曲霉—链霉菌—侧耳筛选及共固定降解碱木素特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是仅次于纤维素的第二大植物生物质,也是生物圈中最丰富的芳香化合物。木质素生物降解的研究对于了解全球碳循环、发展环境友好生产技术(如造纸过程中选择性去除木质素)有重要意义。同时有效转化木质素,充分利用它作为新材料或能源也是很重要的。有关木质素转化和降解的研究主要集中于木腐菌,尤其是白腐菌。然而,由于白腐菌生长慢、抵抗其它微生物污染能力差、酶类易失活及培养成本等问题,在非灭菌状态下,单独白腐菌的应用面临很多困难。鉴于此,本文基于微生物微生态学原理,在筛选具有降解、转化木质素的功能微生物基础上,建立了高效降解和/或转化木质素微生物群落体系,构建了可在非灭菌状态下持续运行的生物反应器。
     在侧耳属6株真菌中筛选出一株白腐菌--糙皮侧耳(P. ostreatus) G5,该菌生长快,在限氮液体培养基中降解木质素活性较高、稳定,可耐受较高浓度的木质素。与两个模式白腐菌株--黄孢原毛平革菌(P.chrysosprium)5.776、杂色栓菌(T. versicolor)5.161进行了比较,结果表明,本实验室的糙皮侧耳(P. ostreatus) G5是一株很好的木质素降解真菌。
     从木质素降解反应器中分离出一株有降解木质素活性的细菌,经过形态观察和16SrRNA基因序列同源性分析,初步鉴定为微杆菌属菌株Microbacterium sp.GE1017.16S rRNA基因序列已提交GenBank,登录号FJ405359。Microbacterium sp.GE1017具有漆酶活性、很高的锰过氧化物酶活性(MnP2493.3U·L-1)和较强木质素降解能力(4d,去除率50%以上),单株菌纯培养可使木质素去除率达近60%。
     从大连森林土中新分离到两株放线菌。根据形态特征、培养特征和16S rDNA序列分析,将它们鉴定为链霉菌Streptomyces spp. strains F-6and F-7。rRNA基因序列已提交GenBank,登录号F-6FJ405358, F-7FJ405357。两株菌都具有高的木质素降解酶活性。漆酶活性(U·g-1细胞干重):F-6935.4;F-7191.7。MnP活性:F-6198.8;F-7324.3。两株菌纯培养物具有强的碱木素降解能力(12d碱木素去除率:F-752%;F-649%)。两株菌可以与白腐真菌—糙皮侧耳G5共存,并在真菌-链霉菌共培养条件下有效降解碱木素(12d碱木素去除率:F-7+G557%;F-6+G552%)。通过GC-MS分析由链霉菌F-6菌株降解碱木素后的产物,我们了解了主要的小分子产物。分析结果表明,F-6菌株可以有效地降解碱木素并将其转化为苯或开环化合物(C2--C5)。
     从大连森林土中新分离出一株霉菌。经过形态观察和rRNA基因ITS区序列分析,该菌属曲霉属,即Aspergillus sp. strain F-3。rRNA基因ITS区序列已提交GenBank,登录号GQ149340。该菌株具有独特的菌丝膨大或厚壁节点结构。曲霉菌株F-3具有木质素降解酶的活性,能够单独降解碱木素,碱木素去除率64.8%、色度去除率100%(8d)。降解最适pH7.0,添加酒石酸胺和葡萄糖会延迟或抑制降解活性表达。在降解过程中,可检测到MnP(28.2U·L-1)、Lac(3.5U·L-1)活性。通过GC-GS分析被菌株F-3降解的小分子产物,表明碱木素可以被降解为小分子或者转换成可利用的产物。在曲霉F-3--糙皮侧耳G5共同培养的条件下能有效地降解碱木素,12d碱木素去除率56.6%。
     以球形陶瓷珠及不规则陶瓷块为填料,由曲霉F-3、链霉菌F-6,F-7和糙皮侧耳G5四株菌共固定生物膜反应器,一个月可完成挂膜,基本进入稳定运行。在非灭菌状态下,连续运行18个月,在降解液含碱木素2000mg L-1,葡萄糖10g L-1,HRT12h,室温(16-26℃)条件下,碱木素去除率平均>70%,色度去除率>90%,COD去除率>90%。碱木素降解的小分子产物GC-MS分析显示,它们为芳香醇类、芳香酸酯类、酚类、及小分子的醇、羧酸类化合物,大部分都是芳香族化合物。结果说明,共固定生物膜反应器具有稳定、持续降解/转化碱木素活性和很强的抗污染能力。
Lignin, next to cellulose,is the second most abundant compound in plant biomass and by far the most abundant aromatic substance present in the biosphere.Studies on the biodegradation of lignin have significant implications for our understanding of the global carbon cycle and development of an environmentally friendly technique for selective removal of lignin in paper-making.Also the effective bioconversion of lignin is important to fully utilize it for new materials or energy.Most lignin research on bioconversion and biodegradation has been on wood-rot fungi,particularly on white-rot fungi.and not on other lignolytic organisms.However, because of slow growth rates;easily counteracted by other lower microorganisms;damageable enzymes and production costs for them,etc.,the direct use of single white rot fungus and their enzymes in industrial processes is still very difficult now.For that reason, according to micro-ecology principle,the community combined system of actinomyces—fungi was set up. And further a coimmobolized bed reactor was structured, which can be running continuously under non sterilization.
     One strain of white rot fungus--P. ostreatus G5was selected from6strains of Genus Pleurotus with its high growth rate, degrading alkali lignin and tolerance to lignin. Furthermore, P. ostreatus G5was compared to the typical white rot fungi--P.chrysosprium5.776and T. versicolor5.161. The results show that P. ostreatus G5is a better strain for lignin decomposing.
     One strain of bacteria was isolated from the lignin degrading reactor. It was identified as one Microbacterium sp.GE1017with its morphologic and high homology to the genus of rDNA sequence. The sequence was registered in the NCBI GenBank Data Library under the accession number FJ405359.Strain GE1017possesses high activity of MnP(2493.3U·L-1) and ability of decomposing lignin (degrading rate about60%).
     Through screening from forest soil of Dalian, two novel isolated actinomycete strains were identified as Streptomyces spp.strains F-6and F-7by their morphology, cultural characteristics and high homology to the16S rRNA gene.The sequences were registered in the NCBI GenBank Data Library under the accession numbers F-6FJ405358,F-7FJ405357.Both strains possessed laccase and manganese peroxidase activities.Laccase activity produced by strain F-6was up to935.4U·g-1dry cell weights.More than50%of alkali lignin was removed by strains F-6and F-7in12days of incubation. GC-MS analysis of the biodegraded products showed strain F-6converted lignin into phenol and broken phenol compounds.The two strains could co-culture with white rot fungus, and the combined actinonycete-fungus system decomposed alkali lignin effectively.
     A fungus strain F-3was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp.stain F-3with its morphologic,cultural characteristics and high homology to the genus of ITS rDNA sequence. The sequence was registered in the NCBI GenBank Data Library under the accession number GQ149340.The budges or thickened node-like structures are peculiar structures of hyphae of the strain.The fungus degraded64.8%of alkali lignin (2000mg L-1) after day8of incubation at30℃at pH7. The removal of colority was up to100%at8days. The biodegradation of lignin by Aspergillus sp. F-3favored initial pH7.0. Excess acid or alkali conditions were not propitious to lignin decomposing.Addition of Ammonium L-tartrate or glucose delayed or repressed biodegradation activities.During lignin degradation, manganese peroxidase (28.2U·L-1) and laccase (3.5U·L-1) activities were detected after day7of incubation.GC-MS analysis of biodegraded products showed strain F-3could convert alkali lignin into small molecules or other utilizable products.Strain F-3may co-culture with white rot fungus and decompose alkali lignin effectively(removal ratio56.6%)
     Four strains of Aspergillus F-3,Streptomyces spp.strains F-6and F-7, P. ostreatus G5were used to deal with coimmobilized biofilm formation on the ceramic ball-packed bed reactor. The start-up was finished in one month. Under non sterilization and the operation conditions of degradation liquor with alkali lignin2000mg L-1,glucose10g L-1,HRT12h, at room temperature,the reactor was continuously running for18months.During the running period, the removal ratios were>70%of alkali lignin,>90%of colourity,>90%of COD. GC-GS analysis of products degraded by the reactor shows lignin can be decompose and convert into aromatic alcohols, aromatic acid esters,phenols,and small molecule alcohols, carboxylic acid compounds.Most of them are aromatic compounds.The reactor can maintain the degrading functions and antimicrobial pollution ability, which implies its potential in industrial use.
