甘蓝籽粒色泽的遗传及其与甘蓝型油菜的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄色籽粒性状广泛存在于十字花科芸薹属植物中。白菜型油菜、芥菜型油菜,尤其是甘蓝型油菜作为食用植物油的主要来源而被广泛种植,对籽粒色泽早已进行了深入系统的研究。而作为甘蓝型油菜祖先亲本种之一的甘蓝,由于一直以来主要用作食用蔬菜和观赏花卉栽培,研究者对其种子性状并未给予应有的关注。
     综合分析国内外的研究现状发现,在油菜及其近缘物种籽粒色泽的遗传研究方面至少存在两个主要问题或不足:(1)籽粒色泽的遗传研究主要集中在白菜型油菜、芥菜型油菜和甘蓝型油菜,而有关埃塞俄比亚芥和甘蓝的研究很少,这使得育种家难于充分、有效地利用C基因组的黄籽基因来选育和改良甘蓝型油菜的籽粒色泽,从而极大地限制了甘蓝型黄籽油菜的育种进程;(2)绝大多数研究对籽粒色泽的观察和统计都采用目测法,并将籽粒色泽看成质量性状,应用孟德尔的分类统计法进行遗传分析,而应用其他度量方法和数量性状遗传分析方法的研究很少;由于目测法带有观察者的主观性和不确定性(有时还存在系统误差),不同的研究者采用的分级标准不同,分类统计的结果也不同,这使得遗传分析结论的准确性和可靠性大大降低。同时,也未见与籽粒色泽直接相关的甘蓝种皮色素和环境条件对甘蓝籽粒色泽影响的研究报道。
     重庆市油菜工程技术研究中心于1994年首次在观赏植物羽衣甘蓝中发现黄籽单株,进而选育出遗传稳定的黄籽株系材料。这是国际上报道的首例甘蓝黄籽材料。本论文以黄籽甘蓝品系为核心材料,研究了甘蓝籽粒色泽的遗传特性、主要农艺措施和基因型×环境互作对甘蓝籽粒色泽的影响以及种子发育过程中甘蓝种皮主要色素含量的动态变化、甘蓝成熟种子种皮色素含量的差异,并与甘蓝型油菜进行了对比分析。开展这项研究不仅可以扩展芸薹属植物籽粒色泽遗传研究的领域和广度,而且所获得的研究结果,一方面将大大地加深对黄籽甘蓝型油菜籽粒色泽遗传规律的认识,另一方面将为充分利用甘蓝的C基因组黄籽基因奠定基础,推动黄籽甘蓝型油菜的育种进程。因此,本项研究具有重要的理论意义和实践价值。
     1.甘蓝籽粒色泽的遗传分析
     以籽粒色泽不同的羽衣甘蓝、结球甘蓝和白花芥蓝为材料配制杂交组合,构建P1、P2、F1、B1、B2和F2等6个世代群体,将籽粒色泽看作数量性状,采用自主开发的数字图像分析法度量甘蓝的籽粒色泽,利用植物数量性状主基因+多基因遗传体系多世代联合分析方法,建立主基因+多基因混合遗传模型,研究甘蓝籽粒色泽的遗传特性,包括黄色与非黄色的显隐性关系、控制基因对数、基因作用方式、母体效应和遗传率等。主要结论如下:
     (1)甘蓝籽粒色泽的遗传表现为母体效应,杂交当代的籽粒色泽与杂交母本自交种子相同;F1代籽粒色泽总体表现较深,黄色对非黄色为隐性。
     (2)甘蓝籽粒色泽的遗传受1-2对主基因和微效多基因的共同控制,主基因和多基因均具有加性效应和显性效应,或同时具有上位性效应;主基因为部分显性或完全显性,2对主基因的效应相同或不同;多基因为部分显性、完全显性或超显性;3个分离世代的主基因遗传率均大于多基因遗传率,主基因+多基因遗传率较高。甘蓝籽粒色泽的遗传较为复杂,不同的杂交组合具有不同的基因效应,表现为不同的遗传模型。
     (3)甘蓝籽粒色泽的表现受环境因素的影响也较大。
     2.主要农艺措施和基因型×环境互作对甘蓝籽粒色泽的影响
     以籽粒色泽不同的羽衣甘蓝、结球甘蓝和白花芥蓝为材料,采用裂裂区设计和随机区组设计研究施氮量、种植密度、播种期和收获期等主要农艺措施和基因型×环境互作对甘蓝籽粒色泽的影响以及甘蓝籽粒色泽的表现对环境变化的稳定性。主要结论如下:
     (1)施氮量、播种期和收获期对甘蓝籽粒色泽的影响因基因型不同而异,对黑籽基因型没有明显的影响,而极显著地影响黄籽基因型的籽粒色泽;黄籽基因型籽粒色泽随施氮量的增加逐渐变浅,提早或推迟播种都会使黄籽基因型籽粒色泽加深,收获过迟会极显著地降低黄籽基因型的黄色程度。种植密度对甘蓝籽粒色泽没有明显的影响。
     (2)基因型×环境互作对甘蓝籽粒色泽也有极显著的影响,不同基因型对环境变化的反应不同,表现出稳定性的差异,尤其是黄籽基因型。
     3.甘蓝种子发育过程中种皮色素含量的动态变化
     以遗传来源不同的3对具有相同遗传背景的黄籽和黑籽羽衣甘蓝为材料研究种子发育过程中甘蓝种皮主要色素(叶绿素、类胡萝卜素、花色素、黑色素和类黄酮)含量的动态变化和甘蓝成熟种子种皮色素含量的差异。主要结论如下:
     (1)在甘蓝种子发育过程中,除类胡萝卜素外,种皮叶绿素、花色素、黑色素和类黄酮的含量在不同色泽籽粒种皮中均存在极显著的差异;不同发育时期5种色素的含量都有极显著的变化,叶绿素、花色素和类黄酮的含量均呈现出先升高、后降低的变化趋势,黑籽种皮类胡萝卜素含量单调上升而黄籽先降后升,种皮黑色素含量从开花后40天起迅速增高,黑籽与黄籽间的差异也迅速增大;种子成熟时,黑籽和黄籽种皮类胡萝卜素含量基本相同,而黑籽种皮叶绿素、花色素、黑色素和类黄酮的含量显著或极显著高于遗传背景相同的黄籽;种子发育过程中种皮5种色素含量的变化规律在黄籽和黑籽间具有明显的差异。
     (2)甘蓝种子收获脱粒后,种皮叶绿素、花色素和类黄酮的含量还会继续下降,而类胡萝卜素和黑色素的含量继续上升;风干成熟种子黑籽种皮中5种色素含量均明显高于遗传背景相同的黄籽种皮;相对于黄籽而言,黑籽种皮中花色素含量最高,其次是黑色素和叶绿素,类胡萝卜素和类黄酮较小。引起甘蓝风干成熟种子籽粒色泽差异的主要色素是花色素,其次是黑色素和叶绿素,类胡萝卜素和类黄酮也有一定的作用。
     4.甘蓝与甘蓝型油菜籽粒色泽遗传的对比分析
     通过文献研究法,对比分析甘蓝和甘蓝型油菜在籽粒色泽的遗传特点、主要农艺措施和基因型×环境互作对籽粒色泽的影响、籽粒色泽对环境变化的稳定性、种子发育过程中种皮主要色素的动态变化以及成熟种子种皮色素含量差异等方面的异同。主要结论如下:
     (1)甘蓝籽粒色泽的遗传特点与甘蓝型油菜相似,在黄籽性状显隐性、控制基因对数、基因作用方式、母体效应和遗传率等方面都没有明显的差异。
     (2)除种植密度外,播种期、收获期和施氮量等主要农艺措施对甘蓝籽粒色泽的影响与甘蓝型油菜基本相同;基因型×环境互作效应对甘蓝籽粒色泽的影响与甘蓝型油菜类似,甘蓝籽粒色泽的稳定性与甘蓝型油菜也相似。
     (3)种子发育过程中,除种皮花色素含量最大值出现时间略有不同外,叶绿素、类胡萝卜素、黑色素和类黄酮的变化动态在甘蓝和甘蓝型油菜间没有明显的不同;除甘蓝成熟种子黄、黑籽种皮叶绿素含量之间的差异与甘蓝型油菜不同外,其余4种色素甘蓝与甘蓝型油菜相同;甘蓝成熟种子黄籽与黑籽种皮色素含量差异最大的是花色素,其次是黑色素和叶绿素,而甘蓝型油菜却是黑色素和花色素。
     (4)可以认为,甘蓝型油菜黄籽性状的数量性状遗传表现很可能是由来自甘蓝的C基因组上的基因引起的。
Yellow seed is a very common trait of Brassica species in Cruciferae family. Brassica campestris L., Brassica juncea Coss, and Brassica napus L. are widely planted as the main source of edible vegetable oil, and their seed colour has been thoroughly studied. However, Brassica oleracea L., one of the ancestor species of B. napus, was mainly cultivated as edible vegetables and ornamental flowers, and its seed trait has not been payed attention by researchers.
