加工番茄番茄红素快速检测、积累特性模型及其肥料效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农业现代化进程不断加快,数字农业作为农业生产现代化最前沿的发展领域,有效促进农业生产和现代化信息技术的有机结合,给农业生产发展注入新鲜血液。本研究根据我国数字农业建设的现状以及农业建设与管理的需要,结合甘肃省河西地区加工番茄产业的具体需要,综合运用计算机视觉技术、数学模型分析及肥料效应等方法,为加工番茄番茄红素含量快速检测、积累特性模拟以及氮磷钾肥效应的影响提供理论依据。主要结果如下:
     (1)利用计算机视觉技术快速测定加工番茄番茄红素含量的方法,建立根据加工番茄果实颜色特征确定其番茄红素含量的回归模型;结果表明:RGB颜色系统的R、G、B、R/G、R/(G+B)、色度坐标r、g、b及HIS颜色系统H、I值与番茄红素呈极显著非线性相关,可用于测定加工番茄果实中番茄红素含量。从建立的4组模型中筛选出拟合度较高的1组模型进行检验,拟合度R2为0.941。使用预测精度较高的RGB颜色特征预测番茄红素含量的模型为:LC=9.0407-0.08G+1.211X-9.882Y+0.0002G2+0.077X2+6.564Y2。
     (2)为准确了解加工番茄番茄红素积累特性,以10个加工番茄品种为材料,研究筛选适合描述加工番茄番茄红素积累特性的生长模型,用Richards、Logistic和Gompertz方程拟合加工番茄番茄红素积累特征曲线。研究结果表明,Richards方程能够较好地拟合不同加工番茄品种的番茄红素积累特性,其拟合度优于Logistic和Gompertz方程。不同加工番茄品种间番茄红素积累特性的比较研究表明,果实番茄红素含量的变化过程基本可以划分为初始积累、快速积累和稳定积累3个阶段,番茄红素积累主要集中在后2个阶段。提高番茄红素含量可以通过提高番茄红素积累速率和延长番茄红素积累的持续时间这2个策略。
     (3)采用3414配方施肥设计方法,建立氮、磷、钾肥对加工番茄番茄红素含量的综合作用模型,探讨氮、磷、钾肥对加工番茄番茄红素含量影响的规律。氮、磷、钾肥对加工番茄番茄红素含量的单因素效应、双因素互作效应受到其它因素水平的影响。氮肥对番茄红素含量的影响为正效应,其增加幅度随氮肥施用水平的增加而提高。磷肥对番茄红素含量的影响均为负效应。钾肥对番茄红素含量表现为正效应。当氮肥施肥量为3.27-28.77kg/亩,磷肥施肥量为7.74-22.7kg/亩,钾肥施肥量为3.63-7.57kg/亩时,加工番茄果实番茄红素含量有95%的可能高于14mg/100g。
Digital agriculture has been the frontier realm of the modernization of agricultural production since the speed up of modern agriculture development. And it facilitates effectively the integration of agricultural production and modernized information technique, and adds fresh blood to the agricultural production. Based on the current state of the construction of digital agriculture and the need of construction and management of agriculture in China, combining with the practical demands of the processing tomato industry of Hexi Corridor of Gansu Province, Comprehensive use of computer vision technology, mathematical model analysis and fertilizer effects and so on, for the processing of tomato fruit lycopene content in rapid detection, and accumulation of simulation and effect of NPK fertilizer to provide a theoretical basis.The main results are as follows:
     (1) The rapid methods detecting lycopene concentration by the computer vision technology, and a unary quadratic model to predict lycopene content based on color parameters of processing tomato fruit images have been established in this study. The images of processing tomato fruits were taken in the image cameras, then the color characteristics were extracted with the PhotoshopCS4 image processing software. The correlation between color parameters of processing tomato digital image and lycopene content of processing tomato fruit were analyzed by regression models. The results showed that the color characteristics such as R、G、B、R/G、R/(G+B)、r、g、b in the RGB color system, and H、I in the HIS color system were significantly correlation with lycopene content of processing tomato fruit at P<0.01. Four sets of prediction model were established and among them 1 model with high fitting degree were selected to use. The prediction accuracy of the selected model were tested, and good of fit value 0.941. According to the predict lycopene content of processing tomato fruit, the corresponding model is:LC= 9.0407-0.08G+1.211X-9.882Y+0.0002G2+0.077X2+6.564Y2。
     (2) To investigate accumulation characteristics of lycopene in different processing tomato varieties and screen a suitable growth equation to describe the lycopene accumulation, ten varieties were used and tested by the Richards, Logistic and Gompertz equations. The results showed that the Richards equation was more suitable for simulating lycopene accumulation process than the other growth equations in processing tomato. The Richards could improve fitting effect among the three models. Via comparing the accumulation characteristics of lycopene content in different processing tomato cultivars, the accumulation of lycopene in processing tomato could be divided into three stages, which were initial accumulation stage, fast accumulation stage and steady accumulation stage. There were two ways for processing tomato cultivars to increase lycopene content:increasing the rate of lycopene accumulation and extending the time of lycopene accumulation process.