引文
[I]Young R A. Historical Developments In Wood Chemistry [J]. Suleyman Demirel Universitesi Orman Fakultesi Dergisi,2008,Seri:A,1:1-15.
    [2]Whittaker R H, Likens G E. The Biosphere and Man. In:Leith H, Whittaker R H (eds). Primary Productivity of the Biosphere [M]. New York:Springer-Verlag,1975:305-328. ISBN 0-3870-7083-4.
    [3]Sandermann H, Scheel D, Trenk T. Metabolism of environmental chemicals in plants-copolymerization into lignin [J]. Appl Polym Syrup,1983,37:407-420.
    [4]Sarkanen K V. Ludwig C H, Lignins, Occurance, Formation, Structure and Reactions [M],New York:Wiley-Interscience,1971. [5] Lin S Y, Dence C W. Methods in Lignin Chemistry [M], Berlin:Springer-verlag,1992.
    [6]Hu T Q. Chemical Modification, Properteis and Usage of Lignin [M], New York:Kluwer Acadimic/Plenum Pb.2002. [7] Nakano J. Chemistry of Lignins [M].4th ed. Tokyo:Uni-Pub,1992.
    [8]Glasser W G, Northey R A, Schultz T P. Lignin:Historical, Biological and Materials Perspectives, ACS symp. Ser.742 [M], Washington, DC:ACS,2000. [9] Dence C, Reeve D. Pulp Bleaching-Principles and Practice [M]. Atlanta:Tappi Press,1996.
    [10]Gellerstedt G, Lindfors E. Structural changes in lignin during kraft pulping. Part 4. Phenolic hydroxyl groups in wood and kraft pulps [J]. Svensk Papperstidning,1984,15:115-117.
    [11]Robert D R, Bardet M, Gellerstedt G, et al. Structural changes in lignin during kraft cooking. Part 3. On the structure of dissolved lignins [J]. J. Wood Chem. Technol.,1984,4:239-263.
    [12]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [13]Adler E. Lignin chemistry-Past, present and future [J]. Wood Sci. Technol.,1977,11:169-218.
    [14]Roberts J C. The Chemistry of Paper [M]. London:The Royal Society of Chemistry,1996.
    [15]中野举三.木质素的化学--基础与应用[M].北京:轻工业出版社,1988.
    [16]Boerjan W, Ralph J, Baucher M. Lignin bios [J]. Ann. Rev. Plant Biol,2003,54 (1):519-549. doi:10.1146/annurev.arplant.54.031902.134938. PMID 14503002.
    [18]Davin L B, Lewis N G. Lignin primary structures and dirigent sites [J]. Current Opinion in Biotechnology,2005,16 (4):407-415. doi:10.1016/j.copbio.2005.06.011. PMID 16023847.
    [19]Ralph J G,Brunow P H, Harris R A, et al. Lignification:Are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? In:Daayf F, El Hadrami A, Adam L, et al. Eds. Advances in Polyphenols Research [M]. Oxford, UK:Blackwell Publishing, 2008:36-66.
    [20]Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annual Reviews in Plant Biology,2003,54: 519-549.
    [21]吴坤,张世敏,朱显峰.木质素生物降解研究进展[J].河南农业大学学报,2000,34(4):349-354.
    [22]Cullen D. Recent advances on the molecular genetics of ligninlytic fungi [J]. J. Biotechnol,1997, 53:273-289.
    [23]Leonowiez A, Matuszewska A, Luterek J, et al. Biodegradation of lignin by white rot fungi [J]. Fungal Genetics and Biology,1999,27:175-185.
    [24]Glasser W G. Lignin.In:Casey J P (Eds). Pulp and Paper:Chemistry and Chemical Technology [M]. 3rd ed.,Vol.1, New York:John Wiley & Sons,1980:39-111.
    [25]Glasser W G,Kelley S S. Encyclopedia of Polymer Science and Engineering [M]. Vol.8, New York: John Wiley & Sons,1987:795-852.
    [26]Chum H L. Parker S K, Feinberg D A. et al. SERI/TR(Solar Energy Research Institute/Technical Report) [R],Colorado:Solar Energy Research Institute,1985:1-86:231-488.
    [27]Gargulak J D, Lebo S E. Lignin:Historical,biological and materials perspectives, ACS Symp. Ser. No. 742 [M], Washington, DC:ACS,2000:304-320.
    [28]Pan X,Kadla J F,Ehara K, et al. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure extraction conditions and antioxidant activity [J]. J Agric Food Chem, 2006.54:5806-5813.
    [29]Pan X J, Xie D, Yu R W, et al. Pre-treatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process:fractionation and process optimization [J]. Ind Eng Chem Res,2007,46(8): 2609-2617.
    [30]Pan X, Xie D, Yu R W, et al. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process [J]. Biotechnol Bioeng,2008,101(1):39-47.
    [31]Cetin N S, Ozmen N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production I. Organosolv lignin modified resins [J]. Int J Adhes Adhes,2002,22:477-480.
    [32]Pereira A A, Martins G F, Antunes P A, et al. Lignin from sugar cane bagasse:extraction, fabrication of nanostructured films, and application [J]. Langmuir,2007,23:6652-6659.
    [33]Vasquez G, Freire S, Rodriguez-Bona C, et al. Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods [J]. J Wood Chem Technol,1999,19(4):357-378.
    [34]Robert D R, Bardet M. Gellerstedt G. et al. Structural changes in lignin during kraft cooking:part 3. On the structure of dissolved lignins [J]. J Wood Chem Technol,1984,4(3),239-263.
    [35]Gellerstedt G, Lindfors E-L. Structural changes in lignin during kraft cooking. Part 4. Phenolic hydroxyl groups in wood and kraft pulps [J]. Svensk Papperstidn,1984,87:115-118.
    [36]Demirbas A. The importance of bioethanol and biodiesel from biomass [J]. Energy Sources Part B,2008, 3:177-185.
    [37]Ikeda T,Sugimoto T,Nojiri M,et al. Alkali pre-treatment for the bioethanol fuel production from woody biomasses Part 1:Soda cooking conditions as an alkali pre-treatment, Japan Tappi J.,2007,61(9):62-71.
    [38]Yamamoto K, Ohara S, Magara K, et al. Bioethanol Production and Lignin Utilization in the Biomass Town System of Kita-akita City [C],5Th Biomass-Asia Workshop, Guangzhou, china:Dec 4-6,2008.
    [39]Veziroglu T N, Sahin S.21st century's energy:hydrogen energy system [J]. Energy Convers Manage 2008,49:1820-1831.
    [40]Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems [J]. Int J Hydrogen Energ,2008,33:4013-4029.
    [41]Kapdan I K, Kargi F. Bio-hydrogen production from waste materials [J]. Enzym Micro Tech,2006, 38:569-82.
    [42]Cherry R S. A hydrogen utopia [J]. Int J Hydrogen Energ,2004,29:125-129.
    [43]Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Convers Manage, 2004,45:651-671.
    [44]Demirbas A. Pyrolysis of biomass for fuels and chemicals [J]. Energy Sources Part A.2009, 31:1028-1037.
    [45]Balat M. Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield [J]. Energy Sources Part A,2008,30:552-564.
    [46]Balat H. Kirtay E, Hydrogen from biomass--Present scenario and future prospects [J]. International Journal of Hydrogen Energy,2010,35:7416-7426.
    [47]Feldman D, Baskaran A. The Effect of Adding Lignin to Poly(Dimethyl Siloxane)-Poly(VinylChloride) Blends [J]. J. Adhesion.1989.27:231-243.
    [48]Feldman D, Lacasse M, Manley R St J. Polyurethane-based sealants modified by blending with Kraft lignin [J], J. Appl. Polym. Sci.,1988,35247-3257.
    [49]Lacasse M, Feldman D. Swelling and adhesion characteristics of lignin-filled polyurethane sealant [J], Journal of Adhesion Science and Technology,1994,8(5):473-484.
    [50]Feldman D,Lacasse M. Mechanical characteristics of sealants based on polyurethane-lignin polyblends [J]. J. Adhesion Sci. Technol.,1994,8(9):957-969.
    [51]Thring R W, Vanderlaan M N, Griffin S L, Polyurethanes from Alcell lignin [J]. Biomass and Bioenergy, 1997,13:125-132.
