不同钝化剂对土壤中Cu的钝化能力及其对土壤速效养分影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着土壤重金属污染日益加剧,土壤重金属污染的治理已成为当前研究的热点。原位固定技术是修复重金属污染土壤治理过程中一种非常有效的方法,该技术的关键在于钝化剂的选择。纳米黑碳的比表面积大,吸附能力强,是一种很有应用前景的土壤改良剂。猪粪降解液改性钠基膨润土由天然材料制备而成,对环境影响较小,同样是一种很有应用前景的土壤改良剂。
     本文在已有研究的基础上,以山东三种典型土壤(褐土、潮土、酸性棕壤)为供试土壤,以硝酸改性纳米黑碳、酸性高锰酸钾改性纳米黑碳、硫酸改性纳米黑碳、HDTMA(十六烷基三甲基溴化铵)改性钠基膨润土及猪粪降解液改性钠基膨润土为钝化剂,通过吸附动力学实验、吸附等温线实验研究钝化剂对Cu~(2+)的吸附动力学及吸附热力学特征;通过水培养实验研究营养盐浓度对钝化剂吸附Cu~(2+)能力的影响;通过土壤培养试验,研究施肥对硝酸改性纳米黑碳、猪粪降解液改性钠基膨润土固定土壤中重金属Cu能力的影响以及硝酸改性纳米黑碳、猪粪降解液改性膨润土在修复重金属Cu污染土壤过程中对土壤养分有效性的影响。本文获得主要研究结果如下:
     1、Cu~(2+)在五种不同钝化剂上的吸附等温线都能用Freundlich和Langmuir方程很好的拟合;硝酸改性纳米黑碳、硫酸改性纳米黑碳、猪粪降解液改性钠基膨润土、HDTMA改性钠基膨润土用Langmuir方程拟合的相关系数大于用Freundlich拟合的相关系数,酸性高锰酸钾改性纳米黑碳用Freundlich拟合的相关系数要大于用Langmuir方程拟合的相关系数,这与用酸性高锰酸钾改性纳米黑碳时引入的K~+影响有关;
     2、NO_3~-对两种有机改性膨润土吸附能力的影响与对改性纳米黑碳吸附能力的影响不同。随着NO_3~-浓度的增加,两种改性膨润土对Cu~(2+)的吸附量呈现先增加后减少的趋势;改性纳米黑碳对Cu~(2+)的吸附量呈现先减小后增大的趋势;HPO_4~(2-)对两种有机改性膨润土吸附能力的影响与对改性纳米黑碳吸附能力的影响相同。随着HPO_4~(2-)浓度的增加,五种钝化剂对Cu~(2+)的吸附量均呈现增加趋势,这与HPO_4~(2-)能与Cu~(2+)发生沉淀有关。K~+对两种有机改性膨润土吸附能力的影响与对改性纳米黑碳吸附能力的影响相同。随着K~+浓度的增加,五种钝化剂对Cu~(2+)的吸附量均逐渐减小,K~+与Cu~(2+)存在明显的竞争吸附现象。
     3、施肥可使褐土、潮土、酸性棕壤中DTPA-Cu含量升高;随着时间的增加,各施肥处理重金属有效态含量降低,对照随时间没有表现出明显的规律;只施钝化剂处理铜有效态含量低于同时施加钝化剂和肥处理,说明同时施加钝化剂和肥会降低钝化剂的有效性;
     4、在三种土壤中同时施加肥和硝酸改性纳米黑碳处理及同时施加肥和猪粪降解液改性钠基膨润土处理比只施肥的处理速效磷的含量低,钝化剂对磷有固定作用;在三种土壤中施加硝酸改性纳米黑碳都可以使土壤中碱解氮的含量增加,以酸性棕壤增加最多,这主要是由于在利用硝酸对纳米黑碳进行改性的过程中引入了硝酸根,施入土壤后使土壤中碱解氮的含量增加,增加的量大于由于纳米黑碳的钝化作用减少的量;在三种土壤中施加硝酸改性纳米黑碳都可以使土壤中速效钾的含量增加,以褐土增加最多,这主要是由于土壤中的Cu~(2+)和K~+存在竞争吸附,将硝酸改性纳米黑碳施入土壤中,吸附了土壤中的Cu~(2+),土壤溶液中正电荷减少,从而使土壤胶体中的钾离子从土壤胶粒上解吸下来,使土壤中速效钾的含量增加。
     5、先施加钝化剂一段时间后施肥,能够有效提高土壤中速效磷,碱解氮,速效钾的含量,建议在施加钝化剂20天后施肥。
With the increasing of heavy metal contamination of soil, the pollution of heavy metal in the soil has become a hot spot in current research. The immobilization is an effective remediation technique of contaminated soils by heavy metals and the choice of passivant is the key of the technology. Nano- black carbon has large surface area, adsorption capacity, is a promising soil conditioner. Na-bentonite modified by pig manure degradation liquid made by natural materials is friendly to the environment and it is also a promising soil conditioner.