     With the current research situations being comprehensively analyzed, at least two main problems or defects were found in seed colour inheritance research of rapeseed and its close species. Firstly, inheritance researches on seed colour mostly focused on B. campestris, B. juncea and B. napus, a few studies were conducted on B. carinata and B. oleraeca. This makes it difficult to effectively use the yellow seed genes of C genome to improve the seed colour of B. napus, and greatly limits the breeding process of yellow-seeded B. napus. Secondly, the seed colour was investigated by using eyes observation and considered as a quality trait and applying the Mendel's classification statistic method in most of heredity researches, whereas other measurement and quantitative trait genetic analysis was seldom used to study seed colour. The observer's subjectivity and uncertainty (and sometimes systematic error) and the different classification standard greatly reduced the accuracy and reliability of genetic analysis results. Meanwhile, none reports were found about seed coat pigment related directly with seed colour and the environment influence on seed colour in B. oleracea.
     For the first time, Chongqing Engineering Research Center for Rapeseed found three yellow-seeded plants of ornamental flower B. oleracea var. acephala DC. in1994, and then bred yellow-seeded lines with genetic stability. This was the first report about yellow-seeded B. oleracea in the world. In the present study, these yellow-seeded lines are used as core materials, and the main objectives are to analyze the genetic characteristics of seed colour, the influences of major agronomic measures and genotype×environment interaction on seed colour, the dynamic changes of main pigment contents of seed coat during the process of seed development, and the differences of seed coat pigment contents of B. oleracea mature seed, and to comparatively analyze these respects between B. oleracea and B. napus. This study might enlarge the research field and scope on the inheritance of seed colour in Brassica species. The results will not only greatly deepen our insights into the inheritance law of seed colour in yellow-seeded B. napus, but also lay a foundation for full use of yellow seed genes of C genome from B. oleracea and promote the breeding process of yellow-seeded B. napus. Therefore, this research has important theoretical significance and practical value.
     1. Genetic analysis on seed colour in B. oleracea
     B. oleracea var. acephala DC., B. oleracea var. capitata L. and B. oleracea var. alboglabra Bailey with different seed colours were used as materials to generate hybrid combinations and the derived populations P1, P2, F1, B1, B2and F2. The seed colour of B. oleracea was considered as quantitative trait and measured by the digital image analysis method which was developed in our labratory. The multiple generation conjoint analysis of major gene plus polygene system of quantitative trait was conducted to establish the mixed genetic model and analyze the hereditary characteristics of seed colour in B. oleracea, including the dominant or recessive gene of yellow seed trait, the number and effect of seed colour gene, as well as maternal effect and heritability. The main conclusions are as followings:
     (1) The inheritance of B. oleracea seed colour presented maternal effect and the immediate hybrid seeds had the same colour as the self-pollinated seeds of its female parent. The seed colour of F1generation is darker in general, and yellow seed was recessive trait over the other seed.