    [52]Evtuguin D V, Neto C P, Rocha J, et al. Oxidative delignification in the presence of molybdovandophosphate heteropolyanions:mechanism and kinetic studies [J]. Appl.Catal.A:Gen.,1998, 167:123-139.
    [53]Cateto C A. Bleaching of kraft pulp by oxygen in the presence of polyoxometalates [J], J. Pulp Pap. Sci., 2008,24:133-140.
    [54]Glasser W G. Modification of Lignin with Propylene Oxide [R]. Blacksburg:Progress Report on an Industry-University Cooperative Project,1989.
    [55]Gandini A. and Belgacem M. N. Partial or total oxypropilation of natural polymers and the use of the ensuing materials as composites or polyol macromonomers. In:Belgacem, M. N. Gandini, A(Eds). Monomers, Polymers and Composites from Renewable Resources [M]. Amsterdam:Elsevier,2008.
    [56]Nadji H, Bruzzese C, Belgacem M. N, et al. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols [J]. Macromolecular Materials and Engineering,2005, 290(10):1009-1016.
    [57]Feldman D, Banu D. Khoury M. Epoxy-lignin polyblends. Ⅲ. Thermal properties and infrared analysis [J]. J Appl Polym Sci,1989,37:877-887.
    [58]Feldman D, Banu D, Luchian C, et al. Epoxy-lignin polyblends:Correlation between polymer interaction and curing temperature [J], J. Appl. Polym. Sci.,1991,42:1307-1318.
    [59]Feldman D, Banu D, Natansohn A, et al. Structure-properties relations of thermally cured epoxy-lignin polyblends [J], J. Appl. Polym. Sci.,1991,42:1537-1550.
    [60]Wang J, Feldman D. Effect of organosilanes On the adhesive properties of epoxy-lignin polyblends [J]. J. Adhes. Sci.Technol.,1991,5(7):565-576.
    [61]Wang J, Banu D, Feldman D. Epoxy-lignin polyblends:Effects of various components on adhesive properties [J].J.Adhes.Sci.Technol.,1992,6(5):587-598.
    [62]Feldman D.Lignin and its polyblends-a review.In:Hu T Q (eds).Chemical Modifications,Properties and Usage Of Lignin [M].New York:Kluwer Academic/Plenum Publishers,2001:81-90.
    [63]Feldman J D,Banu D,El-Raghi S.Rigid poly(vinyl chloride)-organosolv lignin blends for applications in building [J].J.Macromol.Sci.-Pure Appl.Chem.,1994,A31(5):555-571.
    [64]中野準三著.高洁译.木质素的化学(基础与应用)[M].北京:轻工业出版社,1980.
    [65]Cetin N S.Ozmen N.Use of organosolv lignin in phenol-formaldehyde resins for particleboard production [J].International Journal of Adhesion & Adhesives,2002.22:477-480.
    [66]Amen C C,Pakdel H,Roy C.Production of monomeric phenols by thermochemical conversion of biomass:a review [J].Bioresourses Technology,2001,79:277-299.
    [67]Steinbuchel A.Biopolymer,general aspects and special applications [M].Weinheim :Wiley-Vch GmbH & Co.KGaA,2003.
    [68]Glasser G W.Lignin:Historical,Biological,and Materials Perspectives [M].Washington D C:American Chemical Society,1999.
    [69]Lin S Y,Bushar L L.Process for grafting lignin with vinylic monomers using separate streams of initiator and monomer[P].US 4891415 (1990-01-02).
    [70]Schilling P,Brown P E.Cationic and anionic lignin amines [P].US 4775744 (1988-10-04).
    [71]Gene N D,Edward W L,Edward K D.Catalytic method for the preparation of lignin phenol surfactants in organic solvents [P].US 6207808 (2001-03-27).
    [72]McNally T J,Sanford M E,Myrvold B O,et al.Organic expander for lead-acid storage batteries [P].US 6664002 (2003-12-16).
    [73]Kamada A,Kosai M.Negative electrode plate for lead storage battery [P].US 6548211 (2003-04-15).
    [74]Lin S Y.Progress in Biomass Conversion [M].Orlando:Academic Press Inc.1983:31-78.
    [75]Glasser G W.Lignin:Historical,Biological,and Materials Perspectives [M].Washington DC:American Chemical Society,1999:314-315.
    [76]Tatiana D,Girt Z,Anna K,et al.Lignin a useful bioresource for the production of sorption-active materials [J].Bioresources Technology,1999,67:221-228.
    [77]Dupont L,Guillon E.Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran [J].Environmental Science and Technology,2003,37(18):4235- 4241.
    [78]Ghosh T,.Preservation of wood product [P].US 6753016 (2004-06-22).
    [79]Lin S Y.Method for the treatment of wood with metal-lignin salts [P].US 5246739(1993-09-27).
    [80]Kiguchi H,Kanbe S,Seki S.Composition for an organic EL element and method of manufacturing the organic EL element [P].US 6843937 (2005-01-08).
    [81]Weber M M.Liquid cleaning composition containing stabilized enzymes [P].US 4169817 (1979-10-02).
    [82]Kenji S.Kazumi A.Keiko T,et al.Secretion of TNF-from macrophages following induction with a lignin derivative [J].Cell Biology International,1995(19):833-838.
    [83]Makoto M,Makoto Y,Eiko T,et al.Composition for antiviral medicines [P].US 4935239 (1990-06-19).
    [84]Mizuno T,Uchino K,Toukairin T.et al.Inhibitory effect of tannic acid sulfate and related sulfates on infectivity,cytopathic effect,and giant cell formation of human immunodeficiency vims[J].Planta Med, 1992,58:535-539.
    [85]Nakashima H, Murakami T, Yamamoto N, et al. Inhibition of human immunodeficiency viral replication by tannins and related compounds [J]. Antivirus Research,1992,18:91-103.
    [86]Ichimura T, Otake T. Mori H, et al. HIV-1 protease inhibition and anti-HIV effect of natural and synthetic water-soluble lignin-like substances[J]. Biosci. Biotechnol. Biochem.,1999,63:2202-2204.
    [87]Tanuma S, Tsai Y J, Sakagami H, et al. Lignin inhibits (ADP-ribose) n glycohydrolase activity [J]. Biochem. Int,1989.19:1395-1402.
    [88]Hatano T,Edomatsu R. Hiramatsu M. et al. Effect of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radial [J]. Chem. Pharm. Bull,1989,37:2016-2021.
    [89]Satoh K, Sakagami H, Nakamura K. Enhancement of radical intensity and cytotoxic activity of ascorbate by PSK and lignins [J]. Anticancer Research,1996,16:2981-2986.
    [90]Bruyne De, Pieters T, Witvrouw L, et al. Biological evaluation of proanthocyanidin dimmers and related Polyphenols [J]. J. Nat. Prod.,1999,62:954-958.
    [91]Yuko M, Sohei O, Toshiaki U, et al. Inhibitory effects of lignins on the activity of human matrix metalloproteinase 7 (Matrilysin) [J]. J. Agric Food Chem,2004,52:5888-5894.
    [92]Maria M, Bozena K. Modulation of mutagenicity of various mutagens by lignin derivatives [J].Mutation Research,2003,535:171-180.
    [93]Garcia C, Vallejo A, Diez J A, et al. Nitrogen use efficiency with the application of controlled release fertilizers coated with Kraft-pine-lignin [J]. Soil Science and Plant Nutrition,1997,43(2):443-449.
    [94]Garcia R, Hatton T A. Metal ion complextion with lignin derivatives [J]. Chemical Engineering Journal, 2003,94:99-105.
    [95]Zhao J, Wilkins R M. Controlled release of the herbicide, fluometuron, from matrix granules based on fractionated oganosolv lignin [J]. Journal of Agricultural and Food Chemistry,2003,51:4023-4028.
    [96]Lebo S E. Method for producing improved biological pesticides [P]. US 5529772 (1996-06-25).
    [97]Detroit W J. Oil well drilling cement dispersant [P]. US 4846888 (1989-07-11).
    [98]Zaslavsky D, Rozenberg;Lev V. Lignosoulfonate-based graf polymers their preparation and uses[P].US,4276077,1981.
    [99]王丹,宋湛歉,商士武.改性木质素磺酸盐固沙材料的性能及应用研究[J].林产化学与工业,2005,25(S1):59-63.
    [100]叶德展,江献财,夏超等.制浆废液木质素类固沙剂研究进展[J].中国造纸学报,2011,26(4):58-62.