     Based on existing research, three soils Cinnamon soil, Aquic soil, and Acid brown soil were researched. Nano- black carbon oxidized by nitric acid, nano- black carbon oxidized by sulfuric acid, nano-black carbon oxidized by acidic potassium permanganate, Na-bentonite modified by pig manure degradation liquid and Na-bentonite modified by hexadecyl trimethyl ammonium bromide were used as passivators. The adsorption kinetcis and adsorption thermodynamics and effects of nutrients to the adsorption capacity for Cu~(2+) of the passivators were studied. Effects of nutrients to the adsorption ability for Cu~(2+) of nano- black carbon oxidized by nitric acid and Na-bentonite modified by pig manure degradation liquid are studied in the soils, at the same time, effects of the passivators to nutrients were studied.
     The main results of this paper are as follows:
     1. The adsorption kinetcis of Cu~(2+) on the five different passivators fit the Langmuir model very well.To nano-black carbon oxidized by nitric acid, nano- black carbon oxidized by sulfuric acid, Na-bentonite modified by hexadecyl trimethyl ammonium bromide and Na-bentonite modified by pig manure degradation liquid, Langmuir model is better than Freundlich model, but as to nano-black carbon oxidized by acidic potassium permanganate, Freundlich model is better than Langmuir model.
     2. As the concentration of NO_3~- increased, the adsorption ability for Cu~(2+) of Na-bentonite modified by hexadecyl trimethyl ammonium bromide and Na-bentonite modified by pig manure degradation liquid increased at first and then decreased. As to nano- black carbon, it deseased first and then increased; As the concentration of HPO_4~(2-) increased, the adsorption ability for Cu~(2+) of the five kind of passivators increased; As the concentration of K~+increased, the adsorption ability for Cu~(2+) of the five kind of passivators increased.Between K~+and Cu~(2+) there is a clear competitive adsorption.
     3. Fertilization can make the content of DTPA-Cu increase in the three soils; The available Cu in fertilizer treatments decreased as time went on, controls showed no obvious rule; Treatments applied with passivators available Cu was lower than treatments applied with passivators and fertilizer, indicating that fertilizer applied at the same time with passivators will reduce the effectiveness of passivation;
     4. In the three soils, the available phosphorus in treatments applied with fertilizer and nano-black carbon oxidized by nitric acid and treatments applied with fertilizer and na-bentonite modified by pig manure degradation liquid is lower than treatments applied with fertilizer, indicating passivators fixed phosphorus in the soils. The available nitrogen in treatments applied with fertilizer and nano-black carbon oxidized by nitric acid is higher than treatments applied with fertilizer because nano-black carbon oxidized by nitric acid take in some NO_3~-. The available potassium in treatments applied with fertilizer and nano-black carbon oxidized by nitric acid is higher than treatments applied with fertilizer because of the desorption of K~+ from soil colloid.
     5. The content of available phosphorus, available nitrogen and available potassium will increase if passivators were applied some days after fertilization and 20 days was suggested.
