用户名: 密码: 验证码:
潜流人工湿地中有机污染物降解中间产物分析方法及去除机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工湿地(Constructed wetland,简称CW)是20世纪50、60年代开始研究并发展起来的水处理生态系统。自从1972年Kickuth提出“根区理论”以来,人工湿地作为一种独特的新型污水处理技术进入水污染控制领域。人工湿地是一个完整的生态系统,具有高效、操作简单、维护和运行费用低廉等优点,尤其适合广大城镇及农村的污水处理,具有极广阔的应用前景。但是,由于人工湿地处理污水机理的复杂性及湿地处理的“黑箱效应”,目前尚缺乏深入的机理研究,加之水力学复杂性及对工艺动力学缺乏深入的了解,因此,人们正投入大量精力以改良人工湿地技术。在绝大多数研究中,人们主要是通过检测出口及入口水中化学需氧量(COD)及生物化学需氧量(BOD)的变化来评价人工湿地去除有机污染物的效果,而对COD、BOD的化学构成以及在人工湿地运行过程中有机物降解中间产物研究很少。众所周知,溶解有机质在废水生物化学处理过程中具有重要作用,因此,系统分析研究人工湿地处理过程中有机物及其降解中间产物对于进一步提高人工湿地的处理效能是至关重要的。
     固相微萃取是在固相萃取的基础上发展起来的绿色萃取技术,它无需有机溶剂,大大简化了分析过程,特别适用于复杂的湿地废水中有机物及其降解中间产物,尤其是对挥发性有机物的分析测定。
     本文是国家自然科学基金(No.20477033)资助下的部分研究内容,重点研究潜流人工湿地中有机污染物降解及其机理,主要研究内容如下:1、顶空固相微萃取(HS-SPME)-气相色谱(GC)-火焰离子检测法(FID)测定废水中挥发性脂肪酸(VFAs)的分析方法研究,利用短链的VFAs在聚丙烯酸脂(PA)萃取头上的选择性吸附,建立了SPME-GC-FID对湿地废水中VFAs的分析方法;2、设计及运行参数对潜流人工湿地中挥发性脂肪酸去除的影响研究,通过湿地设计参数和运行参数对湿地处理后的废水中VFAs的影响,讨论了各参数对短链VFAs去除的影响及规律:3、中试规模人工湿地中有机负荷、温度、硫酸盐、及水力停留时间对挥发性短链脂肪酸去除的影响,通过湿地中的几个影响因素的变化和湿地中VFAs的去除关系,探讨了湿地中有机污染物降解中间产物VFAs的去除机理;4、顶空固相微萃取结合气相色谱-火焰光度检测器(FPD)测定废水中烷基硫醇化合物,通过优化SPME条件,利用对硫选择性的监测器FPD,建立了分析小分子硫醇的新方法。
     通过研究,得到以下主要的结果:
     一、顶空固相微萃取-GC-FID测定废水中挥发性脂肪酸的分析方法研究
     建立了顶空固相微萃取-气相色谱结合火焰离子检测器直接测定人工湿地废水中VFAs的分析方法。通过研究VFAs在不同涂层的萃取行为和在Stabilwax-DA毛细管柱(内经30m×0.32mm,膜厚0.25μm)及氮气为载气条件下的色谱行为,选择聚丙烯酸脂PA涂层的纤维头富集VFAs,获得了优化的色谱条件。GC炉温的程序升温条件:炉温70℃停留2 min,然后以4℃/min的速率升温到180℃,保持2min,再以20℃/min的速率升温到200℃,保持最后的温度3min。通过研究不同的参数包括萃取时间,萃取温度,pH值,离子强度,样品体积及解吸条件对萃取效率的影响,以优化HS-SPME对废水中VFAs的分析测定。实验结果表明:方法的线性范围为10-45000μg/L,对不同链长的VFAs,线性范围分别为2-4个数量级。VFAs的检测限(3σ)低至μg/L,相对标准偏差低于10%,回收率达85%-117%。以2-乙基丁酸为内标物,该方法用于人工湿地废水中VFAs的分析测定,结果满意。
     二、设计及运行参数对潜流人工湿地中挥发性脂肪酸去除的影响研究
     以中试规模的潜流人工湿地(SSFW)水处理系统为对象,研究了床体长宽比、填料粒径、水位和水力负荷(HLR)等设计及运行参数对废水中VFAs去除的影响。通过一年的运行及监测分析,结果表明,当湿地系统水力负荷为12-86 cm'd~(-1)时,人工湿地系统对所研究的VFAs具有很好的去除作用,VFAs中重要的乙酸和丙酸的去除率分别为64%及86%左右;方差分析表明水力负荷和温度是影响所研究的污染物去除的两个主要因素;水力负荷对出口水中乙酸、异戊酸及己酸的浓度有显著性影响(p<0.05);温度(季节)对出口水中的VFAs浓度有显著性影响(p<0.05)。较深水位(70cm)的床体对乙酸及丙酸的去除效果较浅水位床体(50cm)的好;而床体长宽比、填料粒径大小及水位对出口水中的VFAs浓度没有显著性影响(p>0.05)。通过沿程样品中溶解氧和氧化还原电位的测定分析,发现本湿地系统有着极强的还原环境(Eh<-300mV),结合硫酸盐、硝酸盐、亚硝酸盐等电子受体及溶解有机物(TOC)浓度在湿地系统中的变化趋势,推测VFAs的去除主要是通过硫酸盐还原菌及产甲烷菌作用进行的。
     三、中试规模人工湿地中有机负荷、温度、硫酸盐、及水力停留时间对挥发性短链脂肪酸去除的影响
     以中试规模的SSFW水处理系统为对象,研究评价了在SSFW运行期间,湿地水中有机负荷(OLR)、温度、硫酸盐、及水力停留时间(HRT)等因素对挥发性短链脂肪酸(VFAs)影响。结果表明,OLR和COD/SO_4~(2-)比是影响VFAs去除效率的重要因素。较高的OLR、高温、较长的HRT(2.62d)有利于VFAs的去除。本研究的SSFW水中COD/SO_4~(2-)比为6,表明该SSFW中乙酸的降解可能以产甲烷菌降解为主,在此基础上讨论了SSFW中VFAs可能的去除机理。
     四、顶空固相微萃取GC-FPD测定废水中烷基硫醇化合物
     建立了顶空固相微萃取-气相色谱法测定人工湿地废水中烷基硫醇化合物的分析方法。采用顶空固相微萃取(HS-SPME)为样品前处理方法及对含硫化合物有选择性的FPD为检测器,详细研究了萃取参数如萃取涂层、萃取时间、萃取温度、样品体积、盐效应、样品pH值等对HS-SPME萃取乙硫醇(EtSH)、2-甲基-2-丙硫醇(Me-PrSH)、1-丙硫醇(1-PrSH)、2-丙硫醇(2-PrSH)、1-丁硫醇(1-BuSH)、环戊硫醇(CycloPeSH)(内标)的影响。富集的硫醇化合物经DB-VRX(60m×0.25mm×1.40μm)毛细管色谱柱分离,FPD检测。在优化的实验条件下,本法测定乙硫醇、2-甲基-2-丙硫醇、1-丙硫醇、2-丙硫醇、1-丁硫醇的线性范围介于0.12~16.21μg/L之间,检出限(3σ)介于0.97~7.89ng/L之间,相对标准偏差介于2.8~7.5%之间。以环戊硫醇为内标物质,将本法用于废水中硫醇化合物的测定,获得满意结果。
Constructed Wetland(CW) is one of wastewater treatment systems developed since 50 to 60's in the 20th century.Since the appearance of the root zone theory,which was firstly proposed by Kickuth in 1972,the constructed wetland as a new wastewater treatment technology has entered into the field of water pollution control.CW promises high efficiency for removal of contaminants in wastewaters,easy operation,low cost for operation and maintenance.And it is especially suitable for wastewater treatment in the area of the small town and countryside.
     However,due to the complication and the“black box”mechanism involved in contaminant removal in CW,knowledge regarding the fate and dynamics of contaminants and their fate in constructed wetland system is highly limited.And great efforts have been paid to modification of CW technology.