    [101]Shulga G, Rekner F, Varaslavan J. Lignin-based interpolymer complexes as a novel adhesive for protection against erosion of sandy soil [J]. Journal of Agricultural and Engineering Research,2001,78(3): 309-316.
    [102]Kelley J R. Drilling fluid composition [P].US 4374738 (1983-01-22).
    [103]Nicodemas N, Carabaoo R, Garcia J, et al. Performance response of lactating and growing rabbits to dietary lignin content [J]. Animal Feed Science and Technology,1999,80:43-54.
    [104]Bumpus J A, Tien M, Wright D, et al. Oxidation of persistent environmental pollutants by a white rot fungus [J], Science,1985,228(4):1434-1436.
    [105]Buswell J A, Odier E. Lignin biodegradation [J]. CRC Crit Rev Biotechnol,1987,6:1-60.
    [106]Kirk T K, Farrell R L. Enzymatic "combustion":The microbial degradation of lignin [J]. Ann Rev Microbiol,1987,41:465-505.
    [107]Kirk T K, Farrell R L. Enzymatic" combustion":the microbial degradation of lignin [J].Ann Rev Mierobiol,1987,41:465-501.
    [108]Higuchi T. Lignin biochemistry:biosynthesis and biodegradation [J]. Wood Sci. Technol.,1990,24(1): 23-63.
    [109]Gold M H, Alie M. Moleeular biology of the lignin-biodegradation Basidiomyeete Phanerochaete chiysosporium [J].Microbiol Rev,1993,57(3):605-622.
    [110]HighleyT L. Cellulolytic activity of brown-rot and white-rot fungi on solid media [J]. Holzforchung, 1988,42:211-216.
    [111]Sutter H P. Holzschadlinge an Kulturgiitern erkennen und bekampfen [M]. Bern:Haupt,1986.
    [112]管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机理的研究进展[J].上海环境科学,1998,17:46-49.
    [113]吴坤.杂色云芝(Coriolus versicolor)和杂色云芝漆酶及其对环境污染物降解的研究[D].杭州:浙江大学,2002.
    [114]Akeshi O, Hiroshi T, Yuji H, et al. Asymmetric hydrogenation of ketones with polymer-bound binap/diamine ruthenium catalysts [J]. Advanced Synthesis & Catalysis,2001,343(4):369-375.
    [115]李惠蓉.白腐真菌在碳素循环中的地位和作用[J].微生物学报,1996,23(2):105-109.
    [116]裘维蕃.菌物学大全[M].北京:科学出版社,1998.
    [117]赵继鼎.中国真菌志(第三卷)[M].北京:科学出版社,1998.
    [118]岑沛霖,蔡谨.工业微生物学[M].北京:化学工业出版社,2000.
    [119]Ander, P., Hatakka, A.I., Lundell, T.K.et al. Demethoxylation of lignin by peroxidases of Phlebia radiata and Phanerochaete chrysosporium. In:Ken- nedy, J.F., Phillips, G.O., Williams, P.A. (Eds.) Lignocelluloses:Science, Technology, Development and Use [M]. Chichester:Ellis Horwood,1992: 109-119.
    [120]Ander, P.,Hatakka, A., Eriksson, K.-E. Vanillic acid metabolism by the white-rot fungus Sporotrichum puluerulentum [J], Arch. Microbiol.,1980,125:189-202.
    [121]Lamar, R.T., G laser, J.A., Kirk, T.K. White-rot fungi in the treatment of hazardous chemicals and wastes.In:Leatham, G.F., eds. Froniers of Industrial Mycology [M]. New York:Chapman and Hall, 1992:127-143.
    [123]Messner K., Srebotnik E. Biopulping:An overview of developments in an environmentally safe paper-making technology [J],FEMS Microbiol.Rev.,1994,13:351-364.
    [124]Kirk, T.K., Cullen, D. Enzymology and molecular genetics of wood degradation by white-rot fungi.In: Young R A, Akhtar M (Eds). Environmentally Friendly Technologies for the Pulp and Paper Industry [M]. New York:John Wiley & Sons,1998:273-307.
    [125]Gold, M H, Alic M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium [J],Microbiol. Rev.,1993,57:605-622.
    [126]Cullen, D. Recent advances on the molecular genetics of ligninolytic fimgi [J],J. Biotechnol.1997, 53:273-289.
    [127]Hatakka A. Ligninolytic enzymes from selected white-rot fungi:production and role in lignin degradation [J], FEMS Microbiol. Rev.,1994,13:125-135.
    [128]Eriksson K-E L, Blanchette R A, Ander P. Microbial and Enzymatic Degradation of Wood and Wood Components [M]. New York:Springer-Verlag Berlin Heidelberg,1990.
    [129]Blanchette R A,Bumes T A, Eerdmans M.M, et al. Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes [J],Holzforschung.1992, 46:109-115.
    [130]Blanchette R A. Degradation of the lignocellulose complex in wood, Can. J. Bot.1995,73 (Suppl.1): 999-1010.
    [131]Cowling E B. Comparative biochemistry of decay of sweetgum sapwood by white-rot and brown-rot fungi [J]. USDA Techn. Bull.,1961,1258:1-79.
    [132]Blanchette R A. Screening wood decayed by white rot fungi for preferential lignin degradation [J].Appl. Environ. Microbiol.,1984.48:647-653.
    [133]Otjen L, Blanchette R. Assessment of 3 white rot basidiomycetes for selective lignin degradation [J]. Holzforschung,1987,41:343-349.
    [134]Ander P, Eriksson K-E. Selective degradation of wood components by white rot fungi [J]. Physiol. Plant. 1977.41:239-248.
    [135]Martinez A T. Camarero S, Guillen F, et al. Progress in biopulping of non-woody materials:Chemical. enzymatic and ultrastmctural aspects of wheat straw de-lignification with ligninolytic fungi from the genus Pleurotus [J]. FEMS Microbiol. Rev.,1994,13:265-274.
    [136]Dorado J, Almendros G., Camarero S, et al.. Transformation of wheat straw in the course of solid state fermentation of four ligninolytic basidiomycetes [J]. Enzyme Microb. Technol.,1999,25:605-612.
    [137]Akhtar M, Scott G M., et al. Biopulping with Phlebia subserialis [P]. (WO1998002612) PCT Int. Appl. WO, (Wisconsin Alumni Research Foundation, USA).32 pp,1998.
    [138]Daniel G F, Nilsson T. Developments in the study of soft rot and bacterial decay. In:Bruce, A. and Palfreyman J W (Eds.) Forest Products Biotechnology [M] London:Taylor and Francis,1998:37-62.
    [139]Unger A, Schniewind A P Unger W. Conservation of Wood Artifacts [M]. New York:Springer-Verlag Berlin Heidelberg,2001:90-128.
    [140]Rodriguez A, Perestelo F, Camicero A, et al. Degradation of natural lignins and lignocelluloses substrates by soft-inhabiting fungi imperfecti [J], FEMS Microbiol. Ecol.,1996,21:213-219.
    [141]Regaldo V, Rodriquez A, Perestalo F, et al. Lignin degradation and modification by the soil-inhabiting fungus Pusarium proliferatum [J], Appl. Environ. Microbiol.,1997,63:3716-3718.
    [142]Tuomela M, Vikman M, Hatakka A,et al. Biodegradation of lignin in a compost environment:A review [J], Bioresource Technol.,2000,72:169-183.
    [143]Haider K, Trojanowsld I. A comparison of the degradation of 14C labelled DHP and cornstalk lignins by micro- and macrofungi and by bacteria. In:Kirk T K, Higuchi T, Chang H-M(Eds). Lignin Biodegradation:Microbiology, Chemistry and Applications [M]. Vol.1, Boca Raton:CRC Press. 1980:111-134.
    [144]Regaldo V, Perestalo F, Rodriquez A, et al. Activated oxygen species and two extracellular enzymes: laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum [J],Appl. Microbiol.Biotechnol.,1999.51:388-390.
    [145]Eaton R A, Hale M D C. Wood-Decay, Pests and Protection [M]. London, UK:Chapman and Hall, 1993.
    [146]Schmidt O. Holz-und Baumpilze:Biologie,Schaden,Schutz. Nutzen [M]. New York:Springer, Berlin Heidelberg,1994.
    [147]Grosser D. Pflanzliche und tierische Bau-und WerkhoIz-Schadlinge [M]. Leinfelden-Echterdingen: DRW-Verlag Weinbrenner,1985.
