不同水氮管理下保护地番茄季主要氮素损失研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前我国蔬菜生产中普遍存在大水漫灌和过量施肥现象,不合理的水氮管理导致氮肥浪费严重、环境污染问题日益突出,土壤退化、蔬菜产量和品质下降成为限制蔬菜生产可持续发展的瓶颈。针对以上问题,在河北省辛集市马庄农场保护地大棚内设置小区试验,系统研究了不同灌溉、施氮量下保护地秋冬茬番茄季土壤N_2O排放损失量、氨挥发损失量、土壤氮素残留累积和损失规律及不同水氮管理对番茄产量和品质的影响。
     在本试验条件下,取得以下研究结论:
     1.节水灌溉、减施氮25%处理组合与传统水氮处理相比,显著降低了保护地土壤N_2O排放损失量。番茄整个生长期各处理N_2O排放损失量分别为W_1N_(900) (5.304 kg/hm~2)> W_2N_(900) (4.913 kg/hm~2)>> W_1N_(675) (3.616 kg/hm~2)>> W_2N_(675) (2.901 kg/hm~2)>> W_1 N_0 (0.563 kg/hm~2) > W_2 N_0 (0.511 kg/hm~2)。在传统灌溉量下,减施氮25%的处理N_2O排放损失量比传统施氮处理降低31.8%;节水灌溉量下,减施氮25%比传统施氮处理降低40.9%,处理间差异均达到显著水平;在减施氮25%的条件下,节水灌溉的处理相比传统灌溉也显著降低了N_2O排放损失量(降低19.7%)。由此可见,合理减少施氮量和灌溉量是降低保护地菜地N_2O排放损失量的有效途径。温度对保护地N_2O排放通量有明显的影响,在温度较高的8~10月份,减少施氮量可以显著降低N_2O排放损失量,而在11~12月份,不同施氮量间差异不显著。研究还表明,N_2O排放通量与土壤中硝态氮含量呈极显著正相关,出现的排放峰值一般在灌溉施肥后3~5 d。施入蔬菜保护地土壤的氮肥有0.35%~ 0.53%以N_2O排放损失。
     2.与农民习惯施氮相比,减量施氮可以显著减少氨挥发损失量。本研究条件下番茄整个生长期各处理氨挥发损失总量的大小顺序为W_2N_(900) (21.362 kg/hm~2)> W_1N_(900) (20.878 kg/hm~2) >> W_2N_(675) (17.632 kg/hm~2) > W_1N_(675) (17.466 kg/hm~2) >> W1N0 (6.591 kg/hm~2 > W_2 N_0 (6.390 kg/hm~2)。在2个灌溉水平下,减施氮25%处理分别比习惯施氮量处理降低氨挥发损失量17.5%和16.3%。相同施氮量下的不同灌溉量处理间氨挥发损失量无显著差异。温度和土壤pH是影响氨挥发的主要环境因素,施用尿素后土壤pH快速上升是土壤氨挥发峰值主要出现在施肥后1~3 d的原因之一,而且温度较高的时期氨挥发强度更高。施入土壤中的氮素有1.59%~ 1.68%经氨挥发损失。
     3.番茄收获后施氮处理土壤0~40 cm土体累积了较高的的无机氮(239.7~426.5 kg/hm~2),占0~100 cm土体总残留量的48.4%~52.5%,而相同施氮量下,节水灌溉处理的无机氮残留量显著高于传统灌溉处理,降低了氮素淋失出根层的风险。2个灌溉水平下,根层土壤氮素表观矿化量分别为183.9和211.1 kg/hm~2。增施氮肥并没有显著提高番茄植株氮素吸收量,施氮处理氮素表观利用率为13.6%~21.6%。传统施氮量处理当季表观氮素损失率为59.0%~62.4%,而节水灌溉下、减施氮25%处理表观损失率为44.0%,显著低于其他施氮处理。
     4.本研究条件下施用氮肥没有显著增产,在2个灌溉水平下,减施氮25%的处理要比传统施氮量的处理产量提高5.6%和7.3%。不施氮肥虽然不会降低产量,但番茄果实品质有所下降,合理的水氮运筹才能保证高产,提高品质。
     综上所述,本地区保护地番茄生产中农户传统施氮量过高,有很大的减施氮空间。减量施氮不仅避免了减产,还提高了果实品质,降低了氮肥由于N_2O排放和氨挥发的损失量,也减少了表层土壤氮素积累和淋失。节水灌溉不仅不会影响产量,还在一定程度上提高蔬菜品质,减少氮素向深层的淋溶。在本试验条件下,节水灌溉、减施氮25%的处理(W_2N_(675))是最佳水氮组合,相比当地习惯水氮处理(W_1N_(900)),可以减少N_2O排放损失45.3%,减少氨挥发损失15.5%,减少氮素表观损失率25.4%,提高根层氮素残留率72.9%。
     综合考虑,秋冬茬番茄经历前期高温、中期适温、后期低温的温光环境特点,前期番茄氮素需求量小,而且土壤温度和水分条件好,氮素矿化量较高,加之前茬作物的氮素残留,建议该地区建立基于土壤氮素供应、施肥供应和番茄氮素需求规律相协调的“前轻后重”的氮肥管理策略。
This study was conducted to determine the effect of different N application and irrigation rates on N_2O emissions, ammonia volatilization, nitrogen accumulation and utilization efficiency in 0~100 cm deep layer, tomato yield and fruit quality from a loamy fluvo-aquic soil in North China Plain from 2008 to 2009.
     Tomato were planted under two different irrigation levels W1 and W1(traditional and water-saving). Three nitrogen levels were set under W1 and W_2 (N_0:0 kg/ha, N_(675): 675 kg/ha, N900:900 kg/ha) respectively. In this experiment, the main results were as follows:
     1. The results indicated that reduction of nitrogen regardless of low or high irrigation rate can reduce N_2O fluxes, however, only if low N fertilization was applied, low irrigation result lower N_2O fluxes. In this study condition, Total N_2O emission from the different treatments arrangement as follows: W_1N_(900) (5.304 kg/ha)>W_2N_(900) (4.913 kg/ha)>>W_1N_(675) (3.616 kg/ha)>> W_2N_(675) (2.901 kg/ha)>> W1 N0 (0.563 kg/ha)> W2 N0 (0.511 kg/ha). The high N_2O emissions from greenhouse tomatoes plots were due to high N_2O losses from the fertilized treatments during the summer and early autumn (Aug, Sept and Oct) and high soil nitrate contents after the N application. The emissions of N_2O per unit N fertilizer applied (low and the conventional rates of N fertilization)were 0.35%~ 0.53%.
     2. Decreased N application can significantly reduced the amount of ammonia volatilization in the protection soil of tomato. Total ammonia volatilization from the different treatments arrangement as follows: W_2N_(900) (21.362 kg/ kg/ha)> W_1N_(900) (20.878 kg/ha) >> W_2N_(675) (17.632 kg/ha) > W_1N_(675) (17.466 kg/ha) >> W_1N_0 (6.591 kg/ha > W_2 N_0 (6.390 kg/ha). Reduced nitrogen fertilizer application is an effective way to reduced ammonia volatilization in greenhouse soil. There is no significant between low and conventional irrigation if the N application rates are same. The reason that the peak of ammonia volatilization is found at 1-3 d after fertilization is the rapid increase of pH after fertilization. In addition ammonia volatilization is higher during high temperature period (August to October).The volatilization of ammonia per unit N fertilizer applied (low and the conventional rates of N fertilization) were 1.59%~1.68%.
     3. The results showed that protected vegetable soils from high nitrogen treatments accumulated large pools of nitrates in each layer from 0 to 100 cm soil layer, especially from 0 to 40 cm, meanwhile, leaching out of 40 cm soil layer was large when high irrigation was applied. Nitrate residual in vegetable soils may be cause serious threats to underground water in vegetable growing areas.
     4. Irrigation and N application had important influence on tomato yield and dry matter accumulatio. In this study condition, no N-application have maintained yield however low quality. No significant increase of yield in high N application (900 kg/ha)treatments,but also increased the content of nitrate in fruit.