     (3) The action model was established for the effects of nitrogenous, phosphatic and potassic fertilizer on the content of lycopene by using "3414" fertilizer experiment design. The effects of nitrogenous, phosphatic and potassic fertilizer on the content of lycopene in processing tomato were discussed by this model. The single factor and two-factor interaction effects of nitrogenous, phosphatic and potassic fertilizer on the lycopene content were affected by other factors. Nitrogen fertilizer has produced a positive effect to lycopene content, increasing rate became quickly as nitrogen fertilizer increased. whereas phosphor fertilizer has produced a negative effect to lycopene content, Potassic fertilizer has produced negative effect to lycopene content. Fertilizing measure to getting lycopene contents over 14 mg/100g with 95% possibility comprised nitrogen fertilizer 3.27-28.77(kg/667m2), phosphor fertilizer 7.74-22.7(kg/667m2)and potassic fertilizer 3.63-7.57(kg/667m2).
引文
[1]曹卫星.作物智能栽培学:信息科学与作物栽培学的结合[J].科技导报.2000,1:37-4.
    [2]王一鸣.数字农业与数字农业工程技术的现状与发展[J].农业工程学报.2003,19:9-10.
    [3]曹卫星,朱艳,田永超等.数字农作技术研究的若干进展与发展方向[J].中国农业科学.2006,39(2):281-288.
    [4]孟凡娟,许向阳,李景富.番茄果实色素含量和表面颜色相关性研究[J].东北农业大学学报.2006,37(4):459-462
    [5]韩祥波,刘战丽.计算机图像处理技术在番茄红色素测定中的应用[J].食品研究与开发.2007,28(12):153-155
    [6]孟亚利,曹卫星,周治国.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业学,2003,36(11):1362-1367.
    [7]刘平,马履一.油松人工林单木树高生长模型研究[J].林业资源管理,2008,05:50-56.
    [8]Kiniry J R, Williams J R, Vanderlip R L, et al. Evaluation of two maize models for nine U.S. locations. Agron J,1997,89:421-426.
    [9]Kiniry J R, Bockholt A J. Maize and sorghum simulation in diverse Texas environments.Agron J,1998, 90:682-687.
    [10]龚月桦,刘迎洲,高俊凤.K型杂交小麦901及亲本籽粒灌浆的生长分析[J].中国农业科学,2004,37(9):1288-1292.
    [11]黄锦文,梁康迳.不同类型水稻籽粒灌浆过程内源激素含量变化的研究[J].中国生态农业报,2003,11(1):10-13.
    [12]龚月桦,刘迎洲,高俊凤.K型杂交小麦901及亲本籽粒灌浆的生长分析[J].中国农业科学,2004,37(9):1288-1292.
    [13]黄锦文,梁康迳.不同类型水稻籽粒灌浆过程内源激素含量变化的研究[J].中国生态农业报,2003,11(1):10-13.
    [14]Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol,2001,127(1):315-323.
    [15]刘萍,王从亮,王凤格.糯玉米不同品种的果穗增重与籽粒灌浆特性[J].作物学报,2006,32(10):1589-1591.
    [16]白秀峰,罗瑶年.花生荚果发育及糖类脂肪积累变化的研究初报[J].花生学报,1979(1):13-22.
    [17]徐宜民,刘法生.花生不同收获期籽仁脂肪含量及脂肪酸组分变化规律的研究[J].花生学报,1989,(3):18-20.
    [18]张恒悦.花生果实发育过程中贮藏物质的积累与动态[J].山东农业大学学报(自然科版),1990,21(3):57-66.