     Currently,the available information on the performance of these systems is limited to common contaminants,such as chemical oxygen demand(COD),biochemical oxygen demand(BOD_5).Very little study on the chemical constitutes of COD,BOD_5,and specific degradation intermediates of organic contaminants in the operation process of constructed wetlands.It is well known that the dissolved organic matter plays an important role in the process of biochemical wastewater treatment.Therefore,it is essential to systematically study the organic matter and its degradation intermediate products in the constructed wetland system in order to improve its performance.
     Solid-phase microextraction is a green extraction technology derived from the solid-phase extraction.Solid-phase microextraction is organic solvent-free.Using solid-phase microextraction can greatly simplify the analytical processes.It is suitable to analysis and determination of organic compounds and their degradation intermediates in complex wastewaters,and especially for the analysis of volatile organic compounds.
     Under the financial support of the Natural Science Foundation of China(No.20477033),this dissertation focused on the degradation and mechanism of the organic contaminants in the subsurface constructed wetlands,and the main contents are as follows:
     (1) Headspace solid-phase microextraction in combination with GC-FID for quantification of the volatile free fatty acids in wastewater from constructed wetlands has been developed.It is based on the selective adsorption of VFAs onto polyacrylate(PA) fiber.
     (2) Effect of design and operation parameters on removal of volatile fatty acids in the subsurface constructed wetlands were investigated through the statistic analysis of parameters effects.
     (3) Effect of organic loading rate,sulfate,temperature and hydraulic retention time on the behavior of volatile short chain fatty acids was investigated in a pilot-scale constructed wetlands system.The removal mechanism of degradation intermediates of organic contaminants in the constructed wetland has also been studied.
     (4) A new method for the determination of small molecule organic sulfur such as alkanethiols has been developed based on the headspace solid-phase microextraction combined with gas chromatography-flame photometric detector(FPD).The optimized conditions for the analysis of alkanethiols were obtained.
     The major conclusions are summarized as follows:
     1.Solid-Phase Microextraction in Combination with GC-FID for Quantification of the Volatile Free Fatty Acids in Wastewater from Constructed Wetlands
     A headspace solid-phase microextraction(HS-SPME) followed by gas chromatography coupled to flame ionization detector(GC-FID) has been developed for the direct determination of volatile fatty acids(VFAs) in wastewater from constructed wetlands.Through the investigation on extraction behavior of different coatings for VFAs and the chromatographic behavior of VFAs in Stabilwax-DA capillary column(30m×0.32mm i.d.,0.25μm film thickness) using nitrogen as carrier gas,the polyacrylate(PA) fiber was selected as the satisfactory coating for VFAs analysis, and optimum chromatographic conditions were obtained.The oven temperature was programmed at 70℃for 2 min,then a 4℃/rain rate until 180℃,holding 2 min,and then a 20℃/min rate until 200℃,holding the final temperature for 3 min.The various parameters including extraction time,extraction temperature,pH value,ion strength,sample volume and desorption conditions were investigated for optimization of HS-SPME performance for VFAs in the wastewater.The experimental results show that the linear dynamic ranges were 10-45000μg/L,and over two to four orders of magnitude depending on different acids.The detection limit(3σ) for VFAs were low toμg/L levels and the RSDs were less than 10%,and the recoveries were between 85%and 117%. By using 2-ethylbutyric acid as internal standard,the proposed method has been successfully applied to determination of VFAs in wastewater from the constructed wetlands.