     In summary, the experiment showed that it had the potential of saving water and fertilizer under the premise of maintaining the yield and quality in greenhouse in Xinji city, Hebei province. Reduced N application not reduced the yield significantly, but improved fruit quality, reduce the gas losses of N_2O and ammonia, reduced the accumulation and leaching amount of nitrogen of root zone soil. In this experiment, the best treatment is W_2N_(675) which reduce the N_2O fluxes and ammonia volatilization by 45.3% and 15.5% compare with W1N900 treatment, in addition, W_2N_(675) has highest utilization rate and lowest lossing rate of nitrogen.
引文
1.85-913-04-05攻关课题组,我国农用氮肥氧化亚氮排放损失量变化趋势预测(1990-2020年)农业环境保护,1994,13(6):259-261.
    2.艾绍英,孙自航,姚建武等.氮肥种类及用量对赤红壤pH和可溶性盐的影响.生态环境学报,2008,17(4):1614-1618.
    3..北京市成人教育学院.北京蔬菜栽培.北京出版社:北京,1986,3-5.
    4.蔡贵信,朱兆良.稻田中化肥氮的气态损失.土壤学报,1995,32(增刊):128-135.
    5.曹兵,贺云发,徐秋明,等.南京郊区番茄地中氮肥的气态氮损失.土壤学报,2006,43(1):62-68.
    6.曹红霞;康绍忠;何华,田间管理措施对土壤硝态氮迁移影响研究进展,灌溉排水学报,2005,24(1):72-76.
    7.陈克亮,朱晓东,朱波等.川中小流域地下水硝态氮的时空变化特征,农业环境科学学报. 2006, 25(4):1060-1064.
    8.陈碧华,郜庆炉,孙丽.番茄日光温室膜下滴灌溉肥耦合效应研究.核农学报,2009,23(6):1081-1086.
    9.陈振华,陈利军,武志杰等.辽河下游平原不同水分条件下稻田氨挥发.应用生态学报,2007,18(12):2771-2776.
    10.代光照,李成芳,曹凑贵等.免耕施肥对稻田甲烷与氧化亚氮排放及其温室效应的影响.应用生态学报,2009,20(9):2166-2172.
    11.党菊香,郭文龙,郭俊炜等.同种植年限蔬菜大棚土壤盐分累积及硝态氮迁移规律.中国农学通报,2004,20(6):189-191.
    12.丁洪,王跃思,项虹艳,等.菜田氮素反硝化损失与N_2O排放的定量评价.园艺学报,2004,34(6):762-766.
    13.丁洪,张玉树,王跃思等.辣椒地土壤氮素反硝化损失与N_2O排放研究.长江蔬菜,2010,8:86-89.
    14.董洁,邹志荣,燕飞等.不同施肥水平对大棚番茄产量和品质的影响.北方园艺,2009(12):38- 41.
    15.董玉红,欧阳竹,李运生等.肥料施用及环境因子对农田土壤CO2和N_2O排放的影响.农业环境科学学报,2005,24(5):913-918.
    16..范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响.植物营养与肥料学报,1998,4(1):16-21.
    17.范凤翠,李志宏,张立峰等.日光温室番茄灌水量与根层硝态氮淋溶特征及渗漏关系研究.植物营养与肥料学报,2010,16(5):1161-1169.
    18.都韶婷,章永松,林咸永等.蔬菜积累的硝酸盐及其对人体健康的影响.中国农业科学,2007,40(9):2007-2014.
    19.范庆峰.保护地土壤酸度特征及酸化机理研究.沈阳农业大学博士论文,2009,23.
    20.龚巍巍,张易升,何凌燕等.菜地氨挥发损失及影响因素原位研究.环境科学,2011,32(2):345-350.
    21.勾继,郑循华,王明星等.华东地区稻麦轮作农田生态N_2O排放的模拟研究.气象科学,2000,24(6),835-842.
    22.国家发展和改革委员会.中华人民共和国气候变化初始国家信息通报.北京:2004.
    23.国家统计局.中国统计年鉴.北京:中国统计出版社,1970-2008.
    24.国家质量监督检验检疫总局. GB/T 15401-1994水果、蔬菜及其制品亚硝酸盐和硝酸盐含量的测定.1994.
    25.韩素卿.石家庄地区蔬菜生产效益分析.长江蔬菜,2002,1:53-54.
