ahsan, N., Lee, S. H., Kang, K. Y., Bahk, J. D., Lee, I. J., Lee, B. H. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 2007, 7: 3369-3383.
    Lee, S., Lee, E. J., Yang, E. J., Lee, J. E., Park, A. R., Song, W. H., Park, O. K. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell, 2004, 16: 1378-91.
    Lee, U., Wie, C., Fernandez, B. O., Feelisch, M., Vierling, E. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell, 2008, 20: 786-802.
    Lee, Y. P., Baek, K. H., Lee, H. S., Kwak, S. S., Bang, J. W., Kwon, S. Y. Tobaccoseeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. Journal of Experimental Botany, 2010, 61: 2499-2506.
    Li, J. K., Zhou, E. X., Li, D. X., Huang, S. Q. Multiple northern refugia for Asian sacred lotus, an aquatic plant with characteristics of ice-age endurance. Australian Journal of Botany, 2010, 58: 463-472.
    Liemann, S., Benz, J., Burger, A., Voges, D., Hofmann, A., Huber, R.G Ttig, P. Structural and functional characterisation of the voltage sensor in the ion channel human annexin V. Journal of Molecular Biology, 1996, 258: 555-561.
    Liu, X., Huang, B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 2000, 40: 503-513.
    Lobell, D. B., Field, C. B. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2007, 2: 014002.
    Lobell, D. B., B Nziger, M., Magorokosho, C., Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 2011, 1: 42-45.
    Marcos-Filho, J. New approaches to seed vigor testing. Scientia Agricola, 1998, 55: 27-33.
    McNeil, A. K., Rescher, U., Gerke, V., McNeil, P. L. Requirement for annexin A1 in plasma membrane repair. Journal of Biological Chemistry, 2006, 281: 35202-35207.
    Monastyrskaya, K., Babiychuk, E. B., Draeger, A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cellular and Molecular Life Sciences, 2009, 66: 2623-2642.
    Mortimer, J. C., Coxon, K. M., Laohavisit, A., Davies, J. M. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. Plant Signaling & Behavior, 2009, 4: 428.
    Mortimer, J. C., Laohavisit, A., Macpherson, N., Webb, A., Brownlee, C., Battey, N. H., Davies, J. M. Annexins: multifunctional components of growth and adaptation. Journal of Experimental Botany, 2008, 59: 533-44.
    Moss SE., Morgan RO. The Annexins. Genome Biology, 2004, 5: 219-226.
    Mudgett, M. B., Clarke, S. Characterization of plant L-isoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme. Biochemistry, 1993, 32: 11100-11111.
    Müller, R., Morant, M., Jarmer, H., Nilsson, L., Nielsen, T. H. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiology, 2007, 143: 156-171.
    Munne-Bosch, S. The role of [alpha]-tocopherol in plant stress tolerance. Journal of Plant Physiology, 2005, 162: 743-748.
    Nascimento, W. M., Cantliffe, D. J., Huber, D. J. Ethylene evolution and endo-beta-mannanase activity during lettuce seed germination at high temperature. Scientia Agricola, 2004, 61: 156-163.
    Nieto-Sotelo, J., Martinez, L. M., Ponce, G., Cassab, G. I., Alagon, A., Meeley, R. B., Ribaut, J. M., Yang, R. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell, 2002, 14: 1621-1633.
    Oge, L., Bourdais, G., Bove, J., Collet, B., Godin, B., Granier, F., Boutin, J. P., Job, D., Jullien, M., Grappin, P. Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell, 2008, 20: 3022-3037.
    Ohga, I. Supramaximal temperature and life duration of the ancient fruits of Indian Lotus. Botanical Magazine, 1927, 41: 161–172.
    Osorio, J. A., McGee, D. C. Effect of freeze damage on soybean seed mycoflora and germination. Plant Disease, 1992, 76: 879-882.
    Panasenko, O. M., Azizova, O. A., Borin, M. L., Arnold, K. Changes in surface charge of plasma lipoproteins during auto-oxidation. Bulletin of Experimental Biology and Medicine, 1986, 101: 30-32.