     2.Effect of Design and Operation Parameters on Removal of Volatile Fatty Acids in Subsurface Flow Constructed Wetlands
     A pilot-scale subsurface constructed wetland wastewater treatment system was sampled for one year to study the effect of bed aspect ratio,substrate medium size,water depth,HLR(hydraulic loading rate) and temperature(season) on removal of VFAs.The yearly experimental results demonstrated that the system showed good performance for VFAs removal in wastewater under different HLR ranging from 12 cm d~(-1) to 86 cm d~(-1).The system removed 64%of acetic,86%of propionic acid,respectively.The results showed that HLR and water temperature(season) were major factors that controlled the system performance for the target analytes.According to ANOVA test,the HLR caused significant differences(p<0.05) on the average acetic,isopentanoic, hexanoic acids effluent concentrations.And temperature caused significant differences(p<0.05) on the average effluent concentrations of all target analysts.Deep water depth caused better removal for acetic and propionic acids.However,bed aspect ratio,substrate medium size and water depth did not cause significant differences(p>0.05) on the average VFAs effluent concentrations. The survey of dissolved oxygen and redox potential(ORP) indicated that the constructed wetlands system showed strong reduced condition.On the basis of investigations of electron acceptors(such as SO_4~(2-),NO_3~- and NO_2~-) and dissolved organic pollutants(such as TOC) concentrations along with the length of constructed wetlands,it can be concluded that anaerobic biology processes such as sulfate reduction and methanogenisis were the main mechanism for VFAs removal in constructed wetland beds.
     3.Effects of Organic Loading Rate,Temperature,Sulfate,Hydraulic Retention Time On the Removal of the Volatile Short Chain Fatty Acids in a Pilot-Scale Constructed Wetlands
     This study investigated the effect of organic loading rate(OLR),temperature,sulfate concentration and hydraulic retention time(HRT) on the removal of volatile short chain fatty acids (VFAs) in a pilot-scale subsurface constructed wetland wastewater treatment system.The results indicated that OLR and COD/SO_4~(2-) ratio are two important factors affecting the VFAs removals. Higher OLR,higher temperature,and relative longer retention time(i.e.2.6 d) favored the VFAs removal in the studied wetland during the sampling period.Influent COD/SO_4~(2-) ratio was about 6, suggesting that methanogensis was probably a dominant pathway for acetic acid degradation in the present SSFW system.The possible mechanism for VFAs removal in SSFW was also discussed.
     4.Headspace Solid-Phase Microextraction Combined with Gas Chromatography -Flame Photometric Detection for the Analysis of Alkylthiols in Wastewater
     A headspace solid-phase microextraction combined with gas chromatography/flame photometric detection has been developed for the analysis of alkylthiols in wastewater from constructed wetlands.The effect of various extraction parameters such as extraction coatings, extraction time,temperature,sample volume,salt effect,sample pH value on the extraction of alkylthiols,namely,EtSH,Me-PrSH,1-PrSH,2-PrSH,1-BuSH and CycloPeSH were investigated and optimized.The enriched alkylthiols were separated by DB-VRX(60m×0.25 mm×1.40μm) capillary column and detected by FPD.Under the optimized conditions,the linear dynamic ranges for EtSH,Me-PrSH,1-PrSH,2-PrSH,1-BuSH were in the range of 0.12~16.21μg/L.The detection limit(3σ) for the studied five alkylthiols were 0.97~7.89 ng/L with RSD(n=11) ranging from 2.8%to 7.5%.By using CycloPeSH as internal standard,the proposed method has been applied successfully to the analysis of alkylthiols in wastewater from constructed wetlands with satisfactory results.
引文
1.Vymazal J,Brix H,Cooper P F,et al.Constructed wetlands for wastewater treatment in Europe[M].Leiden:Backhuys Publisher,1998.
    2.张永泽,王煊.自然湿地生态系统恢复研究综述[J].生态学报,2001,21(2):309-314
    3.Jan Vymazal.Horizontal sub-surface flow and hybrid constructed wetlands systems for waste water treatment[J].Ecological Engineering,2005,25(7):478-490.
    4.Kadlec R H,Knight R L.Treatment wetlands[M].Boca Raton FL:CRC Press.1996
    5.US EPA.Manual:Constructed wetlands treatment of municipal wastewaters.Cincinnati,Ohio.EPA/625/R-99/010,2000
    6.Kadlec R H,Knight R L,Vymazal J,et al.Constructed wetlands for pollution control:processes,performance,design and operation[M].Scientific and Technical Report No.8.London,UK:IWA Publishing.2000
    7.Greenway M.,Woolley A.Constructed wetland in Queensland:performance efficiency and nutrient bioaccummlation[J].Ecological Engineering,1999,12:39-55
    8.Schulz C,Gelbrecht J,Rennert B.Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J].A quaculture,2003,217(1-4):207-221
    9.王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004
    10.Platzer C,Mauch K.Soil clogging in vertical flow reed beds-mechanisms,parameters,consequences and solutions[J].Water Science and Technology,1997,35(5):175-181
    11.克雷格.S.坎贝尔,迈克尔.H.奥格登著,吴晓芙译.湿地与景观[M].北京:中国林业出版社,2005.