    26.何飞飞,肖万里,李俊良等.日光温室番茄氮素资源综合管理技术研究.植物营养与肥料学报,2006,12(3):394-399.
    27.何飞飞,任涛,陈清等.日光温室蔬菜的氮素平衡及施肥调控潜力分析.植物营养与肥料学报,2008,14(4):692-699.
    28.贺发云,尹斌,金雪霞等.南京两种菜地土壤氨挥发的研究.土壤学报,2005,42(2):253-259.
    29.黄昌勇.土壤学.中国农业出版社,北京,2000.
    30.黄国宏,陈冠雄,韩冰,Oswald V C.土壤含水量与N_2O产生途径研究,应用生态学报,1999,10(1):53-56.
    31.黄丽华,沈根祥,钱晓雍等.滴灌施肥对农田土壤氮素利用和流失的影响.农业工程学报,24(7):49-53.
    32.黄耀,焦燕,宗良纲等.土壤理化特性对麦田N_2O排放影响的研究.环境科学学报,2002,22(5):598-602.
    33.姜慧敏,张建峰,杨俊诚等.不同施氮模式对日光温室番茄产量、品质及土壤肥力的影响.植物营养与肥料学报,2010,16(1):158-165.
    34.金雪霞,范晓晖,蔡贵信.菜地土氮素的主要转化过程及其损失.土壤,2005,35(5):492-499.
    35.孔德杰,郑国宝,张源沛等.不同灌溉量对设施番茄产量和耗水规律的影响.长江蔬菜,2010,24:45-48.
    36.寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响.应用生态学报,2005,16(4):660-667.
    37.李方敏,樊小林,刘芳等.控释肥料对稻田氧化亚氮排放的影响.应用生态学报,2004,15(11):2170-2174.
    38.李明峰,董云社,齐玉春等.极端干旱对温带草地生态系统CO_2、CH_4、N_2O通量特征的影响.资源科学,2004,26(3):89-95.
    39.李世娟,周殿玺,李建民.限水灌溉下不同氮肥用量对小麦产量及氮素分配利用的影响.华北农学报,2001,16(3):86-91.
    40.李香兰,徐华,蔡祖聪等.水稻生长后期水分管理对CH_4和N_2O排放的影响,生态环境学报,2009,18(1):332-326.
    41.李鑫,巨晓棠,张丽娟等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响.应用生态学报,2008,19(1):99-104.
    42.李银坤.不同水氮条件下黄瓜季保护地氮素损失研究.中国农业科学院研究生院硕士学位论文. 2010 a,46.
    43.李银坤,武雪萍,武其甫等.不同水氮处理对温室黄瓜产量、品质及水分利用效率的影响.中国土壤与肥料,2010 b,3::21-24.
    44.李银坤,武雪萍,吴会军等.水氮互作对温室黄瓜光合特征与产量的影响.中国生态农业学报,2010 c,18(6):1170-1175.
    45.李银坤,武雪萍,吴会军等.水氮条件对温室黄瓜光合日变化及产量的影响.农业工程学报,2010 d,26(增刊1):122-129.
    46.李远新,李进辉,何莉莉等.氮磷钾配施对保护地番茄产量及品质的影响.中国蔬菜,1997(4):10-13.
    47.梁东丽,方日尧,李生秀等.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响.干旱地区农业研究,2007,25(1):67-72.
    48.梁东丽,同延安,Ove Emteryd,马林英.菜地不同施氮量下N_2O逸出量的研究.西北农林科技大学学报,2002,30 (2):73-77.
    49.梁国庆,周卫,夏文建等.优化施氮下稻-麦轮作体系土壤N_2O排放研究.植物营养与肥料学报,2010,16 (2):304-311.
    50.刘义,陈劲松,刘庆等.土壤硝化和反硝化作用及影响因素研究进展.四川林业科技,2006,27(2):36-41.
    51.刘子锐,徐星凯,黄耀等.温带森林土壤溶液溶解性N_2O和CO_2含量特征及其影响机制.气候与环境研究, 2009,14 (6):587-595.
    52.卢昌艾,孔令明,胡万里等.滇池流域集约化西芹地的N_2O排放.农业环境科学学报,2008,27(5):1870-1875.