引文
[1]Kim KW, Lee KH and Yoo BC. 1998, The environmental impact of gold mines in the Yugu-K wangcheon Au-Ag metallogenic province, Republic of Korea. Environ Technol, 19:291~298.
    [2]Kim KK, Kim KW, Kim JY, Kim IS, Cheong YW and Min JS. 2001, Characteristics of tallings from the closed metal mins as potential contamination source in South Korea. Environmental Geology, 41:358~364.
    [3]Krzaklewski Wojcech and Pietrzykowski Marcin. 2002, Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water, Air, and Soil Pollution, 141:125~142.
    [4]Lin CF, LoSS, Lin HY, et al. 1998. Stabilization of cadmium con-taminated soils using synthesized zeolite. JHazard Mater, 60:217~226.
    [5]US EPA. 2000. Best management practices to reduce non-point source pollution in the town of Plainfield, Connecticut. Prepared For: U. S. Environmental Protection Agency, Region One Congress Street, Suite 1100 Boston, MA 02114 ~ 2033 USEPA Grant No. X981114~01.
    [6]杨苏才,南忠仁,等.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006,34(3):549-552.
    [7]奚旦立,孙裕生等.环境监测[M].北京:高等教育出版社,2004,7:81.
    [8]郑喜坤,鲁安怀.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [9]乔志香,金春姬,贾永刚等.重金属污染土壤电动力学修复技术[J].环境污染治理技术与设备,2004,5(6):80-83.
    [10]张永,廖柏寒,曾清如等.两种表面活性剂对污染土壤中重金属的萃取研究[J].农业环境科学学报,2006,25(增刊):248-250.
    [11]周国华,黄怀曾,何红蓼.重金属污染土壤植物修复及进展[J].环境污染治理技术与设备,2002,3(6):33-38.
    [12]成杰民,俞协治.蚯蚓在植物修复铜、镉污染土壤中的作用[J].应用与环境生物学报,2006,12(3):352-355.
    [13]黄丹莲,曾光明,蒋晓云等.接种白腐菌堆制法修复Pb污染土壤的研究[J].高技术通讯,2007,17(3):307-313.
    [14]李录久,许圣君,李光雄等.土壤重金属污染与修复技术研究进展[J].安徽农业科学,2004,32(1):156-158.
    [15]郑喜坤,鲁安怀,高翔,等.土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [16]周启星.污染土壤修复的技术再造与展望[J].环境污染治理技术与设备,2002 ,3 (8) :36 - 40.
    [17]张茜,李菊梅,徐明岗.石灰用量对污染红壤和黄泥土中有效态铜锌含量的影响[J].中国土壤与肥料,2007(4):68-87.
    [18]Diels L, vander LelieN, Bastiaens L. 2002. New developments in treatment of heavy metal contaminated soils. Rev Environ SciBio/Technol, 1:75~82.
    [19]夏运生,王凯荣,张格丽.土壤镉生物毒性的影响因素研究进展[J].农业环境保护,2002,21(3):272-275.
    [20]Tratnyek PG, Johnson RL. Nanotechnologies for environmental cleanup[J]. Nano today, 2006,1: 44-48.
    [21]李海莹,王薇等.纳米铁的制备及其对污染地下水的脱硝研究[J].南开大学学报,2006,39(1):8-14.
    [22]张选军.超声波/纳米铁降解氯代芳香烃的研究.湘潭大学硕士毕业论文,2004.
    [24]Yuan M. Experimental studies on the formation of soot and carbon nanotubesin hydrocarbon diffusion flame [D]. University of Kentucky, 2002.
    [25] Li Y H, Wang S, Wei J, etal. Lead adsorption on carbon nanotubes[J]. Chemical Physics Letters, 2002,357:263-266
    [26] Machida M, Aikawa M, Tatsumoto H. Prediction of simultaneous adsorption of Cu(2) and Pb(2) onto activated carbon by convertional Langmuir type equations[J]. Journal of Hazardous Materials, 2005, 120:271-275.
    [27]王汉卫,王玉军等.改性纳米碳黑用于重金属污染土壤改良的研究[J].中国环境科学,2008,29(4):431~436.