     (2) The seed colour of B. oleracea was commonly controlled by one or two major gene(s) and minor polygenes. Both the major gene and minor polygenes had additive effect, dominant effect and sometimes had epistatic effect. The major gene was partial dominant or complete dominant and the two pairs of major genes had the same effects in one hybrid combination and had the different effects in other combinations. The polygenes were partial dominant, complete dominant or superdominance in all combinations. Heritabilities of major gene were greater than those of polygenes in the three segregating generations. The estimate values of heritability of major gene and polygenes were relatively high. These results suggested that the inheritance of B. oleracea seed colour was a considerably complex system, and the effects of seed colour genes were quite different in different hybrid combinations and belonged to different genetic models.
     (3) The performance of B. oleracea seed colour could be affected by enviromental factors in a certain degree.
     2. The effects of agronomic measures and genotype×environment interaction on B. oleracea seed colour
     B. oleracea var. acephala, B. oleracea var. capitata and B. oleracea var. alboglabra with different seed colours were used as materials and split-split plot design and randomized block design were adopted to investigate the effects of different agronomic measures, including the amount of nitrogen fertilizer, planting density, sowing and harvest time, and genotype×environment interaction on seed colour, as well as the performance stability of seed colours to the environmental changes in B. oleracea. The main conclusions are as followings:
     (1) The effects of the amount of nitrogen fertilizer, sowing and harvest time on seed colour varied with genotypes in B. oleracea. No obvious effects on the seed colour of black-seeded genotypes and very significant influences on the yellow-seeded genotypes were found. The seed colour of yellow-seeded genotypes would gradually become lighter with the amount increase of nitrogen fertilizer. The early or late sowing time would make the seed colour of yellow-seeded genotypes dark. The too late harvest time could extremely significantly reduce the seed yellow degree of yellow-seeded genotypes. Planting density had no apparent effects on B. oleracea seed colour.
     (2) The interaction of genotype×environment significantly affected B. oleracea seed colour and different genotypes had different reactions to the environment changes, especially in the yellow-seeded genotypes.
     3. The dynamic changes of seed coat pigment content during seed development process in B. oleracea
     Three pairs of B. oleracea var. acephala yellow-and black-seeded lines with the same genetic background from different sources were used to analyze the dynamic changes of main seed coat pigment content (chlorophyll, carotenoid, anthocyanidin, melanin and flavonoid) during the seed development process and the differences of seed coat pigment content in mature seed. The main conclusions are as followings:
     (1) In the seed development process of B. oleracea, the contents of chlorophyll, anthocyanidin, melanin and flavonoid except carotenoid showed significant differences in seed coat with different colour and all the five pigment contents varied significantly at different development stages. The chlorophyll, anthocyanidin and flavonoid presented a change trend from increasing to decreasing. The carotenoid contents of black seed coat monotonicly increased with the seed development, whereas those of yellow seed coat decreased at the early stage and then increased. Melanin contents increased sharply from40days after flowering and the differences of melanin content enlarged rapidly between black and yellow seed coat. The carotenoid contents of yellow and black seed coat were almost at the same level in mature seed, whereas the contents of chlorophyll, anthocyanidin, melanin and flavonoid of black seed coat were extremely significantly or significantly higher than those of yellow seed coat which had the same genetic background. The different change tendencies of the five pigment contents existed between yellow and black seed coat in the process of seed development.
     (2) The contents of chlorophyll, anthocyanidin and flavonoid of seed coat would continue to decline in B. oleracea, whereas the contents of carotenoid and melanin continue to rise after harvest and threshing. The five pigment contents of black seed coat were significantly higher than those of yellow seed coat with the same genetic background in the air-drying mature seed. Comparing with yellow seed coat, the anthocyanidin content was the highest in black seed coat, the contents of melanin and chlorophyll were next, and the contents of carotenoid and flavonoid were the last. Therefore, in air-drying mature seed coat of B. oleracea, the main pigment causing the differences of seed colour was anthocyanidin, next melanin and chlorophyll, and then carotenoid and flavonoid.
     4. Comparative analysis of seed colour inheritance in B. oleracea and B. napus
     The means of literature research were used to compare and analyze the genetic characteristics of seed colour of B. oleracea and B. napus, the effects of major agronomic measures and genotype×environment interaction on seed colour, the stability of seed colour to the environmental changes, the dynamic changes of main pigment content of seed coat during seed development process and the differences of pigment content in mature seed coat, etc. The main conclusions are as followings:
     (1) The hereditary characteristics of B. oleracea seed colour were similar to B. napus and there were no obvious differences in the dominant or recessive gene of yellow seed trait, the number and effect of seed colour gene, as well as maternal effect and heritability, etc.
     (2) Except planting density, the effects of major agronomic measures, such as sowing and harvest time and the amount of nitrogen fertilizer, etc, on seed colour were relatively similar between B. oleracea and B. napus. The genotype×environment interaction effect on B. oleracea seed colour and the environmental stability of B. oleracea seed colour were similar to B. napus.
     (3) During seed development process, in addition to a slight difference of peak date of anthocyanidin content, the dynamic changes of chlorophyll, carotenoid, melanin and flavonoids were no significant differences between B. oleracea and B. napus seed coat. Between yellow and black mature seed coat, the difference of chlorophyll content in B. oleracea was different with B. napus, the rest four pigments were the same. The largest difference between yellow and black mature seed coat was anthocyanidin content in B. oleracea, followed by melanin and chlorophyll, however they were melanin and anthocyanidin in B. napus.
     (4) It suggested that quantitative genetic characteristics of yellow seed trait of B. napus was likely to be resulted from the genes on the C genome come from B. oleracea.