    53.卢燕宇,黄耀,郑循华.农田氧化亚氮排放系数的研究.应用生态学报,2005,16 (7):1299–1302.
    54.罗一鸣,魏宗强,孙钦平等.沸石作为添加剂对鸡粪高温堆肥氨挥发的影响.农业工程学报,2011,27(2):243-247.
    55.马腾飞,危常州,王娟等.不同灌溉方式下土壤中氨挥发损失及动态变化.石河子大学学报(自然科学版),2010,28(3):294-298.
    56.米国全,袁丽萍,龚元石等.不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究.农业工程学报,2005,21(7):124-127.
    57.乔光建;张均玲;唐俊智.地下水氮污染机理分析及治理措施.水资源保护,2004,3:9-12.
    58.沈镇昭.农产品市场分析.中国农业出版社:北京,2001,2-5.
    59.宋勇生,范晓晖.稻田氨挥发研究进展.生态环境学报,2003,12(2):240-244.
    60.苏芳,黄彬香,丁新泉等.不同氮肥形态的氨挥发损失比较.土壤,2006,38(6):682-686.
    61.孙昭荣,刘秀奇,杨守春.北京降雨和土壤下渗水中的氮素研究.土壤肥料,1993,2:8-11.
    62.孙志强,郝庆菊,江长胜等.农田土壤N_2O的产生机制及其影响因素研究进展.土壤通报,2010,41(6):1524-1530.
    63.汤明尧,张炎,胡伟等.不同施氮水平对加工番茄养分吸收、分配及产量的影响.植物营养与肥料学报2010, 16(5): 1238-1245.
    64.汤树德,徐凤花,隋文志等.脲酶抑制剂氢醌对土壤脲酶活性,氨挥发和硝化的抑制动态.生物技术.1993,3(1):32-37.
    65.王朝辉,刘学军,巨晓棠等.田间土壤氨挥发的原位测定-通h气法.植物营养与肥料学报,2002 a,8 (2):205-209.
    66.王朝辉,宗志强,李生秀等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留.环境科学,2002 b,23(3):79-83.
    67.王立河,孙新政,赵喜茹等.有机肥与氮肥配施对日光温室黄瓜产量和品质的影响.中国农学通报,2006,22 (11):237-242.
    68.王秀斌,周卫,梁国庆等.优化施肥条件下华北冬小麦/夏玉米轮作体系的土壤氨挥发.植物营养与肥料学报,2009,15 (2):344-351.
    69.吴兑.温室气体与温室效应.气象出版社,北京,2003.
    70.习斌,张继宗,左强等.保护地菜田土壤氨挥发损失及影响因素研究.植物营养与肥料学报,2010,16 (2):327-333.
    71.夏文建,周卫,梁国庆等.优化施氮下稻-麦轮作体系氮肥氨挥发损失研究.植物营养与肥料学报,2010,16 (1): 6-13.
    72.徐华,邢光熹,蔡祖聪等,土壤质地对小麦和棉花田N_2O排放的影响.农业环境保护,2000,19 (1):1-3.
    73.徐坤范,艾希珍,张晓慧等.氮素水平对日光温室黄瓜品质的影响.西北农业学报,2005,14 (1):162-166.
    74.徐文彬,刘广深,刘维屏.降雨和土壤湿度对贵州旱田土壤N_2O释放的影响.应用生态学报,2002 a,13(1):67-70.
    75.徐文彬,刘维屏,刘广深.温度对旱田土壤N_2O排放的影响研究.土壤学报,2002 b,39(1):1-8.
    76.杨兰芳,蔡祖聪.施氮和玉米生长对土壤氧化亚氮排放的影响.应用生态学报,2005,16(1):100-104.
    77.杨丽娟,张玉龙.保护地菜田土壤硝酸盐积累及其调控措施的研究进展.土壤通报,2001, 32(2):66-69.
    78.杨云,黄耀,姜纪峰.土壤理化特性对冬季菜地N_2O排放的影响.农村生态环境,2005,21 (2):7-12.
    79.姚志生,郑循华,周再兴,等.太湖地区冬小麦田与蔬菜地N_2O排放对比观测研究.气候与环境研究,2006,11(6):691-701.