    [28]刘博林,闫景辉,惠博然.改性膨润土吸附重金属离子[J].长春理工大学学报,2005,28(1):84-86.
    [29]陈林,谭欣,马红钦等.膨润土的改性及对重金属离子吸附研究进展[J].现代化工,2002,22(增刊):88-91.
    [30]Su-HsiaLin, Ruey-Shin Juang. Heavy metal removal from water by sorption using surfactant-modified montmorillonite[J]. Journal of Hazardous Materials, 2002, 92: 315-326.
    [31]杨霞.有机-无机复合体对土壤中Cu固定能力的研究[D].山东:山东师范大学,2008.
    [32]汤明尧,张炎等.不同施氮水平对加工番茄养分吸收、分配及产量的影响[J].植物营养与肥料学报,2010, 16( 5): 1238- 1245.
    [33]辛承松、董合忠等.黄河三角洲盐渍土棉花施用氮、磷、钾肥的效应研究[J].作物学报, 2010, 36(10): 1698?1706.
    [34]刘启东,王正银,陈玉成.肥料组合对生菜硝酸盐和重金属的影响[J].生态环境,2005,14(1):48-51.
    [35]李波,青长乐,周正宾等.肥料中氮磷和有机质对土壤重金属行为的影响及在土壤治污中的应用[J].农业环境保护,2000,19(6): 375-377.
    [36]徐明岗,刘平,宋正国等.施肥对污染土壤中重金属行为影响的研究进展[J].农业环境科学学报,2006,25(增刊):328-333.
    [37]Davidson J and Lioyd R, Conservation and Agriculture, New York: A Wiley lnterscience Publication. 1977.
    [38]WaiteDE, Your Environment, Your Health and You. New York: Vantage Press lnc. 1991.
    [39]周泽义.中国蔬菜重金属污染及控制,资源生态环境网络研究动态.1999,10(3):21- 27.
    [40]龙安华,刘建军等.贵溪冶炼厂周边农田土壤重金属污染特性及评价[J].土壤通报,2006,37(6):1212-1217.
    [41]郭跃品,吴国爱等.海南省胡椒种植基地土壤中重金属元素污染评价[J].地质科技情报,2007,26(4):91-96.
    [42]朱奇宏,黄道友等.环洞庭湖区典型蔬菜基地土壤重金属污染状况研究[J].农业环境科学学报.2007,26(增刊): 22-26.
    [43]李嫦玲,宗良纲等.南京菊花脑蔬菜地Cd、Pb、Cu污染现状调查与评价[J].江苏农业科学,2006,4:159-162.
    [44]姚春霞,陈振楼等.上海市浦东新区土壤及蔬菜重金属现状调查及评价[J].土壤通报,2005,36(6):884-887.
    [45]刘衍君,汤庆新等.基于ArcGIS的聊城市耕地土壤重金属污染现状与评价[J].山东农业大学学报(自然科学版),2009,40 (4): 567-571. [46 ]李永涛,吴启堂.土壤污染防治方法研究[J ].农业环境保护,1997,16 (8) : 118 - 122.
    [47]McGowen SL, Basta N T, Brown GO. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter - contaminated soil [J ]. Journal of Environmental Quality, 2001, 30(2) : 493 - 500.
    [48]Wei Y, Yang Y, Cheng N. Study of thermally immobilized Cu in analogue minerals of contaminated soils[J]. EnvironSciTechnol, 2001, 35(2):416-421
    [49]Spalding B P. Fixation of radio nuclides in soil and minerals by heating [J]. Environ Sci Technol, 2001,35(21):4327-4333.
    [50]Geeblen W, Adriano D C, Van derLelie D, et al. Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soil [J]. Plant and Soil, 2003,249: 217-228.
    [51]Chen S. B., Zhu Y. G., Ma Y. B., et al. Effect of none char application on Pb bioavailability in a Pb contaminated soil[J]. Environmental Pollution, 2006, 139: 433-439.