    12.Kadlec R H,Knight R L.Constructed treatment wetlands-a global technology[J].Water 21,2000,7:57-58
    13.Brix H.Do macrophytes paly a role in constructed treatment wetlands?[J].Water Science and Technology,1997,35(35):11-17
    14.Haberl R,Perfler R and Mayer H.Constructed wetland in Europe[J].Water Science and Technology,1995,32(3):306-315
    15.Bankston J L.Degradation of trichloroethylene in wetland icrocosms containing broad-leabed cattail and eastern cottonwood[J].Water Research,2002,36:1539-1546
    16.Vymazal J.The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic 10years experience[J].Ecological Engineering,2002,633-646
    17.成水平,况琪军,夏宜(王争).香蒲、灯心草人工湿地的研究Ⅰ-净化污水的效果[J].湖泊科学,1997,9(4):351-358
    18.成水平,夏宜(王争).香蒲、灯心草人工湿地的研究Ⅱ-净化污水的空间[J].湖泊科学,1997,10(1):62-66
    19.吴振斌,陈辉蓉,贺锋.人工湿地系统对污水磷的净化效果[J].水生生物学报,2001,25(1):28-34
    20.廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1):113-117
    21.Tanner C C.Plants for constructed wetland system-A comparison of the growth and nutrient uptake of eight emergent species[J].Ecological Engineering,1996,7,59-83
    22.夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59
    23.Paul Cooper.A review of the desigen and performance of vertical flow and hybrid reed bed treatment systems[J].Water Science and Technology,1999,40(3):129
    24.崔理华,朱夕珍,骆世明煤渣-草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报,2003,14(4):597-600
    25.Brix H.Constructed wetlands for municipal wastewater treatment in Europe,in Global Wetlands:Old World and New[J].W J Mitsch(ed.),Elsevier Science,B.V.,1994,325-333
    26.Steiner G R.and Freeman Jr.R J.Configuration and substrate design consideration for constructed wetlands wastewater treatment.In:Constructed Wetlands for Wastewater Treatment.D.A.Hammer(Ed.),Lewis Publishers,Inc.Chelsea,Michigan,1989,363-377
    27.Kadlec R H.Chemical,physical and biological cycles in treatment wetlands[J].Water Science and Technology,1999,40(30):37-44
    28.Ayaz S C,Akqa L.Treatment of wastewater by natural systems[J].Environment International,2001,26:189-195
    29.Shilton AN,Elmetri 1,Drizo A,et al.Phosphorus removal by an ‘active' slag filer-a decade of full scale experience[J].Water Research,2006,40(7):113-118
    30.Kangas P C.Ecological Engineering Principles and Practice[M].Boca Raton FL:Lewis Publishers.2004.
    31.Knight,R L.et al.Constructed wetlands for livestock wastewater management[J].Ecological Engineering,2000,15:41-55
    32.Nguyen,L.M.Organic matter composition,microbial biomass and microbial activity in gravel2bed constructed wetlands treating farm dairy wastewaters[J].Ecological Engineering, 2000, 16:199-221
    33.Mays, P A.and Edwards ,G S.Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage [J].Ecological Engineering, 2001, 16:487-500
    34.Wenerick, W R.et al.Tolerance of three wetland plant species to acid mine drainage: a greenhouse study [A].In: Hammer, D.A.(Ed).Constructed Wetlands for Wastewater Treatment: Municipal, Industrial, and Agricultural [C].Chelsea, MI: Lewis Publishers, 1989,801-807
    35.Gillespie, Jr.W B.et al.Transfers and transformations of zinc in constructed wetlands:mitigation of a refinery effluent [J].Ecological Engineering, 2000, 14: 279-292
    36.Thut, R N.Feasibility of treating pulp mill effluent with a constructed wetland [A].In: Moshiri, G A.(Ed).Constructed Wetlands for Water Quality Improvement [C].Boca Raton,Florida: Lewis Publishers, 1993.441-447
    37.Rivera, R.et al.The application of the root zone method for the treatment and reuse of high strength abattoir waste in Mexico [J].Water Science and Technology, 1997, 35(5): 271-278
    38.Sun, G et al.Treatment of agricultural wastewater in a combined tidal flow2downflow reed bed system [J].Water Science and Technology, 1999, 40(3): 139-146
    39.Staubitz, W W et al.Potential use of constructed wetlands to treat landfill leachate [AJ.In:Hammer, D A.(Ed).Constructed Wetlands for Wastewater Treatment: Municipal, Industrial, and Agricultural [C].Chelsea, MI: Lewis Publishers, 1989.735-742
    40.Trautmann, N M.et al.Use of artificial wetlands for treatment of municipal solid waste landfill leachate [A].In: Hammer, D A.(Ed).Constructed Wetlands for Wastewater Treatment:Municipal, Industrial, and Agricultural[C].Chelsea, MI: Lewis Publishers, 1989.245-251
    41.Laber, J.Constructed wetland system for storm water treatment [J]Journal of Environmental Science and Health, 2000, A3 5: 1279-1288
    42.Thurston, K A.Lead and petroleum hydrocarbon changes in an urban wetland receiving stormwater runoff [J].Ecological Engineering, 1999, 12: 387-399
    43.Bachand, P A M and Home, A J.Denitrification in constructed free-water surface wetland [J].Ecological Engineering, 2000,14:9-32
    44.D'Angelo, E M and Reddy, K R.Diagenesis of organic matter in a wetland receiving hyper-eutrophic lake water [J].Journal Environmental Quality, 1994, 23: 928-943