    80.易秀,薛澄泽.氮肥在塿土中的渗漏污染研究.农业环境科学学报,1993,12(6):250-253.
    81.於丽华,韩晓日,娄春荣等.不同灌溉方式和施肥处理对番茄氮素吸收及产量和品质的影响.沈阳农业大学学报,2005-06,36 (3):286-289.
    82.于亚军,朱波,荆光军.成都平原土壤-蔬菜系统N_2O排放特征.中国环境科学,2008,28(4):313-318.
    83.袁丽萍,司力珊,张力等.水氮耦合供应对温室番茄果实硝酸盐累积的影响.2008(5):33-35.
    84.曾清如,沈杰,周红细等.施用尿素对温室内NO_2和NH_3气体积累的影响.农业环境科学学报,2004,3(5):857
    85.张富林,杨利,范先鹏等.蔬菜硝酸盐累积控制措施研究进展.湖北农业科学,2010,49(9):2247-2252.
    86.张光亚,方柏山,闵航等.设施栽培土壤氧化亚氮排放及其影响因子的研究.农业环境科学学报,2004,23(1):144-147.
    87.张国梁,章申.农田氮素淋失研究进展.土壤,1998,(6):291-297.
    88.张国印,王丽英,王凌等.河北省典型保护地蔬菜土壤硝态氮的含量和分布.河北农业科学,2004,8(4):22-25.
    89.张宏彦,陈清,李晓林等.控制淋洗条件下土壤-花椰菜体系无机氮动态及平衡.土壤通报,2004,35(2):130-135.
    90.张学军,赵营,陈晓群等.滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响.中国农业科学,2007,40(11):2535-3545.
    91.张彦才,李巧云,翟彩霞,等.河北省大棚蔬菜施肥状况分析与评价.河北农业科学,2005,9 (3):61–67.
    92.张艳玲,宋述尧.氮素营养对番茄生长发育及产量的影响.北方园艺,2008(2):25-26.
    93.张志斌.关于我国设施蔬菜生产可持续发展的探讨.沈阳农业大学学报.2000,31 (1):15-17.
    94.张仲新,李玉娥,华珞等.不同施肥量对设施菜地N_2O排放通量的影响.农业工程学报,2010,26(5):269-275.
    95.庄舜尧;孙秀廷.肥料氮在蔬菜地中的去向及平衡.土壤,1997,2:80-83.
    96.赵海燕.中国蔬菜产业国际竞争力研究.中国农业出版社:北京,2004,5-20.
    97.郑循华.农田N_2O产生与排放过程研究.中国科学院大气物理研究所博士论文,1996,91-95.
    98.中国农村统计年鉴编辑委员会.中国农村统计年鉴.国家统计局:北京,1980-2009.
    99.周凌云.土壤水分条件对尿素氮去向的影响.植物营养与肥料学报,1998,4(3):237-341.
    100.周细红,曾清如,蒋朝辉等.尿素施用对土壤pH值和模拟温室箱内NH3和NO2浓度的影响.土壤通报,2004,35 (3):374-376.
    101.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9 (1):1-6.
    102.邹建文,黄耀,宗良纲等.稻田不同种类有机肥施用对后季麦田N_2O排放的影响.环境科学,2006,27(7):1264-1268.
    103.邹建文,黄耀,宗良纲等.稻田灌溉和秸秆施用对后季麦田N_2O排放的影响.中国农业科学,2003,36(4):409-414.
    104.Akiyama H, McTaggart I, Ball B, et al. N_2O, NO, and NH3 emissions from soil after the urea application of organic fertilizers, urea, and water. Water, Air, and Soil Pollution, 2004, 156: 113-129.
    105.ApSimona H M, Krusea M, Bella J N B.Ammonia emissions and their role in acid deposition. Atmospheric Environment,1967,21 (9):1939-1946.
    106.Avnimelech Y and Laher M. Ammonia volatilization from soils:equilibrium considerations.Soil Sci Soc Am J,1977, 41(6),1080–1084.
    107.Becker J G, Graves R E.Ammonia emissions and animal agriculture. In Proceedings Mid -Atlantic Agricultural Ammonia Forum. 2004,1-7.
    108.Bergstr?m L,Brink N.Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil.Plant and Soil,1986,93:333-345.