    [148]郁红艳,曾光明,牛承岗等.细菌降解木质素的研究进展[J].环境科学与技术,2005,28(2):104-109.
    [149]Carol A C. Bacterial associations with decaying wood:a review [J].International Biodetertoration & Biodegradation,1996,37(1):101-107.
    [150]Crawford D, Sutherland I. Isolation and characterization of lignocellulose-decomposing actinomycetes, In:Kirk T K., Higuchi T, Chang H-M(Eds). Lignin Biodegradation:Microbiology, Chemistry and Applications [M].Vol.l,Boca Raton:CRC Press,1980:95-101.
    [151]Vicuna R. Bacterial degradation of lignin [J]. Enzyme Microb. Technol.,1988,10:646-655.
    [152]Zimmerman W. Degradation of lignin by bacteria [J]. J. Biotechnol.,1990,13:119-130.
    [153]Godden B, Ball A S, Helvenstein P, et al.Towards elucidation of the lignin degrading pathway in actinomycetes [J]. J. Gen. Microbiol.,1992,138:2441-2448.
    [154]Berrocal M M, Rodriquez J, Ball A S. et al. Solubilization and mineralization of [14C] lignocellulose from wheat straw by Streptomyces cyaneus CECT 3335 during solid-state fermentation [J], Appl. Microbiol. Biotechnol.,1997,48:379-384.
    [155]Crawford D L, Pometto III A L, Crawford R L. Lignin degradation by Streptomyes virisporus:Isolation and characterization of new polymeric lignin degradation intermediate [J], Appl. Environ. Microbiol., 1983,45:898-904.
    [156]Antai S P, Crawford D L. Degradation of softwood, hardwood and grass lignocelluloses by two Streptomyces strains [J]. Appl. Environ. Microbiol.,1981,42 (2):378-380.
    [157]Lokesh K V.14 C-lignin-lignocellulose biodegradation by bacteria isolated from polluted soil [J]. Indian Journal of Experimental Biology,2001,39(6):584-589.
    [158]Kukolya J D. Isolation and identification of the rmophilic cellulolytic actinomycetes [J].Acta Phytopathologicaet Entomologica Hungarica,1997,32(1):97-107.
    [159]陈敏,郭鹏,宋晓岗.选育高效降解木质素优势混合菌的研究[J].中国造纸,1998,3:40-45.
    [160]Ralph K. Actinomycetes and Lignin Degradation [J].Advances In Applied Microbiology,2006,58: 125-168.
    [161]Moriya O, Yoshimasa M, Toru J, et al. Lignin degradation and roles of white rot fungi:Study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation [J].Focused on Ecomolecular Science Research,2001,4:39-42.
    [162]Adhi T P, Korus R A, Crawford D L. Production of major extracellular enzymes during lignocellulose degradation by two Streptomyces in agitated submerged culture [J]. Appl. Environ. Microbiol.,1989,55: 1165-1168.
    [163]Mason M G., Ball A S,Reeder B J, et al. Extracellular heme peroxidases in actinomycetes, a case of mistaken identity[J]. Appl. Environ. Microbiol.,2001,10:4512-4519.
    [164]Ball A S, McCarthy A J. Saccharification of straw by Actinomycete enzymes [J]. J. Gen. Microbiol., 1988,134:2.139-2147.
    [165]Ball A, Betts W, McCarthy A. Degradation of lignin-related compounds by Actinomycetes [J]. Appl. Environ. Microbiol.,1989,55:1642-1644.
    [166]Crawford D L. Growth of Thermonospora fusca on lignocellulase pulps of varying lignin content [J]. Can. J. Microbiol.,1974,20:1069-1072.
    [167]Crawford D L. Lignocellulose decomposition by selected Streptomyces strains [J]. Appl. Environ. Microbiol.,1978,35:1041-1045.
    [168]Crawford D L, Pometto Ⅲ A L, Crawford R L. Production of useful modified lignin polymers by bioconversion of lignocellulose with Streptomyces [J]. Biotechnol. Adv.,1984,2:217-232.
    [169]Iqbal M, Mercer D K, Miller P G G, et al. Thermostable extracellular peroxidases from Streptomyces thermoviolaceus [J]. Microbiology,1994,140:1457-1465.
    [170]Kukolya J, Nagy I, Laday M, et al. Thermobifida celluloltica sp. nov.. a novel lignocellulose-decomposing Actinomycete [J]. Int. J. Sys. Evol. Microbiol.,2002,52:1193-1199.
    [171]McCarthy A J. Lignocellulose-degrading Actinomycetes [J]. FEMS Microbiol.Rev.46,145-163.
    [172]McCarthy A J, Williams S T. Actinomycetes as agents of biodegradation in the environment-a review [J].Gene,1987,115:189-192.
    [173]Pasti M B, Pometto A L,Ⅲ, Nuti M P, et al. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut [J]. Appl. Environ. Microbiol.,1990,56:2213-2218.
    [174]Paszczynski A, Pasti-Grigsby M B, Goszczynski S, et al. Mineralization of sulphonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus [J].Appl.Environ. Microbiol.,1992,58:3598-3604.
    [175]Rob A, Ball A S, Tuncer M, et al. Thermostable novel non-haem extracellular glycosylated peroxidase from Thermomonospora fusca BD25 [J]. Appl. Biochem.,1996,24:161-170.
    [176]Rob A, Hernandez M, Ball A. S, et al. Production and partial characterization of extracellular peroxidases produced by Streptomyces avermitilis UAH30 [J]. Appl. Biochem. Biotechnol.,1997, 62:159-174.
    [178]Ruttiman G B, Vicuna R, Sapag C, et al. Biochemical and genetic studies of bacteria metabolising lignin-related compounds [J]. Arch. Biol. Med. Exp.,1998,21:247-255.
    [179]Trigo C, Ball A S. Is the solubilization product from the degradation of lignocellulose by Actinomycetes a precusor of humic substances? [J]. Microbiology,1994,140:3145-3152.
    [180]Tuncer M, Ball A S. Degradation of lignocellulose by extracellular enzymes produced by Thermomonospora fusca BD25 [J]. Appl. Microbiol.Biotechnol.,2002,58:608-611.
    [181]Watanabe Y, Shinzato N, Fukatsu T. Isolation of actinomycetes from termites'guts. Biosci. Biotechnol. Biochem.,2003,67:1797-1801.
    [182]Winter B, Fiechte A, Zimmerman W. Degradation of organochlorine compounds in spent sulfite bleach plant effluents by Actinomycetes [J]. Appl. Environ. Microbiol.,1991,57:2858-2863.
    [183]Bell T, Newman J A, Silverman B W, et al. The contribution of species richness and composition to bacterial services [J]. Nature,2005,436(25):1157-1160.
    [184]Seneviratne G. Zavahir J S, Bandara W M M S, et al. Fungal-bacterial biofilms:their development for novel biotechnological applications [J]. World J Microbiol Biotechnol,2007, DOI 10.1007/s11274-007-9539-8.
    [185]Robinson D S. Peroxidases and catalases in food. In:Robinson D S,Eskin A M (Eds). Oxidative Enzymes in Foods[M]. Essex. England:Elsevier Science Publishers LTD,1991:1-47.
    [186]Kermasha S, Metche M. Studies on seed peroxidase Phaseoulus vulgaris cv [J]. Haricot. J. Food Sci., 1988,53:247-252.
    [187]Colonna S, Gaggero N, Richelmi C, et al. Recent biotechnological developments in the use of peroxidases[J]. Tibtech.,1999,171:163-168.
    [188]Hilden L,Johansson G,Pettersson G. Li J,et al. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation?[J] FEBS Letts., 2000,477:79-83.
    [189]O' Brien P J. Peroxidases[J].Chem. Biol. Interactions,2000,129:113-139.
    [190]Poulos T L,Edwards S L,Wariishi H,et al. Crystallographic refinement of lignin peroxidase at 2 A [J]. J.Biol.Chem.,1993,268:4429-4440.
    [191]Sjoblad R D,Bollag J M. Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase [J].Appl. Environ. Microbiol.,1981,33:906-910.
    [192]Haemmerli S D,Leisola M S,Sanglard D,et al. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium--Veratryl alcohol and stability of ligninase[J].J. Biol. Chem.,1986, 261:6900-6903.
    [193]Evans W C,Fuchs G. Anaerobic degradation of aromatic compounds[J].Ann. Rev. Microbiol.,1988, 42:289-317.