    45.Mitchell D S, Chick A J and Raisin G W.The use of wetlands for water pollution control in Australia: an ecological perspective.In: Process of 4~(th) International Conference on Wetland Systems for Water Pollution Control.1994,9, Guangzhou, China
    46.Thomas P R.,Glover P and Kalaroopa T.An evaluation of pollution removal from secondary treated sewage effluent using a constructed wetland system.In:Process of 4~(th) International Conference on Wetland Systems for Water Pollution Control.1994,9,Guangzhou,China
    47.Reddy K R.,O'Connor G A.and Gale P M.Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent[J].Journal of Environmental Quality.1998,27:438-447
    48.袁东海,景丽洁,高士祥等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学学,2005,26(1):51-55
    49.Denny P.Implementation of constructed wetlands in developing countries[J].Water Science and Technology,1997,35(5):27-34
    50.Kivaisi A K.The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review[J].Ecological Engineering,2001,16:545-560
    51.Gopal B.Natural and constructed wetlands for wastewater treatment:potentials and problems [J].Water Science and Technology,1999,40(3):27-35
    52.Jay S W,Suzanne E B,Curtis P J.Sediment storage of phosphorus in a northen prairie wetlands receiving municipal and agro-industrial wastewater[J].Ecological Engineering,2000,14(1):127-138
    53.Tanner C C.,Sukias J P S,Upsdell M P.Relationships between loading rates and pollutant removal during maturation of gavel-bed constructed wetlands[J].Journal of Environmental Quality,1998,27:448-458
    54.D R,Confer,B E Logan.Molecular weight distribution of hydrolysis products during biodegradtion of model macromolecules in suspended and biofilm cultures I.bovine serum albumin[J].Water Research,1997,31(9):2127-2145
    55.S Venkata Mohan,N Chandrasekhara Rao,K Krishna Prasad,et al.Anaerobic Treatment of Complex Chemical Wastewater in a Sequencing Batch Biofilm Reactor:Process Optimization and Evaluation of Factor Interactions Using the Taguchi Dynamic DOE Methodology[J].Biotechnology and Bioengineering,2005,90(6):732-745
    56.A Visser,I Beeksma,F van der Zee,et al.,Anaerobic degradation of volatile fatty acids at different sulphate concentrations[J].Applied Microbiology Biotechnology,1993,40:549-556
    57.张华星,陈银广,杨海真。增加污水中挥发性脂肪酸以提高食物除磷效果的研究进展[J]。四川环境,2005,24(4):22-25
    58.荣宏伟,张可方,张朝升。VFAs作为衡量生物除磷指标的研究[J]。哈尔滨商业大学学报(自然科学版),2005,21(3):288-291
    59.宋秀兰,李亚新。乙酸、丙酸和丁酸为SRB碳源时的利用率[J]。中国矿业大学学报,2007, 36(4):527-530
    60.夏青,洪宇宁,梁睿,等等。La~(3+),Ce~(3+)对厌氧颗粒污泥在不同VFAs底物中的产甲烷促进效应[J]。中国沼气,2007,25(3):3-6
    61.M Mestres,C Sala,M P Marti.Headspace solid-phase microextaction of sulphides and disulphides using Carboxen-polydimethylsiloxane fibers in the analysis of wine aroma[J].Journal of Chromatography A,1999,835:137-144
    62.M Mestres,M P Marti,O Busto.Analysis of low-volatility organic sulphur compounds in wines by solid-phase microextraction and gas chromatography[J].Journal of Chromatography A,2000,881:583-590
    63.A T Nielsen,S Jonsson.Trace determination of volatile sulfur compounds by solid phase microextraction and GC-MS[J].Analyst,2002,127:1045-1049
    64.Y Wen,Y Wang,Y Q.Feng.Simultaneous residue monitoring of four tetracycline antibiotics in fish muscle by in-tube solid-phase microextraction coupled with high-performance liquid chromatography[J].Talanta,2006,70:153-159
    65.Lin Pan,M Adams,and J Pawliszyn.Determination of fatty acids using solid-phase microextraction[J].Analytical Chemistry,1995,67:4396-4403
    66.S.P.Yo.Analysis of volatile fatty acids in wastewater collected from a pig farm by a solid phase microextraction method[J].Chemosphere,1999,38(4):8238-34
    67.G A Mills,V Walker,and H Mughal.Headspace solid-phase microextraction with 1-pyrenyldiazomethane in-fibre derivatisation for analysis of faecal short-chain fatty acids[J].Journal of Chromatography B,1999,730:1131-22
    68.L Pan and J Pawliszyn.Derivatization/solid-phase microextraction:new approach to polar analytes[J].Analytical Chemistry,1997,69:19-6205
    69.G Wittmann,H Van Langenhove,and J Dewulf.Determination of acetic acid in aqueous samples,by water-phase derivatisation solid-phase microextraction and gas chromatography [J].Journal of Chromatography A,2000,874:225-234
    70.B Muik,B Lendl,A Molina-Diaz,et al.Direct,reagent-free determination of free fatty acid content in olive oil and olives by Fourier transform Raman spectrometry[J].Analytica Chimica Acta,2003,487:211-120
    71.A Mehta,A M Osser,and M G Carlson.Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography[J].Journal of Chromatography B,1998,719:92-103
    72.A Kotani,F Kusu,and K Takamura.New electrochemical detection method in high-performance liquid chromatography for determining free fatty acids[J].Analytica Chimica Acta,2002,465:199-206