引文
Ahmed S U, Zuberi M I. Inheritance of seed coat color in Brassica campestris L. variety Toria [J]. Crop Science.1971,11(2):309-310
    Akhov L, Ashe P, Tan Y, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YNO1-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase [J]. Botany.2009, 87(9):616-625
    Anand I J, Reddy W R, Rawat D S. Inheritance of seed coat colourd in mustard [J]. Indian Journal of Genetics and Plant Breeding.1985,45(1):34-37
    Asthana A N, Dube S D, Singh C B. Breeding of improved yellow seeded Indian mustard [J]. Indian Journal of Genetics and Plant Breeding.1975,35(1):49-53
    Auger B, Baron C, Lucas M, Vautrin S, Berges H, Chalhoub B, Fautrel A, Renard M, Nesi N. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed [J]. Planta.2009,230(6): 1167-1183.
    Badani A G, Snowdon R J, Wittkop B, Lipsa F D, Baetzel R, Horn R, Haro A D, Font R, Luhs W, Friedt W. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus) [J]. Genome.2006,49(12): 1499-1509
    Badani A G, Snowdon R, Baetzel R, Luhs W, Horn R, Friedt W. QTL mapping for yellow seed colour in oilseed rape (Brassica napus) [C]. Proc 11th Int Rapeseed Congr. Copenhagen, Denmark, molecular markers-plant breeding,2003
    Baetzel R, Friedt W, Voss A, Luhs W W. Development of yellow-seeded high-erucic acid rapeseed (Brassica napus L.) [C]. Proc 10th Int Rapeseed Congr. Canberra, GCIRC, Paris,1999
    Baetzel R, Luhs W, Badani A G, Friedt W. Development of segregating populations in the breeding of yellow-seeded winter rapeseed (Brassica napus L.) [C]. Proc 11th Int Rapeseed Congr. Copenhagen, Denmark. seed oil & meal quality-plant breeding,2003,238-242
    Barrcikowska B Z, Wierzykowska E, Balicka M. On the way to yellow seeded Brassica napus L. hybrids of B. campertris × B. olercea and of B. oleracea × B. carinata yellow seeded [C]. Proc 7th Int Rapeseed Congr.1987,492-495
    Barrcikowska B, Kalasa-Janowska M, Mackowiak M. Attempts of receiving yellow seeded Brassica napus recombinants as the result of interspecific crosses B. juncea (L.) Czern. et Coss × B. carinata Braun [J]. Cruciferae Newsletter.1994, (16):20
    Bechyne M. Development of four valued yellow seeded rapeseed [C]. Proc 9th Int Rapeseed Congr. J31,1995
    Bochkaryova E B, Gorlov S L. Utilization of interspecific hybridization and mutagenesis of yellow seed spring rapeseed [C]. Plant breeding,9th international rapeseed congress. GCRIC, Cambridge, England,1995.1150-1152
    Chauhan Y S, Kumar K. Genetics of seed colour in mustard(Brassica juncea L. Czern & Coss.) [J]. Cruciferae Newslett.1987,12:22-23
    Chen B Y, Heneen W K, Jonsson R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour [J]. Plant Breeding.1988,101(1):52-59
    Chen B Y, Heneen W K. Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. [J]. Euphytica.1992,59(2-3):157-163
    Chen B Y, Jorgensen R B, Cheng B F, Heneen W K. Identification and chromosomal assignment of RAPD markers linked with a gene for seed colour in a Brassica campestris-alboglabra addition line [J]. Hereditas.1997,126(2):133-138
    Daun J K, DeClercq D R. Quality of yellow and dark seeds in Brassica campestris canola varieties Candle and Tobin [J]. J Am Oil Chem. Soc.1988,65(1):122-126
    Debeaujon I, Leon-Kloosterziel K M, Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis [J]. Plant Physiology.2000, 122(2):403-414
    Debeaujon I, Peeters A J M, Leon-Kloosterziel K M, Koornneef M. The TRANSPARENT TESTA 12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium [J]. The Plant Cell,2001,13(4):853-871
    Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development [J]. Plant Journal.1999,19(4):387-398
    Downey R K, Stringham G R, McGregor D I, Steffanson S. Breeding rapeseed and mustard crops [C]. In:Harapiak J T (ed.). Oilseed and pulse crops in western Canada. Western cooperative fertilize, Calgary, Alberta, Canada.1975,157-178
    Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed colour using recombinant inbred lines of Brassica napus in different environments [J]. Genome.2007,50(9):840-854
    Gai J, Wang J. Identification and estimation of a QTL model and its effects. Theor Appl Genet.,1998,97(7):1162-1168
    George L, Rao P S. Yellow-seeded variant in invitro regenerants of mustard(Brassica juncea Coss var. Rai-5). Plant Sci. Lett..1983,30:327-330
    Getinet A, Rakow G, Downey R K. Seed color inheritance in Brassica carinata A. Braun, cultivar S-67. Plant Breeding.1987,99(1):80-82
    Getinet A, Rakow G. Repression of seed coat pigmentation in Ethiopian mustard. Canadian Journal of Plant Science.1997,77(4):501-505
    Hawk J A. Single gene control of seed color and hypocotyls color in turnip rape. Canadian Journal of Plant Science.1982,62(2):331-334
    Henderson C A P, Pauls K P. The use of haploidy to develop plants that express several recessive traits using light-seeded canola(Brassica napus) as an example [J]. Theoretical and Applied Genetics.1992,83(4):476-479
    Jonsson R. Breeding for improved oil and meal quality in rape(Brassica napus L.) and turnip rape(Brassica campestris L.) [J]. Hereditas.1977,87(2):205-218
    Leung J, Fenton T W, Mueller M M, Clandinin O R. Condensed tannins of rapeseed meal. J. Food Sci..1979,44(5):1313-1317
    Li D R, Tian J H. Discovery of dominant yellow-seeded genes and the breeding of yellow-seeded hybrid in Brassica napus L. [C] Proc 10th Int Rapeseed Congr. Canberra, Australia.1999
    Li J, Chen L, Liang Y, Ye X, Liu L. Research and commercial application of the complete dominance yellow-seeded gene in Brassica napus L. [C]. In:Proceedings of the 11th International Rapeseed Congress. Copenhagen, Denmark.2003,1: 202-204
    Li Jiana, Chen Li, Tang Zhanglin, Zhang Xuekun, Yan Shijiang. Genetic study and commercial application of the yellow-seeded rapeseed(Brassica napus L.) [C]. Liu Houli, Fu Tingdong. Proceedings of International Symposium on Rapeseed Science. Wuhan, China.2011. New York:Science Press New York,2001,28-34
    Lipsa F D, Snowdon R, Friedt W. Improving rapeseed meal quality by reduction of condensed tannins [A]. In:Proc 12th Intl Rapeseed Cong [C]. Wuhan, China,2007, 135-137
    Liu H L, Gao Y T. Some fundamental problems conducted from the studies on the breeding of yellow-seeded Brassica napus L. [C]. Proc 7th Int Rapeseed Congr. Poznan.1987,2,476-480
    Liu H L. Studies on the breeding of yellow seeded Brassica napus [C]. Proc 6th Int Rapeseed Congr. Paris.1983,1:637-641
    Liu L Z, Meng J L, Lin N, Chen L, Tang Z L, Zhang X K, Li J N. QTL mapping of seed coat color for yellow seeded Brassica napus [J]. Acta Genetica Sinica.2006,33(2): 181-187
    Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris) [J]. Theoretical and Applied Genetics.2002,105(6-7):1050-1057
    Liu X P, Tu J X, Chen B Y, Fu T D. Identification and inheritance of a partially dominant gene for yellow seed colour in Brassica napus [J]. Plant Breeding.2005, 124(1):9-12
    Liu Zhi-wen, Fu Ting-dong, Tu Jin-xing, Chen Bao-yuan. Inheritance of seed colour and identification of RAPD and AFL P markers linked to the seed colour gene in rapeseed (Brassica napus L.) [J]. Theoretical and Applied Genetics.2005,110(2): 303-310
    Mahmood T, Rahman M H, Stringam G R, Raney J P, Good A G. Molecular markers for seed colour in Brassica juncea [J]. Genome.2005,48(4):755-760
    Marles M A S, Gruber M Y, Scoles G J, Muir A D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus [J]. Phytochemistry.2003,62(5):663-672
    Meng J, Gan L, Li Z, Si S. Doubled transfer of yellow-seeded genes from Brassica campestris and B. carinata to B. napus [J]. Journal of Huazhong Agricultural University.1994, Sup Sum,17:4
    Meng J, Shi S, Gan L, Li Z, Qu X. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus [J]. Euphytica.1998,103(3):329-333