    109.Bouwman A F.Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. Soils and the Greenhouse Effect. Ed.Chichester:John Wiley&Sons,1990:61-127.
    110.Bouwmeester R J B, Vlek P L G and Stumpe J M. Effect of environmental factors on ammonia volatilization from a urea-fertilized soil. Soil Sci. Soc. Am. J.1985.49 (2):376-381.
    111.Cai G X, Yang N C, Lu W F et al.. Gaseous Loss of Nitrogen from Fertilizers applied to a Paddy soil in Southeastern China.Pedospher.1992, 2(3), 209-217.
    112.Cai G X,Fan X H, Yang Z et al..Gaseous loss of nitrogen from fertilizers applied to wheat on calcareous soil in North China Plain. Pedosphere 1998, 8 (1):45–52.
    113.Cai G X,Zhu Z L. Trevitt A C F et al..Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice. Nutrient Cycling in Agroecosystems.1986, 10 (3):203-215.
    114.Chen Q, Zhang X S, Zhang H Y, et al. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutrient Cycling in Agroecosystems, 2004, 69: 51-58.
    115.Delaune P B, Moore P A, Daniel T C,et al.Effect of chemical and microbial amendments on ammonia volatilization from composting poultry litter.Journal of Environmental Quality,2004,33(2):728-734.
    116.Duxbury J M. The significance of agricultural sources of greenhouse gases. Fert. Res., 1994, 38: 151-163.
    117.Fillery I R P, Simpson J R and DeDatta S K.Influence of field environment and fertilizer manangment on ammonia loss from flooded rice. Soil Sci. Soc. Am. J. 48 (4):914-920.
    118.Flessa H, Ruser R, Schilling R, et al. N_2O and CH4 fluxes in potato fields: automated measurement, management effects and temporal variation . Geogerma, 2002, 105: 307-325.
    119.Granli T, Bockman O C. Nitrogen oxide from agriculture Supplement. Norwegian J. Agric. Sci., 1994, 12:66-71.
    120.He F F, Jiang R F, Chen Q et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ. Poll., 2009, 157: 1667-1672.
    121.IPCC,Working Group III.Greenhouse gas mitigation in agriculture.Fourth Assessment Report,2006.
    122.IPCC.Climate change 2007:the physical science basis.Cambridge: Cambridge University Press,2007.
    123.Ju X T, Kou C L, Zhang F S, Christie P. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143 (1): 117-125.
    124.Ju X T, Xing G X, Chen X P, et al.Reducing environmental risk by improving N management in intensive Chinese agricultural systems.Proc Natl Acad Sci U S A. 2009,106(19):8077.
    125.Kazunorimina M, Seiichi N, Takuji S, et al. Annual emissions of dissolved CO2, CH4, and N_2O in the subsurface drainage from three cropping systems. Global Change Biology, 2010, 16: 796-809.
    126.Knight E C. Mowing and nitrogen source effects on ammonia volatilization from fertilizers applied to turfgrass.Master's Thesis.Auburn University Graduate School.Reseach at http://hdl.handle.net/10415/94 .2007.
    127.Koops J G, Beusichem M L V,Oenema O.Nitrogen loss from grassland on peat soils through nitrous oxide production.Plant and Soil,1997,188:119-130.
    128.Lai C M and Tabatabai M A. Kinetics parameters of immobilized urease. Soil Biol. Biochem.1992, 24 (3) :225-228.
    129.Laura S M, Arce A, Benito A, et al. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biology&Biochemistry, 2008, 40: 1698-1706.
    130.Liang Y, Leonard J J, Feddes J J et al. A simulation model of ammonia volatilization in composting. Transactions of the ASAE, 2004, 47 (5):1667-1680.
    131.Matsushima M, Lim S S, Kwak J H, et al.. Interactive effects of synthetic nitrogen fertilizer and composted manure on ammonia volatilization from soils. Plant and Soil,2009,325(1/2):187-196.
    132.Pain B, Jarvis S. Ammonia emissions from agriculture.IGER Innovations 1999, 48-51.
    133.Quemada M,Cabrera M L. Temperature and moisture effects on C and N mineralization from surface applied clover residue. Plant and Soil, 1997, 189: 127-137.