    [52]Farfel M R, Orlova A O, Chaney R L, et al. Bio-solids compost amendment for reducing soil lead hazards: A pilot study of Orgro (R) amendment and grass seeding in urban yards [J]. Science of the Total Environment, 2005, 340(1-3): 81-95.
    [53]Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents [J]. Chemosphere, 2004,56(3):265- 273.
    [54]Wu L H, LuoY M, Xing X R eta.l, EDTA-Enhanced Phyto remediation of HeavyMetal Contaminated Soil with Indian Mustard and As-sociated Potential Leaching Risk. Agriculture, Ecosystems& Environment, 2004,102(3)∶307—318.
    [55]Hong M, He L, Dale B etal, Genotoxicity Profiles and Reaction Characteristics of Potassium Polyethylene Glycol Dehalogenation of Wood Preserving Waste. Environmental Science and Technology, 1995,29∶702—708.
    [56]Kim JH, Han S J, Kim S S eta.l, Effect of Soil Chemical Properties on the Remediation of Phenanthrene-Contaminated Soil by Electrok-inetic-Fenton Frocess Chemosphere, In Press, Corrected Proof, Available online 28 November200.
    [57]Amrate S, Akretche D E, Modeling EDTA Enhanced Electrokinetic Remediation of Lead Contaminated Soils. Chemosphere, 2005,60(10)∶1376—1383.
    [58]Conte P, Agretto A, Spaccini R et a.l, Soil Remediation: Humic Acids as Natural Surfactants in the Washings of Highly Contaminated Soils. Environmental Pollution, 2005,135(3)∶515—522.
    [59]徐立明.蚯蚓在环境保护中的作用[J].农业环境保护,1984,(4):23-25.
    [60]俞协治,成杰民.蚯蚓对土壤中铜、镉生物有效性的影响[J].生态学报,2003,23(5):922-928.
    [61]邢新会.环境生物修复技术的研究进展[J].化工进展,2004,23(6):579-584.
    [62]韩润平,陆雍森.用植物消除土壤中的重金属[J].江苏环境科技,2000,13(l):28-29.
    [63]Mitch M L, Nicole S P, Deborah L D, et al. Zinc phytoextraction in Thlaspicaerulescens [J]. International Journal of Phytoremediation, 2001,3: 129-144.
    [64]Ebbs S D,Lasat M M, Brady D J,et al. Phytoextraction of cadmiumand zinc from acontimated site[J].J Environ Qual, 1997, 26:1 424-1 430.
    [65]闰晓明.污染土壤植物修复技术研究进展[J].中国生态农业学报,2004,12(3):131-133.
    [66]付勇,万朴,李博文等.有机膨润土处理含铬废水的研究[J].西南工学院学报,2001,16(2):65-69.
    [67]惠琳.土壤重金属污染及植物修复技术[J].黑龙江水专学报,2006,33(1):102-104.
    [68]Diels L, vander Lelie N, BastiaensL. 2002. New developments in treatment ofheavymetal contaminated soils. RevEnvironSciBio/Technol, 1:75~82.
    [69]Kawachi T, Kubo H. Model experimental study on the migration behavior of heavy metals in electtokinetic remediation process for contaminated soil [J].Soil Sci. Plant Nutr, 1999,45 (2) :259 -268.
    [70]陈英旭,朱祖祥,何增耀.土壤中铬的有效性与污染生态效应[J].生态学杂志,1995,(1):79-84.
    [71]Harmsen H.1977. Behaviour of Heavy Metalsin Soils. Wageningen: Center for Agricultural Publishing and Documentation. 6~14.
    [72]Tessier A, Campbell PGC, Bisson M.1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 51(7):844~851.
    [73]Cao XR, MaLQ, Chen M,etal.2003. Phosphate-induced metaim mobilization in a contaminated site. Environ Poll,122:19~28.
    [74]Ciccu R, Ghiani M, SerciA, etal.2003. Heavy metalim mobiliza-tionin the mining-contaminated soil susing various industria wastes. Miner Eng, 16:187~192.