    [194]Trigo C,Ball A S. Is the solubilization product from the degradation of lignocellulose by Actinomycetes a precusor of humic substances?[J].Microbiology,1994,140:3145-3152.
    [195]Guerra A,Feraz A,Catrim A. R,et al. Polyermization of lignin fragments contained in a model effluent by polyphenoloxidases and horseradish peroxidase/hydrogen peroxide system[J].Enzyme Microbial. Technol.,2000,26:315-323.
    [196]Dean J F D,Eriksson K E L. Laccase and the deposition of lignin in vascular plants[J].Holzforschung, 1994,48:21-33.
    [197]Leonowicz A,Cho N S,Luterek J,et al. Fungal laccase,properties and activity on lignin. J. Basic Microbiol.,2001,41:185-227.
    [198]Mayer A M,Staples R C. Laccases,new functions for an old enzyme[J].Phytochemistry,2002,60: 551-565.
    [199]Thurston C F. The structure and function of fungal laccases[J].Microbiology,1994,140:19-26.
    [200]Givaudan A,Effosse A,Faure D,et al. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere:Evidence for laccase activity in non-motile strains of Azospirillum lipoferum[J]. FEMS Microbiol. Lett.,1993,108:205-210.
    [201]Alexandre G,Zhulin I B. Laccases are widespread in bacteria[J].Trends Biotechnol.,2000,18:41-42.
    [202]Claus H,Filip Z. The evidence of a laccase-like activity in a Bacillus sphaericus strain[J].Microbiol. Res.,1997,152:209-215.
    [203]Bonomo R P,Cennamo G. Purrello R,et al. Comparison of three fungal laccases from Rigidoporus lignosus and Pleurotis ostreatus:Corrslation between conformational changes and catalytic activity[J].J. Inorg. Biochem.,2001,83:67-75.
    [204]Li K, Xu F, Eriksson K E. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound [J]. Appl. Environ. Microbiol.,1999,65:2654-2660.
    [205]Claus H. Laccases and their occurrence in prokaryotes [J], Archives Of Microbiology,2003, 179(3):145-150, DOI:10.1007/s00203-002-0510-7.
    [206]Freeman J C, Nayar P G, Begley T P, et al. Stoichiometry and spectroscopic identity of copper centers in phenoxazonine synthase, a new addition for the blue copper oxidase family [J]. Biochemistry,1993,32: 4826-4830.
    [207]Endo K, Hayashi Y, Hibi T,et al. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus [J]. J. Biochem.,2003,133:671-677.
    [208]Endo K, Hosono K, Beppu T, et al. A novel extracytoplasmic phenol oxidase of Streptomyces:Its possible involvement in the onset of morphogenesis [J]. Microbiology,2003,148:1767-1776.
    [209]Arias M E, Arenas M, Rodriguez J, et al. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335 [J]. Appl. Environ. Microbio., 2003,69:1953-1958.
    [210]Suzuki T, Endo K, Ito M, et al. A thermostable laccase from Streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and expression [J]. Biosci. Biotechnol. Biochem., 2003,67:2167-2175.
    [211]Majcherczyk A. Johannes C, Huttermann A. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor [J]. Enzyme Microb. Tech.,1998,22:335-341.
    [212]Youn H D, Yim Y I, Kim K, et al. Spectral characterization and chemical modification of catalase-peroxidase from Streptomyces sp [J]. J. Biol. Chem.,1995,270:13740-13747.
    [213]Burton S G. Biocatalysis with polyphenol oxidases [J]. A review. Catalysis Today,1994,22:459-487.
    [214]Rodriguez-Lopez J, Fenoll L G, Penalver M J, et al. Tyrosinase action on monophenols, evidence for direct enzymatic release of o-diphenol [J]. Biochim. Biophy. Acta,2001,1548:238-256.
    [215]Sanchez-Ferrer A, Rodriguez-Lopez J N, Garcia-Canovas F. Tyrosinase, a comprehensive review of its mechanism [J]. Biochim. Biophys. Acta,1995,1247:1-11.
    [216]Aitken M D. Waste treatment applications of enzymes:Opportunities and obstacles [J]. J. Chem. Eng., 1993,52:49-58.
    [217]Jimenez M, Garcia-Canovas F. Oxidation of the flavonol quercetin by polyphenol oxidase [J]. J. Agric. Food Chem.,1999,47:56-60.
    [218]Moreira MT, Feijoo G., Lema J M. Fungal bioreactors:Applications to white-rot fungi [J]. Reviews in Environmental Science and Bio-Technology,2003,2:247-259.
    [219]Peberdy J F. Protein secretion in filamentous fungi-trying to understand a highly productive black box [J]. Trends Biotechnol.,1994,12:50-57.
    [220]Nykanen M, Heikkila M. Secretion and processing of endogenous and foreign proteins in filamentous fungi [J]. Recent Res. Dev. Microbiol.,1999,3:269-298.
    [221]Prosser J I, Tough A J. Growth mechanism and growth kinetics of filamentous microorganisms [J]. Crit. Rev. Biotechnol.,1991,10:253-274.
    [222]Cabral J M S, Mota M, Tramper J. Multiphase Bioreactor Design [M]. London:Taylor & Francis,2001.
    [223]Zhang F-M, Knapp J S, Tapley Kn N. Development of bioreactor systems for decolorization of Orange Ⅱ using white rot fungus [J]. Enzyme and Microbial Technology,1999,24:48-53.
    [224]Linko S. Continuous production of lignin peroxidase by immobilized Phanerochaele chrysosporium in a pilot scale bioreactor [J]. Joournal of Biotechnology,1988,8(2):163-170.
    [225]Michel F C. Grulke E A, Reddy C A. Development of a stirred tank reactor system for the production of lignin peroxidases (ligninases) by Phanerochaete chrysosporium BKM-F-1767 [J]. J. Ind. Microbiol., 1990,5:103-112
    [226]Feijoo G., Dosoretz D, Lema J. M. Production of lignin peroxidase by Phanerochaete chrysosporium in a packed-bed bioreactor in semi-continuous mode [J]. J. Biotechnol.,1995,42.247-253.
    [227]Bonnarme P, Delattre M, Drouet H,et al. Toward a control of lignin and manganese peroxidases hypersecretion by Phanerochaete chrysosporium in agitated vessels:Evidence of the superiority of pneumatic bioreactor on mechanically agitated bioreactors [J]. Biotechnol. Bioeng.,1993,41:440-450.
    [228]Kirk T K, Croan S, Tien M, et al. Production of multiple ligninases by Phanerochaete chrysosporium: Effect of selected growth conditions and use of a mutant strain [J]. Enzyme Microb. Technol.,1986, 8:27-32.
    [229]Venkatatri R. Irvine R L. Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase on novel biofilm reactor systems:Hollow fiber reactor and silicone membrane reactor [J]. Water Res.,1993,27:591-596.
    [230]Eaton D C, Chang H, Joyce T W, et al. Method obtains fungal reduction of the color of extractionstage kraft bleach effluents [J]. Tappi,1982,65(6):89-92.
    [231]Yin C F, Joyce T W, Chang H M. Kinetics of bleach plant effluent decolorization by Phanerochaete chrysosporium [J], J. Biotechnol.,1989,10:67-76.
    [232]Sublette K L, Ganapathy E V, Schwartz S. Degradation of munitions wastes by Phanerochaete chrysosporium [J]. Appl. Biochem. Biotechnol.,1992,31:302-307.
    [233]Lewandowski G A, Armenante P M, Pak D. Reactor design for hazardous waste treatment using a white rot fungus [J]. Water Res.,1990,24:75-82.
    [234]Alleman B C,Logan B E. Gilbertson R L. Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors [J]. Water Res.,1995,29:61-67.
    [235]Pallerla S, Chambers R P. New urethane prepolymer immobilized fungal bioreactor for decolourization and dechlorination of kraft bleach effluents [J]. Tappi,1996,79(5):155-161.
    [236]Pallerla S, Chambers R P. Characterization of a Ca-alginateimmobilized Trametes versicolor bioreactor for decolorization and AOX reduction of paper mill effluents [J]. Biores. Technol.,1997,60:1-8.
    [237]Yang F, Yu J. Development of a bioreactor system using an immobilised white rot fungus for decolourisation, Part Ⅱ:Continuous decolourisation tests [J]. Bioproc. Eng.,1996,16:9-11.
    [238]Dobbins D C, Aelion C M, Pfaender F. Subsurface, terrestrial 1 microbial ecology and biodegradation of organic chemicals:a review [J]. CRC Crit Rev Environ Control,1992,22:67-136.