    Meng J. Interspecific hybridization and seed coat quality [C]. Proc 9th Int Rapeseed Congr.1995
    Mohammad A, Sikka S M, Aziz M A. Inheritance of seed color in some oleiferous Brassicae [J]. Indian J. Genet. Breed..1942,2:112-127
    Nayar G G. Yellow seeded mutations in Brassica juncea Hook. f. and Thorns, induced by radioactive sulfur-35S*. Current. Science.1968,37(14):412-413
    Negi M S, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat color in Brasscia juncea and conversion to a SCAR marker for rapid selection [J]. Theoretical and Applied Genetics.2000,101(1):146-152
    Olsson G. Speices crosses within the genus Brassica. Ⅰ. Artificial Brassica juncea Coss [J]. Hereditas.1960,46(1-2):171-223
    Olsson G. Speices crosses within the genus Brassica. Ⅱ. Artificial Brassica napus L. [J]. Hereditas.1960,46(3-4):351-386
    Poulsen M H, Rahman M H, Sorensen H. Interspecific crossing of Brassica carinata and B. oleracea for breeding yellow-seeded B. oleracea / B. napus [C]. Proc 8th rapeseed Congr.1991,197-202
    Qi C K, Fu S Z, Pu H M. A successful transfer of yellow-seeded trait from Brassica carinata to B. napus [C]. Proc 9th Int Rapeseed Congr. Cambridge.1995,4: 1137-1140
    Qian W, Chen X, Fu D, Zou J, Meng J. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome [J]. Theoretical and Applied Genetics.2005,110(7): 1187-1194
    Rahman M H, Joersbo M, Poulsen M H. Development of yellow-seeded Brassica napus of double low quality [J]. Plant Breeding.2001,120(6):473-478
    Rahman M H. Inheritance of petal colour and its independent segregation from seed colour in Brassica rapa [J]. Plant Breeding.2001a,120(3):197-200
    Rahman M H. Production of yellow-seeded Brassica napus through interspecific crosses [J]. Plant Breeding.2001b,120(6):463-472
    Rakow G, Raney J P, Relf-Eckstein J. Agronomic performance and seed quality of a new source of yellow seeded Brassica napus [C]. Proc 10th Int Rapeseed Congr. Canberra, GCIRC, Paris.1999
    Rashid A, Rakow Q Downey R K. Development of yellow seeded Brassica napus through interspecific crosses [J]. Plant Breeding.1994,112(2):127-134
    Rashid A, Rakow G. Seed quality improvements in yellow seeded Brassica napus [C]. Proc 9th Int Rapeseed Congr.1995
    Ruecker B. On the inheritance of seed coat colour in winter oilseed rape(Brassica napes L.) [J]. Cruciferae Newsletter.1991,14-15:50-51
    Sabharwal V, Negi M S, Banga S S, Lakshmikumaran M. Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern [J]. Theoretical and Applied Genetics.2004,109(1):160-166
    Schwetka A. Inheritance of seed colour in turnip rape(Brassica campestris L.) [J]. Theoretical and Applied Genetics.1982,62(2):161-169
    Senda M, Jumonji A, Yumoto S, Ishikawa R, Harada T, Niizeki M, Akada S. Analysis of the duplicated CHS 1 gene related to the suppression of the seed coat pigmentation in yellow soybeans [J]. Theoretical and Applied Genetics.2002,104(6-7): 1086-1091
    Shirley B W, Kubasek W L, Storz G Bruggemann E, Koornneef M, Ausubel F M, Goodman H M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis [J]. Plant Journal.1995,8(5):659-671
    Shirzadegan M, Robbelen G. Influence of seed colour and hull proportion on quality properties of seeds in Brassica napus L. [J]. Fette Seifen Anstrichmittel.1985, 87(6):235-237
    Shirzadegan M. Inheritance of seed colour in Brassica napus L. [J]. Z Pflanzenzuchtg. 1986,96:140-146
    Simbaya J, Slominski B A, Rakow G, Campbell L D, Downey R K, Bell J M. Quality characteristics of yellow-seeded Brassica seed meals:protein, carbohydrate, and dietary fiber components [J]. J. Agric. Food Chem..1995,43(8):2062-2066
    Singh N K, Aruna K. Inheritance of seed coat colour in India mustard [J]. Cruciferae Newsletter.1994,16:115-116
    Singh R N, Srivastava A N. Note on the breeding behaviour of a yellow seeded Rai (Brassica juncea L. Coss.) [J]. Sci. Cult..1974,40:407