    [19]庄伟建,彭时尧,林木山.花生荚果发育过程中子叶贮藏细胞的形态变化及其与油分和白质积累的关系[J].中国农业科学,1991,24(3):8-13.
    [20]陈四龙,李玉荣.不同高油花生品种(系)油分积累特性的模拟研究[J].作物学报:2008,34(1):142-149.
    [21]胡志峰,邵景成.河西走廊加工番茄产业存在的问题及发展对策[J].甘肃农业科技,2008,2:40-42.
    [22]闫志江.红色产业的近忧和远虑[J].兵团建设.2005,7:25
    [23]Majumdar,S.,D.S.Jayas.Classification of cereal grains using machine Vision:Ⅰ.Morphology models[J]. Trans of the ASAE,2000,43(6):1669-1675;
    [24]Majumdar,S.,D.S.Jayas.Caassification of cereal grains using machine vision:Ⅱ.Color models[J].Trans of me ASAE,2000,43(6):1677-1680.
    [25]Majumdar,S.,D.S.Jayas.Classification of cereal grains using machine vision:Ⅲ.Texture models[J]. Trans of the ASAE,2000,3(6):1681-1687.
    [26]Majumdar,s.,d.s.Jayas.Classification of cereal grains using machine vision:Ⅳ.Morphology,color,and texture models[J].Trans of the ASAE,2000,43(6):1689-1694.
    [27]曹其新,成良,跃红等.基于彩色图像处理的西红柿品质特征的提取研究[J].机器人,2001,23(7):653-656.
    [28]徐道娟,方如明,蔡健荣.图像处理技术在薯条颜色质量检测中的应用[J].食品工业,2002,5:42-44.
    [29]赵杰文,刘木华,杨国彬.基于HIS颜色特征的田间成熟番茄识别技术[J].农业机械学报.2004,35(5):122-124.
    [30]李存军,王纪华,刘良云,王人潮.基于数字照片特征的小麦覆盖度自动提取研究[J].浙江大学报.2004,30(6):650-656.
    [31]王树文,张长利,房俊龙.基于计算机视觉的番茄损伤自动检测与分类研究[J].农业工程学报.2005,21(8):98-101.
    [32]尹建军,王新忠,毛罕平,陈树人,张际先.RGB与HSI颜色空间下番茄图像分割的对比研究[J].农机化研究.2006,11:171-174.
    [33]孟凡娟,许向阳,李景富.番茄果实色素含量和表面颜色相关性研究[J].东北农业大学报.2006,37(4):459-462.
    [34]沈维政,张长利,刘振恒.基于计算机视觉的田间杂草识别方法研究[J].农机化研究.2006,7:163-165.
    [35]易克传,岳鹏翔,陈全胜,李慧.基于聚类分析的计算机视觉对茶叶色泽的识[J].中国茶叶加工.2006,(2):39-41.
    [36]王克如,李少昆,王崇桃.用机器视觉技术获取棉花叶片叶绿素浓度[J].作物学报.2006,32(1):34-40.
    [37]吴艳兵.基于计算机图像处理检测温室黄瓜幼苗土壤水份含量的技术研究[D].华中农业大学.2007.
    [38]韩仲志,匡桂娟,刘元勇,严敏.基于形态和颜色特征的花生品质检测方法[J].花生学报.2007,36(4):18-21.
    [39]韩祥波,刘战丽.计算机图像处理技术在番茄红色素测定中的应用[J].食品研究与开发.2007,28(12):153-155.
    [40]施青红.青菜中叶绿素含量的无损检测法研究[J].中国食品学报.2007,7(3):127-131.
    [41]吕小莲,张祖立,吕小荣.机器视觉识别田间成熟番茄的研究[J].安徽农业科学.2008,36(4):1322-1323.
    [42]姜国权,柯杏,杜尚丰.基于机器视觉的农田作物行检测[J].光学学报.28(00):1-6.
    [43]李伟,康晴晴,张俊雄.基于机器视觉的苹果表面纹理检测方法[J].吉林大学学报.2008,38(5):1110-1113.
    [44]李艳,王进,褚贵新等.基于数字图像分析监测不同氮肥处理下加工番茄生长状况的初步研究[J].植物营养与肥料学报2008,14(1):139-143.