    [239]Oppermann-Sanio F, Steinbuchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production [J]. Naturwissenschaften,2002,89:1432-1904.
    [240]O'Toole G, Kaplan H B, Kolter R. Biofilm formation as microbial development [J]. Ann Rev Microbiol, 2000,54:49-79.
    [241]Vilain S, Brozel V S. Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilmspecific proteome [J]. J Proteome Res.,2006,5:1924-1930.
    [242]Davies D G, Chakrabarty A M, Geesey G G. Exopolysaccharide production in biofilms:Substratum activation of alginate gene expression by Pseudomonas aeruginosa [J]. Appl Environ Microbiol,1993. 59:1181-1186.
    [243]Dow J M, Fouhy Y, Lucey J, et al. Cyclic di-GMP as an intracellular signal regulating bacterial biofilm formation. In:Kjelleberg S, Givskov M (eds). The Biofilm Mode Of Life:Mechanisms and Adaptations [M]. Norwich:Horizon Bioscience,2007:71-94.
    [244]Wargo M J, Hogan D A. Fungal-bacterial interactions:a mixed bag of mingling microbes [J]. Curr Opin Microbiol,2006,9:359-364.
    [245]Elvers K T, Leening K, Moore C P. et al. Bacterial-fungal biofilms in flowing water photo-processing tanks [J]. J Appl Microbiol,1998,84:607-618.
    [246]Seneviratne G, Jayasinghearachchi H S. Mycelial colonization by Bradyrhizobia and Azorhizobia [J]. J Biosci.,2003,28:243-247.
    [247]Jayasinghearachchi H S, Seneviratne G. A bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean [J]. Biol Fertil Soils,2004,40:432-434.
    [248]Libra J A. Borchert M, Banit S. Competition strategies for the decolorization of a textiler eactive dye with the white rot fungi Trametes versicolor under nonsterile conditions [J]. Biotechnology and Bioengineering,2003,82(6):736-744.
    [249]Gao D W. Wen X H. Qian Y. Decolorization of reactive brilliant red K-2BP with the white rot fungi under non-sterile conditions [J].Chinese Science Bulletin,2004,49(9):981-982.
    [250]Hatakka A, Buswell J A, Pirhonen T I, et al. Degradation of 14C-labelled lignins by white-rot fungi.In: Higuchi, T., Chang, H.-m., Kirk, T.K., Eds.) Recent Advances in Lignin Biodegradation Research[M]. Tokyo:Uni Publishers Co.1983:176-187.
    [251]Hatakka A I, Lundell T K, Tervila-Wilo A L M.et al. Metabolism of non-phenolic β-O-4 lignin model compounds by the white-rot fungus Phlebia radiata[J]. Appl. Microbiol. Biotechnol.,1991,36:270-277.
    [252]Hofrichter M, Vares K, Scheibner K, et al. Mineralization and solubilization of synthetic lignin by manganes peroxidase from Nematoloma frowardii and Phlebia radiata[J]. J. Biotechnol.,1999, 67:217-228
    [253]Hatakka A I, Uusi-Rauva A K. Eur [J]. J. Appl.Microbiol. Biotechnol.,1983,17:235-242.
    [254]Bodegom P M Van, Broekman R, Dijk J Van, et al. Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands [J]. Biogeochemistry,2005,76:69-83.
    [255]李海红,同帜,龚文娇.白腐真菌对造纸黑液脱色效果的研究[J]. 陕西科技大学学报(自然科学版),2009,27(6):54-58.
    [256]Singh A P, Kim Y S. Biodegradation of wood in wet environments [M]. The International Group on Wood Preservation,1997, Document No:IRG/WP 97-10217
    [257]Singh A P, Butcher J A. Bacterial degradation of wood cells:a review of degradation patterns [J]. Journal of the Institute of Wood Science,1991,12:143-157.
    [258]Bjordal C G. Waterlogged archaeological wood; biodegradation and its implications for conservation [D]. Doctoral thesis.2000, ISSN 1401-6230, ISBN 91-576-5876-5.
    [259]Vaisanen OM, Weber A, Bennasar A, et al. Microbial communities of printing paper machines [J]. J. Appl. Microbiol.,1998,84:1069-1084.
    [260]Busse H-J, Kampfer P, Nuutinen J, et al. Thermomonas haemolytica gen nov., sp. nov., a new genus of the gamma-proteobacteria [J]. Int. J. Syst. Evol. Microbiol.,2002.52:473-483
    [261]Zimmermann W. Degradation of lignin by bacteria [J]. J Biotechnol.1990,13:119-130.
    [262]Ahmad M. Taylor CR. Pink D. et al. Development of novel assays for lignin degradation:comparative analysis of bacterial and fungal lignin degraders [J]. Mol Biosystems,2010,6:815-821.
    [263]Lindberg L E, Holmbom B R, Vaisanen O M.et al. Degradation of paper mill water components in laboratory tests with pure cultures of bacteria [J]. Biodegradation,2001.12:141-148,.
    [264]Seigle-Murandi F, Guiraud P. Croize J. et al. Bacteria Are Omnipresent on Phanerochaete chrysosporium Burdsall [J], Applied And Environmental Microbiology,1996,62(7):2477-2481.
    [265]Bugg T D H, Ahmad M. Hardiman E M,et al. The emerging role for bacteria in lignin degradation and bio-product formation [J].Current Opinion in Biotechnology,2011,22:394-400.
    [266]Saitou N and Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution,1987,4:406-425
    [267]Thompson J D, Gibson, T J, Plewniak F, et al. The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research.1997, 24:4876-4882
    [268]Tamura K, Dudley J, Nei M et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution,2007,24:1596-1599
    [269]Stackebrandt E, Rainey F A, Ward-Rainey N L. Proposal for a New Hierarchic Classification System, Actinobacteria classis nov [J]. International Journal of Systematic Bacteriology,1997,47(2):479-491.
    [270]Anthony L P, Crawford D L. Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus [J]. Appl. Environ. Microbiol.,1986,52 (2):246-250.
    [271]Reid I D. Biodegradation of lignin [J]. Can. J. Bot.,1995,73:1011-1018.
    [272]Ahmad M, Roberts J N, Hardiman E M, et al. Identification of DypB from Rhodococcus jostii RHA1 as a Lignin Peroxidase [J].Biochemistry,2011,50 (23):5096-5107(DOI:10.1021/bi101892z).
    [273]Roberts J N. Singh R, Grigg J C, et al. Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1 [J].Biochemistry,2011 50 (23):5108-5119.
    [274]张甲耀,龚利萍,罗宇煊,等.嗜碱细菌复合碳源条件下对麦草木质素的降解[J].环境科学,2002,23(1):70-73.
    [275]Tien M, Kirk T K. Lignin-degrading enzymes from himenomycete Phanerochaete chrysosporium Burds [J]. Science,1983,221:661-663.
    [276]Pointing S B, Feasibility of bioremediation by white rot fungi [J]. Appl Microbial Biot,2001,57:20-33.
    [277]Asgher M, Kausar S, Bhatti H N, et al. Optimization of medium for decolourization of Solar golden yellow R direct textile dye by Schizophyllum commune IBL-06 [J]. Int Biodet Biodeg,2008,61:189-193.
    [278]Kumar R, Singh S, Singh Om V. Bioconversion of lignocellulosic biomass:biochemical and molecular perspectives [J]. J Ind Microbiol Biotechnol,2008,35:377-391.
    [279]Fodil D, Badis A, Jaouadi B, et al. Purification and characterization of two extracellular peroxidases from Streptomyces sp. strain AM2, a decolorizing actinomycetes responsible for the biodegradation of natural humic acids [J]. Int Biodeter Biodegr,2011,65:470-478.
    [280]Sivakumar U, Kalaichelvan G, Ramasamy K. Protoplast fusion in Streptomyces sp. for increased production of laccase and associated ligninolytic enzymes [J]. World J Microb Biot,2004,20:563-568.
    [281]Raj A,□ Chandra R, Reddy M M K,et al. Biodegradation of Kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill [J]. World J Microb Biot, 2007.23:793-799.
    [282]Crawford D L, Sutherland J B, Pommeto Ⅲ A L.et al. Production of an aromatic aldehyde oxidase by Streptomyces viridosporus [J]. Arch Microbiol,1982,131:351-355.
    [283]Yang Y S, Zhou J T, Lu H, et al. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin [J]. Biodegradation,2011,22:1017-1027(DOI 10.1007/s 10532-011-9460-6).