    Pandey, A., Rajamani, U., Verma, J., Subba, P., Chakraborty, N., Datta, A., Chakraborty, S.Chakraborty, N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. Journal of Proteome Research, 2010, 9: 3443-3464.
    Pareek, A., Lata Singla, S., Grover, A. Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Current Science-Bangalore, 1998, 75: 1023-1035.
    Park, O. K. Proteomic studies in plants. Journal of Biochemistry and Molecular Biology, 2004, 37: 133-138.
    Patterson, S. D., Aebersold, R. H. Proteomics: the first decade and beyond. Nature Genetics, 2003, 33: 311-323.
    Peltier, J. B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A. J., Rutschow, H., van Wijk, K. J. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Molecular & Cellular Proteomics, 2006, 5: 114-133.
    Perry, D. A. Report of the vigour test committee 1974–1977. Seed Science and Technology, 1978, 6: 159-181.
    Pfannschmidt, T., Ogrzewalla, K., Baginsky, S., Sickmann, A., Meyer, H. E., Link, G. The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). European Journal of Biochemistry, 2000, 267: 253-161.
    Porter, J. R. Rising temperatures are likely to reduce crop yields. Nature, 2005, 436: 174-174.
    Priestley, D. A., Posthumus, M. A. Extreme longevity of lotus seeds from Pulantien. Nature, 1982, 299: 148-149.
    Proust, J., Houlne, G., Schantz, M. L., Shen, W. H., Schantz, R. Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Molecular Biology, 1999, 39: 361-372.
    Purvis, A. C. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiologia Plantarum, 1997, 100: 165-170.
    Queitsch, C., Hong, S. W., Vierling, E., Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 2000, 12: 479-92.
    Rajjou, L., Debeaujon, I. Seed longevity: survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 2008, 331:796-805.
    Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., Job, D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 2006, 141: 910-923.
    Rajjou, L., Lovigny, Y., Groot, S., Belghazi, M., Job, C., Job, D. Proteome-wide characterization of seed aging in Arabidopsis: A comparison between artificial and natural aging protocols. Plant Physiology, 2008, 148: 620-641.
    Repetto, O., Bestel-Corre, G., Dumas-Gaudot, E., Berta, G., Gianinazzi-Pearson, V., Gianinazzi, S. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytologist, 2003: 555-567.
    Rhee, H. J., Kim, G. Y., Huh, J. W., Kim, S. W., Na, D. S. Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. European Journal of Biochemistry, 2000, 267: 3220-3225.
    Sairam, R. K., Tyagi, A. Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 2004, 86: 407-421.
    Sakamoto, A., Murata, N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment, 2002, 25: 163-171.
    Sattler, S. E., Gilliland, L. U., Magallanes-Lundback, M., Pollard, M., DellaPenna, D. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 2004, 16: 1419-1432.
    Savchenko, G. E., Klyuchareva, E. A., Abramchik, L. M., Serdyuchenko, E. V. Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 2002, 49: 349-359.
    Schlenker, W., Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences, 2009, 106: 15594-15598.
    Schopfer, P., Plachy, C., Frahry, G. Release of reactive oxygen intermediates(superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiology, 2001, 125: 1591-1602.
    Schwember, A. R., Bradford, K. J. Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany, 2010, 61: 4423-4436.
    Scialabba, A., Bellani, L. M.Dell'Aquila, A. Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds. European Journal of Histochemistry, 2010, 46: 351-358.
    Seals, D. F., Randall, S. K. A vacuole-associated annexin protein, VCaB42, correlates with the expansion of tobacco cells. Plant Physiology, 1997, 115: 753-761.
    Seigneurin-Berny, D., Rolland, N., Dorne, A. J., Joyard, J. Sulfolipid is a potential candidate for annexin binding to the outer surface of chloroplast. Biochemical and Biophysical Research Communications, 2000, 272: 519-524.
    Sharkey, T. D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 2005, 28: 269-277.