    73.L E Dayhuff and M J M.Wells.Identification of fatty acids in fishes collected from the Ohio River using gas chromatography-mass spectrometry in chemical ionization and electron impact modes[J].Journal of Chromatography A,2005,1098:144-149
    74.M Abalos and J M Bayona.Application of gas chromatography coupled to chemical ionization mass spectrometry following headspace solid-phase microextraction for the determination of free volatile fatty acids in aqueous samples[J].Journal of Chromatography A,2000,891:287-294
    75.O Pinho,IMPLVO Ferreira,and M.A.Ferreira.Solid-phase microextraction in combination with GC-MS for quantification of the major volatile free fatty acids in ewe cheeses[J].Analytical Chemistry,2002,74(20):5199-5204
    76.V Zuriguel,E Causs(?),J D Boun(?)ry,et al.,Short chain fatty acids analysis by capillary electrophoresis and indirect UV detection or laser-induced fluorescence[J].Journal of Chromatography A,1997,781:233-238
    77.H Feitkenhauer,J von Sachs,U Meyer.On-line titration of volatile fatty acids for the process control of anaerobic digestion plants[J].Water Research,2002,36:212-218
    78.Ori Lahav,B E Morgan,R E Loewenthal.Rapid,simple,and accurate method of VFA and carbonate alkalinity in anaerobic reactors[J].Environmental Science & Technology,2002,36(12):2736-2741
    79.刘广民,任南琪,王爱杰,等等.产酸-硫酸盐还原系统中产酸菌的发酵类型及其与SRB 的协同作用[J].环境科学学报,2004,24(5):782-788
    80.H Y Yuan,Y G Chen,H X Zhang,et al.Improved bioproduction of short-chain fatty acids (SCFAs) from excess slidge under alkaline conditions[J].Environmental Science &Technology,2006,40:2025-2029
    81.V O'Flaherty,E Colleran.Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor.I:process disturbance and remediation[J].Bioresource Technology,1999,68:101-107
    82.K R Waybrant,C J Ptacek and D W Blowes.Treatment of mine drainage using permeable reactive barriers:column experiments[J].Environmental Science & Technology,2002,36:1349-1356
    83.F Omii,P Lens,A Visser,et al.Long-Term Competition between Sulfate Reducing and Methanogenic Bacteria in UASB Reactors Treating Volatile Fatty Acids[J].Biotechnology and Bioengineering,1998,57(6):676-685
    84.V A Vavilin and L Ya Lokshina.Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity[J].Bioresource Technology,1996,57:69-80
    85.L Bj(o|¨)rnsson,B.Mattiasson,T.Henrysson.Effects of support material on the pattern of volatile fatty acid accumulation at overload in anaerobic digestion of semi-solid waste[J].Applied Microbiology Biotechnology,1997,47:640-644
    86.T J Hurse,J Keller.Effects of acetate and propionate on the performance of a photosynthetic biofilm reactor for sulfide removal[J].Biotechnology and bioengineering,2005,89(2):178-187
    87.R Lepist(o|¨),J Rintaia.Conversion of volatile fatty acids in an extreme thermophilic(76-80℃)upflow anaerobic sludge blanket reactor[J].Bioresource Technology 1996,56:221-227
    88.任南琪,王爱杰.产酸脱硫反应器中碳硫比对群落生态特征的影响[J].环境科学,2002,23(4):52-56
    89.S I C Lopesa,X Wanga,M I Capelab,et al.Effect of COD/SO_4~(2-) ratio and sulfide on thermophilic(55℃) sulfate reduction during the acidification of sucrose at pH 6[J].Water Research,2007,41:2379-2392
    90.J Garcia,P Aguirre,J Barrag(?)n,et al.Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands[J].Ecological Engineering,2005,25:405-418
    91.Y Huang,L Ortiz,P Aguirre,et al.Effect of design parameters in horizontal flow constructed wetland on the behavious of volatile fatty acids and volatile alkylsulfides[J].Chemosphere,2005,59:769-777
    92.D P.Kelly,S C.Baker.The Organosulphur cycle:aerobic and anaerobic processes leading to turnover of C_1 compounds[J].FEMS Microbiology Review,1991,87:241-246
    93.C R.Lange,M.Stroup-Gardiner.Quantification of potentially odorous volatile organic compounds from asphalt binders using head-space gas chromatography[J].Journal of Testing and Evaluation,2005,33(2):1-9
    94.J Y.Zhu,X S.Chai,X J.Pan et al.Quantification and reduction of organic sulfur compound formation in a commercial wood pulping process[J].Environmental Science & Technology,2002,36:2269-2272
    95.中华环保设备网(http://www.91ep.cn/TradeNews/ViewTradeInfo.aspx?InfoId=388).炼油厂恶臭污染与治理技术.2007-8-5
    96.任向辉,安德荣,张勤福,等.国内外除臭剂的最新研究进展[J].环境污染与防治,2008,7
    97.李宁,刘杰民,温美娟等.吹扫捕集-气相色谱联用测定城市河流中的挥发性硫化物[J].分析试验室.2004,23(6):16-18
    98.朱国辉,朱庆枝,许金钩.荧光光度法测定大气中痕量二氧化硫[J].分析化学,1999,27(11):1303-1305
    99.U Nyl(?)n,J F Delgado,S J(a|¨)ras.Characterization of alkylated aromatic sulphur compounds in light cycle oil from hydrotreated vacuum gas oil using GC-SCD[J].Fuel Processing Technology,2004,86:223-234
    100.R Hua,Y Li,W Liu,et al.Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector[J].Journal of Chromatography A,2003,1019:101-109
    101.F Caron,J R Kramer.Gas Chromatographic Determination of Volatile Sulfides at Trace Levels in Natural Freshwaters[J].Analytical Chemistry,1980,61:114-118