    134.Quiroga-Garza H M, Picchioni G A, Remmenga M D. Bermudagrass Fertilized with Slow-Release Nitrogen Sources. I. Nitrogen Uptake and Potential Leaching Losses. Journal of Environmental Quality, 2001, 30(2):440-448.
    135.Ren T, Christie P, Wang J G et al. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Scientia Horticulturae, 2010,125 (1):25-33.
    136.Rodney T V, Jeffrey S, Carl R. Agricultural management effects on nitrous oxide gas emissions. Agricultural management effects on nitrous oxide gas emissions. Proceedings of the Lamberton and Outreach Center Soil and Water Management Field Day, Lamberton Minnesota. August 13, 2008.
    137.Rosliza S, Ahmed O H, Nik Muhamad A M. Controlling Ammonia Volatilization by Mixing Urea with Humic Acid,Fulvic Acid, Triple Superphosphate and Muriate of Potash.American Journal of Environmental Sciences.2009, 5 (5):605-609.
    138.Ruser R, Flessa H, Schilling R. et al. Effect of crop-specific field management and N fertilization on N_2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems, 2001, 59: 177-191.
    139.Sander, R. Modeling atmospheric chemistry: interactions between gas-phase species and liquid cloud/aerosol particles. Surv. Geophys.1999, 20(1):1-31.
    140.Schilike-Gartley K L and Smins J T.Ammonia volatilization from poultry manure-amended soil.Biol Fertil Soils.1993,16(1):5-10.
    141.Sitaula B K, Hansen S, Sitaula J I B, et al. Effects of soil compaction on N_2O emission in agricultural soil . Chemosphere-Global Change Science, 2000, 2: 367-371.
    142.Smith K A, McTaggart I P, Dobbie K E, Conen F. Emissions of N_2O from Scottish agricultural soils, as a function of fertilizer N . Nutr Cycl Agroecosyst 1998, 52: 123–130.
    143.Sommer S G and Olesen J E.Effects of dry matter content and temperature on ammonia loss from surface-applied cattle slurry.J.Environ.Qual.1991,20(3):679-683.
    144.Staudinger J and P V Robers.A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions.Chemosphere 2001.44 (4):561-576.
    145.Stevenson F W.Cycles of Soil C,N,P,S and Micronutrients.Jhon Wiley,New York, 1986: 380.
    146.Stevens P A, Harrisonb A F, Jonesb H E et al. Nitrate leaching from a Sitka spruce plantation and the effect of fertilisation with phosphorus and potassium. Forest Ecology and Management, 1993, 58(3-4): 233-247.
    147.Tarkalson D D, Payero J O, Ensley S M et al..Nitrate accumulation and movement under deficit irrigation in soil receiving cattle manure and commercial fertilizer.Agricultural Water Management, 2006, 85:201-210.
    148.Vaio N.Ammonia volatilization and N-uptake from urea, urea ammonium nitrate (UAN) and Nitamin(urea-polymer) applied to tall fescue in Georgia.Master's thesis of University of Georgia.2002.
    149.Walters D T, Malzer G L. Nitrogen management and nitrification inhibitor effects on nitrogen-15 urea: II. Nitrogen leaching and balance. Soil Science Society of America Journal, 1990,54(1) : 122-130.
    150.Wigley T M L and Raper S C B. Interpretation of high projections for global-mean warming. Science, 2001, 293:451-454.
    151.Zhang S L, Cai G X, Wang X Z et al.Losses of urea-nitrogen applied to maize grown on a calcareous Fluvo-Aquic in North Chinapl plain.Pedosphere 1992,2 (2),171–178.
    152.Zhang Y M, Chen D L, Zhang J B et al.. Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China plain. Pedosphere.2004,14(4):533-540.
    153.Zhu Z L, Chen D L. Nitrogen fertilizer use in China contributions to food production, impacts on the environment and best management strategies . Nutrient Cycling in Agroecosystems, 2002, 63:117-127.
    154.Zhu Z L, Cai G X, Simpson JR et al.Processes of nitrogen loss from fertilizers applied to flooded rice fields on a calcareous soil in north-central China. Nutrient Cycling in Agroecosystems. 1989,18 (2):101-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700