    She, K. C., Kusano, H., Yaeshima, M., Sasaki, T., Satoh, H., Shimada, H. Reduced rice grain production under high-temperature stress closely correlates with ATP shortage during seed development. Plant Biotechnology, 2010, 27: 67-73.
    Shen-Miller, J. Sacred lotus, the long-living fruits of China Antique. Seed Science Research, 2002, 12: 131-143.
    Shen-Miller, J., Mudgett, M. B., Schopf, J. W., Clarke, S., Berger, R. Exceptional seed longevity and robust growth: ancient sacred lotus from China. American Journal of Botany, 1995, 82: 1367-1380.
    Shen-Miller, J., Schopf, J. W., Harbottle, G., Cao, R. J., Ouyang, S., Zhou, K. S., Southon, J. R., Liu, G. H. Long-living lotus: Germination and soil gamma-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. American Journal of Botany, 2002, 89:236-247.
    Shi, W. M., Muramoto, Y., Ueda, A., Takabe, T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 2001, 273: 23-27.
    Shulaev, V., Oliver, D. J. Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiology, 2006, 141: 367-372.
    Siddique, K., Loss, S. P., Regan, K. L., Jenner, R. L. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Australian Journal of Agricultural Research, 1999, 50: 375-387.
    Smirnoff, N. Tocochromanols: rancid lipids, seed longevity, and beyond. Proceedings of the National Academy of Sciences, 2010, 107: 17857-17858.
    Sohal, R. S., Weindruch, R. Oxidative stress, caloric restriction, and aging. Science, 1996, 273: 59-63.
    Su, P. H., Li, H. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiology, 2008, 146: 1231-1241.
    Sundaram, S., Rathinasabapathi, B. Transgenic expression of fern Pteris vittata glutaredoxin PvGrx5 in Arabidopsis thaliana increases plant tolerance to high temperature stress and reduces oxidative damage to proteins. Planta, 2010, 231: 361-369.
    Sung, J. M., Jeng, T. L. Lipid peroxidation and peroxide-scavenging enzymes associated with accelerated aging of peanut seed. Physiologia Plantarum, 1994, 91: 51-55.
    Talukdar, T., Gorecka, K. M., de Carvalho-Niebel, F., Downie, J. A., Cullimore, J., Pikula, S. Annexins: calcium- and membrane-binding proteins in the plant kingdom: potential role in nodulation and mycorrhization in Medicago truncatula. Acta Biochimica Polonica, 2009, 56: 199-210.
    Tang, L., Kwon, S. Y., Kim, S. H., Kim, J. S., Choi, J. S., Cho, K. Y., Sung, C. K., Kwak, S. S., Lee, H. S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplastsagainst oxidative stress and high temperature. Plant Cell Reports, 2006, 25: 1380-1386.
    Tang, L., Bhat, S., Petracek, M. E. Light control of nuclear gene mRNA abundance and translation in tobacco. Plant Physiology, 2003, 133: 1979.
    Tejedor-Cano, J., Prieto-Dapena, P., Almoguera, C., Carranco, R., Hiratsu, K., Ohme-Takagi, M., Jordano, J. Loss of function of the HSFA9 seed longevity program. Plant, Cell &Environment, 2010, 33: 1408-1417.
    Thonat, C., Mathieu, C., Crevecoeur, M., Penel, C., Gaspar, T., Boyer, N. Effects of a mechanical stimulation of localization of annexin-like proteins in Bryonia dioica internodes. Plant Physiology, 1997, 114: 981-988.
    Tian, X.,Song, S.Lei, Y. Cell death and reactive oxygen species metabolism during accelerated ageing of soybean axes. Russian Journal of Plant Physiology, 2008, 55: 33-40.
    Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., Tamura, N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology, 2008, 146: 1368-1385.
    Torres, S. B.Marcos Filho, J. Accelerated aging of melon seeds. Scientia Agricola, 2003, 60: 77-82.
    Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., Egawa, Y. Water status of flower buds and leaves as affected by high temperature in heat-tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant production science, 2003, 6: 24-27.
    Tuomainen, M., Tervahauta, A., Hassinen, V., Schat, H., Koistinen, K. M., Lehesranta, S., Rantalainen, K., H Yrinen, J., Auriola, S., Anttonen, M. Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. Journal of Experimental Botany, 2010, 61: 1075-1087.
    Velikova, V.Loreto, F. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell & Environment, 2005, 28:318-327.
    Vigh, L., Horvath, I., Maresca, B., Harwood, J. L. Can the stress protein response be controlled by 'membrane-lipid therapy'? Trends in Biochemical Sciences, 2007, 32: 357-363.
    Wahid, A., Close, T. J. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum, 2007, 51: 104-109.
    Wahid, A., Gelani, S., Ashraf, M., Foolad, M. R. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 2007, 61: 199-223.
    Walters, C. Understanding the mechanisms and kinetics of seed aging. Seed Science Research, 1998, 8: 223-244.
    Walters, C., Wheeler, L. M., Grotenhuis, J. M. Longevity of seeds stored in a genebank: species characteristics. Seed Science Research, 2005, 15: 1-20. Wang, L. J., Li, S. H. Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Research, 2006, 48: 137-144.
    Wang, W., Vinocur, B., Shoseyov, O., Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9: 244-252.
    Waterworth, W. M., Masnavi, G., Bhardwaj, R. M., Jiang, Q., Bray, C. M., West, C. E. A plant DNA ligase is an important determinant of seed longevity. Plant Journal, 2010, 63: 848-860.
    Weber, M., Trampczynska, A., Clemens, S. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant, Cell & Environment, 2006, 29: 950-963.
    White, P. J., Bowen, H. C., Demidchik, V., Nichols, C., Davies, J. M. Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002, 1564: 299-309.
    Wilkins, M. R., Sanchez. J.C., Gooley A.A., Appel R. D., Humphery-Smith. I.,
    Hochstrasser D.F., Williams, K. L. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology & Genetic Engineering Reviews, 1995, 13: 19-50.
    Wilkins, M. R., Gasteiger, E., Gooley, A. A., Herbert, B. R., Molloy, M P., Binz, P. A., Ou, K., Sanchez, J. C., Bairoch, A.Williams, K. L. High-throughput mass spectrometric discovery of protein post-translational modifications. Journal of Molecular Biology, 1999, 289: 645-657.
    Wilkinson, J. Q., Lanahan, M. B., Conner, T. W., Klee, H. J. Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Molecular Biology, 1995, 27: 1097-1108.
    Wise, R. R., Olson, A. J., Schrader, S. M., Sharkey, T. D. Electron transport is the functional limitation of photosynthesis in field‐ grown pima cotton plants at high temperature. Plant, Cell & Environment, 2004, 27: 717-724.
    Wu, J. H., Wang, W. Q., Song, S. Q., Cheng, H. Y. Reactive oxygen species scavenging enzymes and down-adjustment of metabolism level in mitochondria associated with desiccation-tolerance acquisition of maize embryo. Journal of Integrative Plant Biology, 2009, 51: 638-645.
    Xu, S., Li, J., Zhang, X., Wei, H., Cui, L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 2006, 56: 274-285.
    Yamada, S., Komori, T., Hashimoto, A., Kuwata, S., Imaseki, H., Kubo, T. Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Science, 2000, 154: 61-69.
    Yang, P., Li, X., Wang, X., Chen, H., Chen, F., Shen, S. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics, 2007, 7: 3358-3368.
    Yang, X., Liang, Z., Lu, C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 2005, 138: 2299-2309.
    Zhang, H., Lian, C., Shen, Z. Proteomic identification of small, copper-responsiveproteins in germinating embryos of Oryza sativa. Annual Botany, 2009, 103: 923-930.
    Zhang, S., Chen, F., Peng, S., Ma, W., Korpelainen, H., Li, C. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress. Proteomics, 2010, 10: 2661-2677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700