    [45]杨锦忠,郝建平.基于种子图像处理的大数目玉米品种形态识别[J].作物学报.2008,34(6):1069-1073.
    [46]李洁齐,桂年.利用计算机图像处理测定茶鲜叶色泽及其萎凋程度变化的初步研究[J].中国茶叶加工2008,(1):20-22.
    [47]郝敏,麻硕士.基于机器视觉的马铃薯单薯质量检测技术研究[J].农机化研究.2009,9:61-63.
    [48]刘韶军,王库.基于机器视觉的棉种破损检测技术[J].农业机械学报.2009,40(12):186-189.
    [49]司永胜,乔军.基于机器视觉的苹果识别和形状特征提取[J].农业机械学报.2009,40(8):161-165.
    [50]柴阿丽,李宝聚.基于计算机视觉技术的番茄叶片叶绿素含量的检测[J].园艺学报.2009,36(1):45-52.
    [51]冯辉,张婷等.基于图像处理技术的番茄部分株型信息的获取[J].园艺学报.2009,36(6):923-928.
    [52]李荣春,陶洪斌,张竹琴等.基于图像处理技术的夏玉米叶面积指数估算方法研究[J].安徽农业科学.2009,37(26):12871-12872.
    [53]李明,张长利,王晓楠.基于图像处理技术的小麦形态检测方法研究[J].东北农业大学学报.2009,40(4):111-115.
    [54]李超.加工番茄分选检测系统的研究与实现[D].石河子大学.2009.
    [55]杨志伟,尹秀华.图像处理在芒果自动选别中的应用[J].湖北农业科学.2009,48(8):1992-1995.
    [56]左爱仁,范青生,肖小年.番茄红素HPLC测定的研究[J].中国食品添加剂,2004,(1):106-110.
    [57]李伟,丁宵霖,戴庆平,等.差示扫描量热法测定香番茄红素的纯度[J].食品科学,2002,23(9):87-89.
    [58]胡晓波,温辉梁,许全,刘崇波.番茄红素含量测定[J].食品科学,2005,11(9):566-569.
    [59]张连富,丁霄霖.番茄红素简便测定方法的建立[J].食品与发酵工业,2001,27(3):51-55.
    [60]李玉环,王锋,刘群山.皂化法提取香茄红素的研究[J].食品科学,2002,23(8):146.
    [61]尚德军,王军.番茄红素测量方法的改进[J].现代科学仪器,2006(1):117-118.
    [62]Fish W W,Perk ins V P, Collins J K.A quantitative assay for lycopene drat utilize reduced volumes of organic solvents[J].Food Composition Analysis,2002,15:309-317.
    [63]Davis A R,Fish W W,Perkins P.A rapid spectrophotom etric method for analyzing lycopene content in tomato and tomato products[J].Postharvest BiolTechnol,2003,28:425-430.
    [64]刘玉梅,刘奎访.番茄红素油树脂中番茄红素的分析方法的研究[J].食品工业科技,2004,25(12):127-129.
    [65]孙国新,王德才,孙长颗.反相高效液相色谱法测定番茄红素[J].中国公共卫生2003,19(12):15-17.
    [66]Hodisan T, Soeaein, Ropan I,et al.Carotenoid composition of Rosa eanina fruits determined by thin layer chrom atography and high-perform ance liquid chromatography[J].Pharmaceut Biomed Ana,1997,16:521-528.
    [67]Edwards D, Ham son M. Guide to Mathem atical Modeling.Boca Raton, Florida, U S:CRC Press, Inc., 1990.2
    [68]Curry R B. Dynamic simulation of plant growth, I.Development of a model. A SAET rans,1971,14 (5): 946-959.
    [69]Sinclair T R, Seligman N G. Crop modeling:from infancy to maturity. A gronomy Jurnal,1996,88:698-704
    [70]Montieth J L. The quest for balance in modeling. A gronomy Journal,1996,88:695-697
    [71]张大勇.理论生态学研究[M].北京:高等教育出版社,2000.5-10.
    [72]王昱生.中国东北部贝加尔针茅草原生物量与生态因素的关系及其预测模型[J].植物生态学与地植物学学报,1991,15(3):286-295.
    [73]马克平.小叶樟草甸地下生物量形成规律的研究[J].草业科学,1992,9(2):24-28.