    102.C Haberhauer-Troyer,E Rosenberg,M G rasserbauer.Evaluation of solid-phase microextraction for sampling of volatile organic sulfur compounds in air for subsequent gas chromatographic analysis with atomic emission detection[J].Journal of Chromatography A,1999,848:305-315
    103.Caroline Leck.Determination of reduced sulfur compounds in aqueous solutions using gas chromatography flame photometric detection[J].Analytical Chemistry,1988,60:1680-1683
    104.N Moreira,P P Guedes,1 Vasconcelos.Method for analysis of heavy sulphur compounds using gas chromatography with flame Photometric detection[J].Analytica Chimica Acta,2004,513(1):183-189
    105.A T Nielsen,S Jonsson.Trace determination of volatile sulfur compounds by solid-phase microextraction and GC-MS[J].Analyst,2002,127:1045-1049
    106.F Lstremau,V Desauziers,J C Roux.Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by SPME and GC-pFPD[J].Journal of Chromatography A,2003,999:71-80
    107.F Lestremau,F A T Andersson,V Desauziers.Investigation of artifact formation during analysis of volatile sulphur compounds using solid phase microextraction(SPME)[J].Chromatographla,2004,59:607-613
    108.Q Xiao,C Yu,J Xing,et al.Comparison of headspace and direct single-drop microextraction and headspace solid-phase microextraction for the measurement of volatile sulfur compounds in beer and beverage by gas chromatography with flame photometric detection[J].Journal of Chromatography A,2006,1125:133-137
    109.E A Mishalanie,J W Birks.Selective detection of organosulfur compounds in high-performance liquid chromatography[J].Analytical Chemistry,1986,58:918-923
    110.M A K Azad,S I Ohira,K Toda.Single Column Trapping/Separation and Chemiluminescence Detection for On-Site Measurement of Methyl Mercaptan and Dimethyl Sulfide [J].Analytical Chemistry, 2006, 78: 6252-6259
    111.J E Lovelock, R J Maggs, R A Rasmussen.Atmospheric dimethyl sulfide and the natural sulfur cycle [J].Nature, 1972,237:452-453
    112.H Y Hu, S E Mylon, G Benoit.Volatile organic sulfur compounds in a stratified lake [J].Chemosphere, 2007, 67: 911-919
    113.P T Visscher, B F Taylor.Demethylation of dimethysulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium [J].Applied and Environmental Microbiology, 1994, 60(12): 4617-4619
    114.M J.Higgins, Y C Chen, D P.Yarosz et al.Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors [J].Water Environmental Research, 2006, 78(3): 243-252
    115.R P Kiene, D G Capone.Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments [J].FEMS Microbiology Ecology, 1988,15: 275-291
    116.W L Banwart, J Bremner.Evolution of volatile sulfur compounds from soils treated with sulfur-containing organic materials [J].M.Soil Biology and Biochemistry, 1976, 8(5): 439-443
    117.K Finster, G M King, Friedhelm Bak.Formation of methylmercaptan and dimethylsulfide from methoxylated aromatic compounds in anoxic marine and fresh water sediment [J].FEMS Microbiology Ecology, 1990, 74(4): 295-301
    118.B P Lomans, A J P Smolders, L M Intven et al.Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments [J].Applied and Environment Microbiology, 1997,63:4741-4747
    119.Drotar A, Burton G A.Jr and Tavernier J.E.Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases [J].Applied and Environment Microbiology, 1987, 53: 1626-1631
    120.Larsen G.L.Distribution of cysteine conjugate b-lyase in gastrointestinal bacteria and in the environment [J].Xenobiotica, 1985, 15: 199-210
    121.S Persson, M-B Edlund, R Claesson et al.The Formation of hydrogen sulfide and methyl mercaptan by oral bacteria [J].Oral Microbiology and Immunology, 1990, 5: 52
    122.H W Chin, R C Lindsay.Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide [J].Food Chemistry, 1994, 49: 387-392
    123.De Zwart J.M.M, Nelisse P.N.and Kuenen J.G.Isolation and characterization of Methylophaga sulfidovorans sp.nov.: an obligate methylotrophic aerobic, DMS oxidizing bacterium from a microbial mat[J].FEMS Microbiology Ecology,1996,20:261-271
    124.R Bentley,T G Chasteen.Environmental VOSCs formation and degradation of dimethyl sulfide,methanethiol and related materials[J].Chemosphere,2004,55:291-317
    125.B.P.Lomans,C.van der Drift,A.Pol et al.Review:Microbial cycling of volatile organic sulfur compounds[J].CMLS Cellular and Molecular Life Sciences,2002,59:575-588
    126.R L Jenkins,J P Gute,S W Krasner et al.The analysis and fate of odorous sulfur compounds in wastewaters[J].Water Research,1980,14(5):441-448
    127.Kadota H,Ishida Y.Production of volatile sulfur compounds by microorganisms[J].Annual Review Microbiology,1972,26:127-138
    128.Zinder S H,Doemel W H,Brock T D.Production of volatile sulfur compounds during the decomposition of algal mats[J].Applied and Environmental Microbiology,1977,34:859.