    Somers D J, Rakow G, Prabhu V K, Friesen K R D. Identification of a major gene and RAPD markers for yellow seed coat color in Brassica napus [J]. Genome.2001, 44(6):1077-1082
    Stringam G R, McGregor D I, Pawlowski S H. Chemical and morphological characteristics associated with seed-coat color in rapeseed. Proc.4th Int. Rapeseed Congress. Giessen.1974,90-108
    Stringam G R. Inheritance of seed color in turnip rape [J]. Canadian Journal Plant Science.1980,60(2):331-335
    Tang Z L, Li J N. Genetic variation of yellow-seeded rapeseed lines (B. napus L.) from different genetic sources. Plant Breeding.1997,116(5):471-474
    Theander O, Aman P, Miksche G E, Yasuda S. Carbohydrates, polyphenol, and lignin in seed hulls of different colors from turnip rapeseed [J]. J. Agric. Food Chem..1977, 25(2):270-273
    Todd J J, Vodkin L O. Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family [J]. The Plant Cell.1996,8(4):687-699
    U, N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization [J]. Jpn J. Bot.1935,7:389-452
    Van Caseele L, Mills J T, Sumner M, Gillespie. Cytological study of the palisade development in the seed coat of Candle canola [J]. Can. J. Bot..1982,60(11): 2469-2475
    Van Deynze A E, Beversdorf W D, Pauls K P. Temperature effects on seed color in black- and yellow-seeded rapeseed [J]. Canadian Journal Plant Science.1993, 73(2):383-387
    Van Deynze A E, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed color genes in Brassica napus [J]. Genome. 1995,38(4):534-542
    Van Deynze A E, Pauls K P. The inheritance of seed colour and vernalization requirement in Brassica napus using doubled haploid population [J]. Euphytica. 1994,74(1-2):77-83
    Vera C L, Woods D L. Isolation of independent gene pairs at two loci for seed coat color in Brassica juncea [J]. Canadian Journal Plant Science.1982,62(1):47-50
    Vera C L. Inheritance of seed coat in B. juncea [J]. Canadian Journal Plant Science. 1979,59(3):635-637
    Wang H, Liu H. Genetic analysis of seed color stability in yellow-seeded Brassica napus [C].见:傅廷栋主编.刘后利科学论文集.北京:北京农业大学出版社,1994,229-234
    Zaman M W. Limitations for introgression of yellow seed coat colour in Brassica napus [J]. Sveriges Utsadesforenings Tidskrift.1988,98:157-161
    白宝璋,汤学军.植物生理学测试技术[M].北京:中国科学技术出版社,1993
    陈宝元,孟金陵.甘蓝型油菜种皮发育的初步观察[J].华中农学院学报.1984,3(2):5-8
    陈宝元.甘蓝型油菜种皮厚度和种皮颜色的遗传及其与产量性状、初花期和含油量的关系[D]:[硕士学位论文].武汉:华中农学院,1985
    陈俊意,刘娜,梁翰文.甘蓝型黄籽油菜种皮色素与抗氧化酶的关系[J].广西农业科学.2006,37(6):656-659
    陈树忠,高凯,李加纳,唐章林,殷家明.油用羽衣甘蓝农艺性状和品质性状初步分析[c].中国作物学会油料作物专业委员会编.迎接21世纪的中国油料科技(中国作物学会油料作物专业委员会第四次全国会员代表大会论文集).重庆.2000.北京:中国农业科技出版社,2002,202-205
    陈树忠,殷家明,唐章林,李加纳.甘蓝型油菜与羽衣甘蓝远缘杂交初步研究[J].西南农业大学学报.2000,22(3):208-210
    陈玉萍,高永同,刘后利.甘蓝型黄籽油菜粒色及主要品质性状的动态研究[J]-中国油料.1989,(4):10-15
    陈玉萍,刘后利.甘蓝型油菜种子发育过程中种皮色素含量动态[J].中国油料.1994,16(4):13-16
    谌利,李加纳,唐章林,张学昆,陈云坪,殷家明.甘蓝型黄籽杂交油菜新品种渝黄1号的选育[J].西南农业大学学报.2002,24(1):45-47
    董翠月,万华方,梁颖.甘蓝型油菜种皮黄酮类色素种类的研究[J].西南师范大学学报(自然科学版).2007,32(1):97-101
    董遵,刘敬阳.我国甘蓝型黄籽油菜育种研究进展[J].华中农业大学学报.1999,18(6):533-536
    段有德.甘蓝型黄籽油菜种皮色泽的主基因+多基因遗传研究[D]:[硕士学位论文].重庆:西南农业大学,2004
    付福友.甘蓝型油菜遗传图谱的构建和品质相关性状的QTL分析[D]:[博士学位论文].重庆:西南大学,2007
    盖钧镒,管荣展.植物数量性状QTL体系检测的遗传试验方法[J].世界科技研究与发展.1999,21(1):34-40
    盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003
    甘功勋,魏竹涟,林树春.黄籽油菜的选育育研究(综述)[J].贵州农业科学.1987,(5):53-55
    高永同.黄籽油菜的遗传和育种研究进展(续)[J].中国油料.1984b,(4):82-87
    高永同.黄籽油菜的遗传和育种研究进展[J].中国油料.1984a,(3):85-89,92
    胡晓君.不同类型油菜品种种皮色泽与色素含量的关系研究[D]:[硕士学位论文].武汉:华中农业大学,1988
    黄继英,徐爱遐,胡胜武,金平安.甘蓝型黄籽油菜粒色变因分析[J].西北农业大学学报.1996,24(3):33-36
    黄先群,沈永珍,黄燕芬,唐丽,毛堂芬,董颖萍.甘蓝型油菜黄籽基因的分离研究Ⅰ.自交[J].西南农业学报.2001,14(1):43-45
    李崇辉,陈文艺.甘蓝型油菜黄籽分布与种皮颜色变化研究[J].西南农业大学学报. 1998,20(3):256-258
    李殿荣,田建华.甘蓝型油菜显性黄籽基因的发现和黄籽杂交种的选育[C].迎接21世纪的中国油料科学——中国作物学会油料作物专业委员会第四次全国会员代表大会学术论文摘要.2000,30-31
    李加纳,谌利,张学昆,梁颖,叶小莉,殷家明,唐章林,王瑞,刘列钊,柴友荣,闫世江,梁艳丽,李宝珍,武杰,杨成军.甘蓝型黄籽油菜的研究与思考[C].食物与能源安全战略中的中国油料.北京:中国农业科学技术出版社,2004,29-39
    李加纳,张学昆,谌利,王瑞,崔翠.不同遗传背景的甘蓝型黄籽油菜粒色遗传初步研究[J].中国油料作物学报.1998,20(4):16-]9,42