    [74]肖玮,殷华,阎秀峰,等.星星草种群地上生物量形成规律的数学拟合[J].哈尔滨师范大学学报(自然科学版),1997,13(1):102-105.
    [75]李德新,白永飞,赵虎生.降水量的季节分配对羊草种群地上生物量影响的数学模型[J].中国草地,1996,6:1-5.
    [76]郝敦元,刘钟龄,王炜.内蒙古草原退化群落恢复演替的研究Ⅲ.群落演替的数学模型[J].植物生态学报,1997,21(6):503-511.
    [77]朱自辉.自然植被净第一性生产力估计模型[J].科学通报,38:1422-1426.
    [78]胡包钢,赵星;严红平.植物生长建模与可视化——回顾与展望[J].自动化学报,2001(06):816-835.
    [79]徐春明,贾志宽,韩清芳.巨人201+Z苜蓿地上部分生长特性的研究[J].西北植物学报,2003,23(3):481-484.
    [80]法郎士J,索恩利JHM.金之庆,高亮之译.农业中的数学模型农业及其有关科学若干问题的数学研究[M].北京:农业出版社,1991.100-102.
    [81]Pening devries FWT. The costs of maintenance process in plant cell [J].Annals of Botany,1975,39: 77-92.
    [82]Thornley JHM. Energy, repiratin and grow thin plants [J].Annals of Botanny,1997,135:721-728.
    [83]Thornley JHM, Johnson IR.Plant and Crop Modeling:A Mathematical Approach to plant and Crop Physiology[M].New york:Oxford University Press,1990.34-50.
    [84]姜妙男.水稻伸长生长的数学模型[J].生物数学学报,1995,10(2):54-63.
    [85]向志民,何敏.几种杨树生长进程动态分析[J].西北林学院学报,1994,9(2):82-86.
    [86]程述汉,束怀瑞,魏钦平.苹果树新梢生长动态的数学模型[J].生物数学学报,1999,14(1):82-85.
    [87]Prusink iewicz P.Modeling of spatial structure and development of plant:A review [J]. Scienti Horticultural,1998,74:113-149.
    [88]崔启武,刘家冈.生物种群增长的营养动力学[M].北京:科学出版社,1991.67-77.
    [89]董乔雪,王一鸣.番茄的结构-功能模型Ⅰ:基于有限态自动机的3D形态构建[J].中国生态农业学报,2006(04):195-199.
    [90]董乔雪,王一鸣.番茄形态结构模型参数的多目标拟合估算方法研究[J].农业工程学报,2006(02):1-5.
    [91]侯加林,王一鸣.番茄叶序发育动态模拟模型[J].农业机械学报,2006(07):101-103.
    [92]于颖,苏中滨.基于生长方程大豆叶片模拟方法的研究[J].农机化研究,2007(07):89-103.
    [93]陈国庆,朱艳.基于形态模型的小麦器官和单株虚拟生长系统研究[J].农业工程学报,2007(03):621.
    [94]耿瑞平,涂序彦.虚拟植物生长模型[J].计算机工程与应用,2004,14:6-8.
    [95]王美丽,何东健.基于L系统的小麦根系可视化模拟研究[J].农机化研究,2008(03):36-39.
    [96]范菁,赵全.基于L系统的虚拟植物仿真研究[J].计算机应用与软件,2008(01):25-27.
    [97]康丽,苏中滨.基于L系统的植物叶脉模拟的研究[J].农机化研究,2006(07)180-184.
    [98]张俊平,陈常铭.水稻群体生长过程和产量动态模拟[J].生态学报,1990,10(4):311-316.
    [99]白永飞,许志信.降水量的季节分配对羊草草原群落地上部生物量影响的数学模型[J].草业学报,1997,6(2):1-6.
    [100]Zhan Z,Wang Y,de Reffye P,et al.Architectural modeling of wheat growth and Validation study [A]. In:ASAE.Annual International Meeting[C].Wisconsin:Milwaukee,2000.98-106.
    [101]Marcelis LFM, Heuvelink E, Goudriaan J. Modding biomass production and yield of horticultural crops:Areview [J].Scientia Horticulture,1988,74:83-111.
    [102]张彩琴,郝敦元.可持续发展理论的数学分析[J].内蒙古农业大学学报,2004,25(1):99-103.