    [75]Ortego JD, Jackson S,Yu GS, etal. 1998. Solidification of haz-ardous substances- ATGA and FTIR study of Portland cemen contain ingmetalnitrates. JEnviron Sci Health, A24:589.
    [76]姚岚,王成端等.不同钝化剂对污泥堆肥过程中重金属形态的影响研究[J].环境卫生工程,2008,12(2):
    [77]蒋强勇,刘强等.不同钝化剂对猪粪堆肥处理重金属形态转化的影响[J].湖南农业大学学报(自然科学版),2008,34(6):708-712.
    [78]王立群,罗磊等.不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响[J].农业环境科学学报2009,28(6):1098-1105.
    [79]朱一民,王忠安等.钙基膨润土对水相中铜离子的吸附.东北大学资源与土木工程学院,辽宁沈阳.
    [80]林荣根,周俊良.螺旋藻吸附水溶液中铜离子的初步研究.中国科学院海洋研究所.
    [81]张剑波,王维敬等.离子交换树脂对有机废水中铜离子的吸附.北京大学技术物理学系.
    [82]罗延龄.黑碳粒子表面功能化及其应用.现代塑料加工应用[J].2001(6),12:37-41.
    [83]魏彤,王利军,张友兰,尹月燕,刘志华.水性体系中黑碳分散的影响因素.染料工业[J].1999,6(36):8-13.
    [84]ZielinskiT, Kijenski J. Plasma carbon black-the new active additive for plastics[J]. Composites PartA: Applied Science and Manufacturing, 2005, 36(4): 467-471.
    [85]Mostafa A, Abouel-Kasem A, BayoumiM R, et a.l Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds[J]. Materials & Design, 2009, 30(5): 1561-1568.
    [86]LiZong-huan, Zhang Jun, Chen Shuang-jun. Effect of carbon blacks with various structures on electrical properties of filled ethylene-propylene-diene rubber[J]. Journal of Electrostatics, 2009, 67(1): 73-75.
    [87]许海燕,方亮,许楠,等.固相原位接枝黑碳的制备及其在涂料中的应用[J].华东理工大学学报:自然科学版,2007,33(5): 662-665.
    [88]黄鹏波,张怀智,曹宏安等.包装用黑碳防静电涂料制备工艺研究[J].包装工程,2007,28(11): 60-67.
    [89]孙淑香.黑碳接枝改性与新型喷印墨水的探索研究技[J].橡胶资源利用, 2008(4): 36-38.
    [90]毛凌波,张仁元等.分散方式对纳米黑碳分散稳定性的影响[J].广东工业大学学报,2009,26(3):13-16.
    [91]罗延龄,黑碳表面接枝聚和改性进展.现代化工[J].2002,11:8-12.
    [92]纪海英,李振志.纳米粒系统的淋巴靶向.山东医药工业[J].2003,022,01:24-25.
    [93]季君晖.黑碳表面聚合物接枝改性的研究进展[J].炭素,1999,2:11-16.
    [94]陈尔洽.色素黑碳的氧化及其应用浅议[J].黑碳工业,1996,4:20-23.
    [95]肖英,黑碳的表面接枝改性及药物接枝的研究[D].四川大学,2005,4.
    [96]Schulte J. Nanotechnology in environmental protection and pollution sustainable future, environmental cleanup and energy solutions[J]. Science and Technology of Advanced Materials, 2007, in press.
    [97]Comfort S D, Shea P J, Machacek TA, et al. 2001. Field-scale remediation of ametolachlor- contaminated spill site using zerovalent iron [J]. J. Environ. Qual. 30: 1636-1643.
    [98]Dombek T, Dolan E, Schultz J, Klarup D. 2001. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions[J]. Environ. Pollu. 111: 21-27.
    [99]Zhang W X. 2003. Nanoscale iron particles for environmental remediation: An overview[J]. Journal of Nanoparticle Research 5: 323-332.
    [100]Li Y H, Ding J, Luan Z K, et al. Competitive adsorption of Pb2+, Cu2+and Cd2+ ions from aqueous solution by multiwalled carbon nanotubes [J]. Carbon, 2003,41:2787-2792.