    李加纳.甘蓝型黄籽油菜研究进展[J].油菜研究年报.2000,12-17
    李加纳.数量遗传学概论[M].第2版.重庆:西南师范大学出版社,2007
    李敏,张瑞茂.甘蓝型黄籽油菜果位分布和农艺措施与粒色相关性的研究[J].耕作与栽培.1999,(5):26-29
    李云昌.不同类型油菜种皮色泽的遗传以及种皮色泽与含油量的相关研究[D]:[硕士学位论文].武汉:华中农业大学,1984
    李正强.白菜型油菜黄籽遗传研究[J].种子.1992,(6):13-16
    李正强.油菜黄籽遗传研究及其育种前景[J].种子.1989,(4):31-33
    梁艳丽,梁颖,李加纳,谌利.甘蓝型黄、黑籽油菜种皮特性比较研究[J].中国油料作物学报.2002,24(4):14-18
    梁艳丽.甘蓝型黄籽油菜种皮特性形成机理研究[D]:[硕士学位论文].重庆:西南农业大学,2002
    梁颖,李加纳,谌利.红光和蓝光对甘蓝型油菜黄籽和黑籽粒色的影响[J].中国油料作物学报.2003,25(1):21-24
    梁颖.甘蓝型黄籽油菜种皮相关性状形成机理和蛋白质差异表达研究[D]:[博士学位论文].重庆:西南农业大学,2005
    刘后利,傅廷栋,陈怀庆,易淑梅,熊双娥.甘蓝型黄籽油菜的发现及其遗传行为的初步研究[J].遗传学报.1979,6(1):54
    刘后利.甘蓝型黄籽油菜的遗传研究[J].作物学报.1992,18(4):241-249
    刘后利.油菜的遗传与育种[M].上海:上海科学技术出版社,1985
    刘后利.油菜遗传育种学[M].北京:中国农业大学出版社,2000
    刘显军,袁谋志,官春云,陈社员,刘淑艳,刘忠松.芥菜型油菜黄籽性状的遗传、基因定位和起源探讨[J].作物学报.2009,35(5):839-847
    刘雪平,涂金星,陈宝元,傅廷栋.甘蓝型黄籽油菜研究进展[J].中国油料作物学 报.2005,27(2):87-91
    刘志文,毛玮,周芳彬,傅廷栋.甘蓝型油菜种皮颜色的遗传分析[J].华北农学报.2008,23(2):84-87
    罗体英,唐容.甘蓝型黄籽油菜种皮色素分析研究[J].种子.2010,29(7):95-98
    孟金陵.芸薹属植物远缘杂交不亲和性的研究进展[J].中国油料.1987,(4):71-77
    戚存扣,傅寿仲,蒲惠明,伍贻美,张洁夫,陈玉卿,高冠军,陈爱华.甘蓝型油菜低芥酸、黄籽新品种宁油10号的选育[J].江苏农业科学.1998,(4):28-29
    戚存扣,浦惠明,傅寿仲.甘蓝型油菜与埃塞俄比亚芥杂交F1衍生后代的育性及性状变异[J].中国油料.1993(2):8-10
    戚存扣,浦惠明,傅寿仲.甘蓝型油菜种皮色的遗传特性研究[J].江苏农业科学.1991,(5):28-30
    戚存扣.黄子油菜遗传研究进展[J].世界农业.1992,(10):20-21
    曲存民,付福友,刘列钊,王家丰,毛丽佳,原小燕,谌利,李加纳.甘蓝型油菜胚色素成分的QTL定位[J].作物学报.2009,35(2):286-294
    尚毅,张振兰,陈文杰,田建华,张新,李殿荣.显性黄籽油菜种子特性研究[J].种子.2004,23(9):18-20
    唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002
    唐章林,李加纳.羽衣甘蓝种子主要品质性状的表现及其相关性[J].植物遗传资源学报.2012,13(6):963-967
    王汉中,刘后利.甘蓝型油菜黄籽和黑籽皮壳中花色素、多酚、苯丙烯酸含量和PAL酶活性的变异[J].华中农业大学学报.1996,15(6):509-513
    王汉中,刘后利.甘蓝型油菜粒色与种子有关性状间的关系研究[J].中国油料.1989,11(2):32-35
    王汉中,刘后利.油菜皮壳中多酚氧化酶活性的组织化学检定及其与粒色的关系[J].中国油料.1991,(1):30-33
    王汉中.油菜粒色的变异及其不稳定性研究[D]:[博十学位论文].武汉:华中农业大学,1990
    王瑞,李加纳,谌利,唐章林,张学昆.甘蓝型黄籽油菜粒色的遗传分析[J].中国油料作物学报.2003,25(4):1-4
    王瑞.不同遗传来源甘蓝型黄籽油菜的遗传分析[D]:[硕士学位论文].重庆:西南农业大学,1998
    王通强,黄泽素,田筑萍,代文东.黔黄303AB的选育及其主要性状表现和遗传特性[J].山地农业生物学报.2003,22(6):471-476
    文静.芸薹属种间杂交合成甘蓝型黄籽油菜及杂交后代的研究[D]:[博士学位论文].武汉:华中农业大学,2008
    吴江生,刘后利,石淑稳.甘蓝型油菜显性黄籽种质的研究[J].华中农业大学学报.1997,16(1):26-28
    吴江生,石淑稳,刘后利.甘蓝型油菜黄籽突变体的遗传研究[J].中国油料作物学报.1998,20(3):5-9
    肖达人.甘蓝型油菜(Brassica napus L)种皮颜色与种子含油量的相关分析[J].作物学报.1982,8(4):245-254
    肖数数.甘蓝型黄籽油菜No.2127-17黄籽基因的遗传分析及定位[D]:[硕士学位论文].武汉:华中农业大学,2006
    严明理,刘显军,刘忠松,官春云,袁谋志,熊兴华.芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析[J].作物学报.2008,34(1):1-7
    杨光伟.芸薹属黄籽种质资源的转育[M].见:任正隆等主编.作物育种探索.成都:四川科学技术出版社,1994,258-261
    叶小利,李加纳,唐章林,梁颖,谌利.甘蓝型油菜种皮色泽及相关性状的研究[J].作物学报.2001,27(5):550-556
    叶小利,李学刚,李加纳.甘蓝型油菜种皮黑色素形成机理的研究[J].作物学报.2002,28(5):638-643
    叶小利.甘蓝型黄籽和黑籽油菜种皮色素差异机理研究[D]:[博士学位论文].重庆:西南农业大学,2001
    殷家明,李加纳,谌利,刘列钊,段有德,陈云坪.甘蓝型油菜籽曝光时间系数与粒色关系研究[C].食物与能源安全战略中的中国油料.北京:中国农业科学技术出版社,2004,112-116
    张合,唐章林,李加纳,谌利.利用数字图像分析法评价油菜种子颜色[J].西南大学学报(自然科学版)[J].2008a,30(4):67-72
    张合,唐章林,李加纳,谌利.油菜种子颜色分析软件的设计与实现[J].西南大学学报(自然科学版)[J].2008b,30(10):151-154
    张合.不同遗传来源甘蓝型黄籽油菜粒色的遗传及其差异[D]:[硕士学位论文].重庆:西南大学,2008
    张学昆,谌利,殷家明,唐章林,李加纳.甘蓝型黄籽油菜RAPD和种皮色素遗传多样性[J].中国农业科学.2003,36(7):752-756
    张学昆.甘蓝型黄籽油菜遗传多样性及其透明种皮对种子生理的影响[D]:[博士学位论文].重庆:西南农业大学,2005
    张艳.人工合成甘蓝型黄籽油菜no.2127-17种皮颜色遗传基础研究[D]:[博士学位 论文].武汉:华中农业大学,2009
    张子龙,李加纳,唐章林,谌利.播期和密度对甘蓝型黄籽油菜主要品质的影响[J].西南农业大学学报.2005,27(6):791-794
    张子龙,李加纳.甘蓝型黄籽油菜粒色遗传及其育种研究进展[J].作物杂志.2001,(6):37-40
    张子龙.环境对甘蓝型黄籽油菜粒色及其相关品质性状的影响[D]:[硕士学位论文].西南农业大学,2002
    章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法[J].作物学报.2000,26(6):699-706
    赵文军,张迪,马丽娟,柴友荣.原花青素的生物合成途径、功能基因和代谢工程[J].植物生理学通讯.2009,45(5):509-519
    钟黔湘.影响甘蓝型黄籽频率的若干因素[J].中国油料.1991,(2):85-86
    周清元,李加纳,崔翠,殷家明,谌利,唐章林.芥菜型油菜×羽衣甘蓝种间杂种的获得及其性状表现[J].作物学报.2005,31(8):1058-1063
    周清元,李加纳,殷家明,唐章林,谌利,林呐.羽衣甘蓝×芥菜型油菜种间杂种再生和染色体加倍[J].西南大学学报(自然科学版).2009,31(4):105-110
    周旭章,魏开华,陈朝辉,谢凯,朱建军.从黑芝麻中提取黑色素的研究[J].林产化学通讯.1997,(4):16-19
    朱正华,朱良均,闵思佳.桑树中多酚与黄酮类物质的测定[J].中国蚕业.2001,22(4):19-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700