    [103]张彩琴.实现林业可持续发展的最优控制问题[D].呼和浩特:内蒙古大学,2003.
    [104]陈四龙,李玉荣.不同高油花生品种(系)油分积累特性的模拟研究[J].作物学报,2008,34(1):142-149.
    [105]张志勇,张歧东主编.蔬菜无公害生产技术[M].中原农民出版社,2000.
    [106]程福厚,霍朝忠,张纪英,陈普红,孟昭清.调亏灌溉对鸭梨果实的生长、产量及品质的影响[J].干旱地区农业研究,2000,18(4)
    [107]吉艳芝,关楠,张丽娟等.氮磷钾配方施肥对李产量及果实品质的影响[J].北方园艺,2008,10:25-28.
    [108]鲁剑巍.河北省柑橘园土壤一植物养分状况与柑橘平衡施肥技术研究[D].华中农业大,2003
    [109]曾洪玉,刘雪基,蔡建华等.番茄等几种蔬菜配方施肥肥效试验[J].上海蔬菜,2008,1:97-97.
    [110]艾绍英,柯玉诗,姚建武等.氮钾营养对大青菜产量、品质和生理指标的影响[J].华南农业大学学报,2001,22(2):11-14
    [111]林昌华.平衡施肥对大葱、甘蓝产量及其商品形状的影响[D].华南热带农业大学,2006
    [112]李远新,李进辉,何莉莉等.氮磷钾配施对保护地番茄产量及品质的影响[J].中国蔬菜,1997,4:10-13
    [113]Juan Manuel Ruiz, Luis Romero. Cucumber yield and nitrogen metabolism in response to nitrogen supply. Scientia Horticulture,1999(82):309-316
    [114]郭熙盛,吴礼树.施用氮钾肥料对蔬菜品质影响的研究进展[J].华中农业大学学报,2002,21(6):593-59
    [115]郭熙盛,朱宏斌,王文军等.不同氮钾水平对结球甘蓝产量和品质的影响[J].植物营养与肥料学报,2004,10(2):161-166
    [116]黄科,刘明月,蔡雁平等.氮磷钾施用量与辣椒品质的相关性研究[J].西南农业大学学报,2002,24:349-356
    [117]Sylwester Smolen, Wlodzimierz Sady. The effect of various nitrogen fertilization and foliar nutrition regimes in the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.).Scientia horticulturae,2009(120):315-324
    [118]Fabio Stagnari, Vincenzo Di Bitetto, Michele Pisante. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Scientia horticulturae,2007(114):225-233.
    [119]易监,李广珍,于千等.SN/T1036-2002番茄红素的测定[S].北京:中华人民共国国家质量监督检验检疫总局,2002.
    [120]雷咏雯,危常州等.计算机辅助叶色分析进行棉花氮素营养诊断的初步研究[J].石河子大学学报:自然科学版,2004.22(2):113-116.
    [121]王克如,李少昆等.用机器视觉技术获取棉花叶片叶绿素浓度[J].作物学报,2006,32(1):34-40.
    [122]王方永,李少昆等.基于机器视觉的棉花群体叶绿素监测[J].作物学报,2007,33(12):2041-2046.
    [123]张彦娥.基于计算机视觉技术温室作物长势诊断机理与方法研究[D].中国农业大学,2005
    [124]施青红.青菜中叶绿素含量的无损检测法研究[J].中国食品学报,2007,7(3):127-131.
    [125]吕鑫,侯丽霞等.番茄果实成熟过程中番茄红素含量的变化[J].中国蔬菜,2009(6):21-24.
    [126]YuJ-G(喻建刚),Fan X-L(樊小林),Li N(李宁),Liu F(刘芳).Application of the Richards equation to describe nitrogen release characteristics from controlled release fertilizer (CRF).Sci Agric Sin(中国农业科学),2006,39(9):1853-1858 (in Chinese with English abstract)
    [127]李纪锁.番茄中番茄红素含量影响因素及遗传的初步研究[D].中国农业大学,2003
    [128]由天赐.钾对番茄产量及品质的影响[D].东北农业大学,2002.
    [129]汤明尧.施氮对加工番茄养分吸收、分配及产量品质的影响[D].新疆农业大学,2009
    [130]谭金芳,张自立,邱惠珍.作物施肥原理与技术[M].北京:中国农业大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700