    [284]Lundquist K, Kirk T K, Connors W J. Fungal degradation of Kraft lignin and lignin sulfonates prepared from synthetic 14C lignin [J]. Arch Microbiol,1977,112:291-296.
    [285]CPPA. Technical section standard method H5P [S]. Montreal:Canadian Pulp and Paper Association, 1974.
    [286]Hernandez M, Hernandez-Coronado M J, Andrew S B, et al. Degradation of alkali-lignin residues from solid-state fermentation of wheat straw by streptomycetes [J]. Biodegradation,2001,12:219-223.
    [287]Hernandez-Perez G, Goma G, Rols J L.Degradation of lignosulfonated compounds by Streptomyces viridosporus strain T7A [J]. Biotechnol Lett,1997,19:285-289.
    [288]Janshekar H, Brown C, Fiechter A. Determination of biodegraded lignins by ultraviolett spectrophotometry [J]. Anal Chim Acta,1981,130:81-91.
    [289]Bon Elba P S, Nascimento H J, Macedo J M B,et al. Lignin peroxidase isoforms from Streptomyces viridosporus T7A:are they a monomer based structure? [J]. Biotechnol Tech,1999,13:289-293.
    [290]Kansoh A L, Nagieb Z A. Xylanase and Mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood Kraft pulp [J]. Anton Leeuw,2004,85:103-114.
    [291]Arora A, Nain L, Gupta J K. Solid-state fermentation of wood residues by Streptomyces griseus B1, a soil isolate, and solubilization of lignins [J]. World J Microb Biot,2005,21:303-308.
    [292]Antonopoulos V T, Hernandez M, Arias M E, et al. The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of Eucalyptus Kraft pulp [J]. Appl Microbiol Biot, 2001,57:92-97.
    [293]Hernandez M, Hernandez-Coronado M J, Montiel M D, et al. Analysis of alkali-lignin in a paper mill effluent decolourised with two Streptomyces strains by gas chromatography-mass q spectrometry after cupric oxide degradation[J], J Chromatogr A,2001,919:389-394.
    [294]Ksibi M, Amor S B, Cherif S, et al. Photodegradation of lignin from black liquor using UV/TiO2 system [J]. J Photoch Photobio A,2003,154:211-218.
    [295]Jouni J, Jukka P, Mirjasalkinoja S. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds [J]. Appl. Environ Microbiol,1987,53:2642-2649.
    [296]Baborova P, Moder M, Baldrian P, et al. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus and degradation of polycyclic aromatic hydrocarbons by the enzyme [J]. Res Microbiol,2006,157:248-253.
    [297]Baldrian P, Valaskova V, Meerhautova V, et al. Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese lead and zinc [J]. Res Microbiol,2005,156:670-676.
    [298]Milstein O A, Haars A, Sharma A, et al. Lignin degrading ability of selected Aspergillus spp. [J].Applied Biochemistry and Biotechnology,1984.9:393-394.
    [299]Zeng G M,Yu H Y, Huang H L,et al. Laccase activities of a soil fungus Penicilliums implicissimum in relation to lignin degradation [J]. World Journal of Microbiology & Biotechnology,2006, 22(4):317-324.
    [300]Barnett HL, Hunter B, Illustrated Genera of Imperfect Fungi,3rd edn[M]. Minneapolis, Minnesota: Burgess Publishing Company.1972.
    [301]Tien M, Kirk T K. Lignin degrading enzyme from Phanerochaete chrysosporium:purification, characterization and catalytic properties of a unique H2O2 requiring oxygenase [J]. Proc Natl Acad Sci USA,1984,81:2280-2284.
    [302]Glenn J K, Gold M H. Purification and characterisation of an extracellular Mn(Ⅱ)-dependent peroxidase from the lignin degrading basidiomycete Phanerochaete chrysosporium [J]. Arch Biochem Biophys, 1985.242:329-341.
    [303]Niku-Paavola M L, Raaska L,Itavaara M. Detection of white rot fungi by a non-toxic stain [J]. Mycol. Res,1990,94:27-31.
    [304]Felsenstein J. Confidence limits on phylogenies:An approach using the bootstrap [J]. Evolution,1985. 39:783-791.
    [305]Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences [J]. Journal of Molecular Evolution,1980,16:111-120.
    [306]Horio T, Oakley B R. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans [J]. Molecular Biology of the Cell,2005,16:918-926.
    [307]Murphy J A,Campbell L L, and Pappelis A J. Morphological observations of Diplodia maydis on synthetic and natural substrates as revealed by scanning electron microscopy [J]. Applied Microbiology, 1974,27(1):232-250
    [308]Luengo J M, Dominguez A, Cantroal J M et al. Formation of bulges associated with penicillin production in high-producing stains of Penicillium chrysogenum [J]. Current Microbiology,1986, 13:203-207
    [309]Hermann T E, Kurtz M B, Champe S P. Laccase localized in hulle cells and cleistothecial primordia of Aspergillus nidulans [J]. Journal of Bacteriology,1983,154(2):955-964.
    [310]Kirk T K, Schultz E, Connors W J, et al. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporiurn[J]. Arch. Microbiol.,1978,117:277-285.
    [311]Zhao L H, Zhou J T, Lv H et al. Decolorization of cotton pulp black liquor by Pleurotus ostreatus in a bubble-column reactor [J]. Bull Environ Contam Toxicol,2008,80:44-48.
    [312]Milstein O, Vered Y, Gressel J, et al. Biodegradation of wheat straw lignocarbohydrate complexes (LCC) Ⅱ. Fungal growth on aqueous hydrolysate liquors and particulate residues of wheat straw [J]. European J Appl Microbiol Biotechnol,1981,13:117-127.
    [313]Janshekar H, Haltmeier T, Brown C. Fungal degradation of pine and straw alkali lignins [J]. European J Appl Microbiol Biotechnol,1982,14:174-181.
    [314]Emtiazi G, Naghavi N & Bordbar A. Biodegradation of lignocellulosic waste by Aspergillus terreus [J]. Biodegradation,2001,12:259-263.
    [315]Das N. Chakraborty T K, Mukherjee M. Role of potato extract in extracellular laccase production of Pleurotus florida [J] J.Basic Microbiol,1999,39(5-6):299-303.
    [316]Sanroman A, Feijoo G, Lema J M. Immobilization of Aspergillus niger and Phanerochaete chrysosporium on polyurethane foam [G]. Progress in Biotechnology,1996,11:132-135.
    [317]Palma C. Moreira M T, Mielgo I, et al. Use of a fungal bioreactor as a pretreatment or post-treatment step for continuous decolorization of dyes [J]. Water Sci Technol.1999,40:131-136.
    [318]Borchert M,Libra J A. Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors [J]. Biotechnol Bioeng,2001,75:313-321.
    [319]Emtiazi G. Nahvi I,Salehbaig M. Production of cellulose (exoglucanse) by fungi in different media [J]. Research Bulletin of Isfahan University,1999.1:15-28.
    [320]Emtiazi G, Naghavi N, Bordbar A. Biodegradation of lignocellulosic waste by Aspergillus terreus [J]. Biodegradation,2001,12:259-263.
    [321]Jouni J, Jukka P, Mirjasalkinoja S. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds [J]. Appl. Environ Microbiol,1987,53 (11):2642-2649.
    [322]Yang Y S, Zhou J T, Lu H, et al. Isolation and Characterization of Streptomyces spp. Strains F-6 and F-7 Capable of Decomposing Alkali Ligni [J],Environmental Technology, 2012,672473 DOI:10.1080/09593330.
    [323]周晓燕,文湘华,冯嫣.葡萄糖补料对白腐真菌P. chrysosporium产木质素降解酶的影响[J].环境科学学报,2007,27(3):363-368
    [324]Fang W C, Kao C H. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc, Plant Science,2000,158:71-76.
    [325]Asther M, Corrieu G, Drapron R et al. Effect of Tween 80 and oleicacid on ligninase production by Phanerochaete chrysosporium INA212 [J]. Enzyme and Microbial Technology,1987,9:245-249.
    [326]荚荣,汤必奎,张晓宾等.藜芦醇和吐温80对白腐菌产木质素降解酶的影响及在偶氮染料脱色中的作用[J].生物工程学报,2004,2(2):302-305.
    [327]Zhou J, Jiang W, Ding J et al. Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by White Rot Fungi [J].Chemosphere,2007,70(2):172-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700