    [101]Chang M C, Shu H Y, Hsieh W P, et al. 2005. Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil [J]. Journal of the Air & Waste Management Association 55(8): 1200-1207.
    [102]Liou Y H, Lo S L, Lin C J, et al. 2005. Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles[J]. J. Hazar. Mater. 127: 102-11.
    [103]杨士卫.应用于现地注入之纳米铁悬浮液制备研究.台湾大学硕士学位论文, 2006.
    [104]Borah D, Satokawa S. Surface-modified carbon black for As(V)removal [J]. Journal of Colloid and Interface Science, 2008,319:53-62.
    [105]潘凯,姚友.不同黄瓜品种根系分泌物对根际土壤微生物及土壤养分的影响[J].北方园艺2008(8):18~20.
    [106]李晓娜,张强等.不同改良剂对苏打碱土磷有效性影响的研究[J].水土保持学报,2005,19(1):71-74.
    [107]刘恩科,赵秉强等.长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响[J].植物营养与肥料学报2007,13(5): 789-794.
    [108]梁太波,王振林等.腐植酸尿素对生姜产量及氮素吸收、同化和品质的影响[J].植物营养与肥料学报2007,13(5): 903-909.
    [109]李月芬,杨有德等.硫酸铝改良剂对苏打盐碱土磷素形态的影响[J].水土保持学报,2006,20(4):44-49.
    [110]王利军,宋哲,吴立等.黑碳表面的接枝聚合改性方法[J ].化工进展,1997 ,15 (6):27232.
    [111]孙可,Xing B. S等,土壤和沉积物中非水解有机碳对菲的吸附[J].环境化学,2007,26(6):757-762.
    [112]Dipu Borah, Shigeo Satokawa, Surface-modified carbon black for As(V) removal[J]. Journal of Colloid and Interface Science, 2008,(319)53–62.
    [113]盛恩宏,周运友.黑碳的表面臭氧氧化[J].化学世界,2000(2):70-72.
    [114]Katsumi kamegawa, Keikeo Nishibo, Masaya kadama, eta1. Oxidative degradation of carbon blacks with nitric acid Information of water-soluble poly nuclear aromatic compounds[J].Carbon, 2002, 40(9): 1447-145.
    [115]肖英,李兰英等.获取优良分散性黑碳的表面硝酸氧化[J].材料科学与工艺,2005,13(1):75-78.
    [116]Barrer. RM. Sha. Selective sorbents based on day nerals: areview. Qays Qay Mlner., 1989,37:385~395.
    [117]崔学桂,张晓丽等.基础化学实验——无机及分析化学实验[M].化学工业出版社,2003:117-118.
    [118]Winne Matthes Sorption of heavy metal cations by Al and Zr-hy-droxy-interlated and pillared bentonite[J]. Clays and Clay Minerals, 1999, 47 (5): 617-629.
    [119] Mohan D, Chander S. Colloid and Surface A 2001, 177: 183-196.
    [120]曹煊,孙继昌等.碱渣对重金属的竞争吸附实验研究[J].山东科学,2009,22(6):17-20.
    [121]云玉攀,李军等.钢渣吸附Cu2+、Pb2+的影响因素研究[J].工业用水与废水,2010,41(6):68-72.
    [122]王峄等.Cu2+、Zn2+混合离子在蛭石上的竞争吸附研究[J].高新技术,2010,34:5.
    [123]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [124]Shuman L M.Effect of phosphorus level on extractable micronutrients and their distribution among soil fractions[J].Soil Sci Soc Am J,1988, 52(1):136-141.
    [125]Kaushik R D, Gupta V K, Singh J P. Distribution of Zn、Cd and Cu forms in soils as influenced by phosphorus application[J].Arid Soil RES& Rehabilitation, 1993, 7(2):163-171.
    [126]邹献中,徐建民,赵安珍等.可变电荷土壤中铜离子的解吸.土壤学报,2004,41(1):68-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700