    129.P T Visscher,B F Taylor.Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium[J].Applied and Environment Microbiology,1993,59(12):4083-4089
    130.A.Wiessner,U.Kappelmeyer,P.Kuschk et al.Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland[J].Water Research,2005,39(19):4643-4650
    131.郝晓地,戴吉,魏丽.生物除硫理论与技术研究进展[J].生态环境,2006,15:844-853
    132.K.R.Hench,G.K.Bissonnette,A.J.Sexstone et al.Fate of physical,chemical,and microbial contaminants in domestic wastewater following treatment by small constructed wetlands[J].Water Research,2003,37(4):921-927
    133.G.Gunther.Horizontal subsurface flow systems in the german speking countries:Summary of long-term scientific and practical experiences;recommendations[J].Water Science and Technology,35(5):157-166
    134.L.Barber,J.A.Leenheer,T.I.Noyes et al.Nature and transformation of dissolved organic matter in treatment wetlands[J].Environmental Science & Technology,2001,35(24):4805-4816
    135.H.K.Steffanie,B.B.Larry,L.R Robert et al.Fate of volatile organic compounds in constructed wastewater treatment wetlands[J].Environmental Science & Technology,2004,38(7):2209-2216
    136.国家环保局,《水和废水检测分析方法》编委会编,水和废水监测分析方法[M],中国环境科学出版社,第四版,2005,220-227;243-254
    1.M T Moore,J H Rodgers,Jr.,C M Cooper,and S Smith,Jr.Constructed wetlands for mitigation of atrazine-associated agricultural runoff[J].Environmental Pollution,2000,110:393-399
    2.R B E Shutes,D M Revitt,I M Lagerberg,and V C E Barraud.The design of vegetative constructed wetlands for the treatment of highway runoff[J].Science of the Total Environment,1999,235:189-197
    3.衷平,陈济丁,孔亚平,李楠.人工湿地处理桥面径流的试验研究[J].公路,2007,3:165-169
    4.J S Ren and L Y Feng.Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan[J].Environmental Pollution,2004,127:291-301
    5.H R Hadad,M A Maine and C A Bonetto.Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment[J].Chemosphere 2006,63:1744-1753
    6.K R Hench,G K Bissonnette,A J Sexstone,J G Coleman,K Garbutt,and J G Skousen.Fate of physical,chemical,and microbial contaminants in domestic wastewater following treatment by small constructed wetlands[J].Water Research,2003,37:921-927
    7.雷明,李凌云.人工湿地土壤堵塞现象及机理探讨[J].工业水处理,2004,10(24):9-12
    8.戴媛媛,杨新萍,周立祥.芦苇根际微环境对潜流人工湿地氮与COD去除性能的影响[J].环境科学,2008,12(29):3387-2292
    9.宋铁红,丁大伟,王野,李惠丽.冬季人工湿地内微生物活性和除污效率分析[J].水处理技术,2008,9(34):68-70,74
    10.刘高燕,孙岩,王丽娟,郑振辉.对南四湖人工湿地生物降解能力的研究[J].广东化工,2006,2(33):43-45
    11.R L Knight,R H Kadlec,H M Ohlendorf.The use of treatment wetlands for petroleum industry effluents[J].Environmental Science & Technology,1999,33:973-980
    12.杨红建,冯仰廉.有机物进食量和外流速度对瘤胃VFA产生量及比例的影响[J].中国食料,2000,22
    13.陈喜斌,冯仰廉.瘤胃VFA产量与瘤胃可发酵有机物质关系的研究[J].动物营养学报,1996,2
    14.赵发盛,赵军,林英庭,韩占强,李久峰.添加过瘤胃保护性脂肪对瘤胃挥发性酸及菌体蛋白的影响[J].饲料工业,2008,13(28):42-44
    15.M Cai,J Liu,Y Wei.Enhanced biohydrogan production from sewage sludge with alkaline pretreatment[J],Environmental Science & Technology,2004,38:3195-3202
    16.P Elefsiniotis,D G Wareham,W K Oldham.Particulate organic carbon solubilization in an acid-phase upflow anaerobic sludge blanket system[J].Environmental Science & Technology,1996,30:1508-1514
    17.刘广民,任南琪,王爱杰等.产酸-硫酸盐还原系统中产酸菌的发酵类型及其与SRB的协同作用[J].环境科学学报,2004,24(5):783-788
    18.李亚新,储江林,耿火召宇.生活垃圾酸性发酵的产酸特性研究[J].中国沼气,2000,1,
    19.N Narkis,S Henfeld-Furie.Direct analytical procedure for determination of volatile organic acids in raw municipal wastewater[J].Water Research,1978,12(7):437-446
    20.Ewa Lie,Thomas Welander.A method for determination of the readily fermentable organic fraction in municipal wastewater[J].Water Research,1997(6),31:1269-1274
    21.C Sans,J Mata Alvarez,F Cecchi,P Vavan,Modelling of a plug-flow pilot reactor producing VFA by anaerobic fermemtation of municipal solid wastes[J].Water Science and Technology,1994,30(12):125-132
    22.G Manni,F Caron.Calibration and determination of volatile fatty acids in waste leachates by gas chromatography[J].Journal of Chromatography A,1995,690:237-242
    23.J Albaiges,F Casado,F Ventura.Organic indicators of groundwater pollution by a sanitary landfill[J].Water Research,1986,20(9):1153-1159
    24.C T.Yan,J F Jen.Determination of volatile fatty acids in landfill leachates by gas chromatography with distillation pretreatment[J].Analytical Chimica Acta,1992,264:259-264
    25.Y Chen,A.A.Randall,T McCue.The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J].Water Research,2004,38:27-36
    26.A M.Eilersen,M Henze,L Kloft.Effect of volatile fatty acids and trimethylamine on nitrification in activated-sludge[J].Water Research,1994,28:1329-1336
    27.T Takai,A Hirata,K Yamauchi,and Y Inamori.Effects of temperature and volatile fatty acids on nitrification-denitrification activity in small-scale anaerobic-aerobic recirculation biofilm process[J].Water Science and Technology,1997,35:101-108
    28.S Venkata Mohan,N Chandrasekhara Rao,K Krishna Prasad,et al.Anaerobic Treatment of Complex Chemical Wastewater in a Sequencing Batch Biofilm Reactor:Process Optimization and Evaluation of Factor Interactions Using the Taguchi Dynamic DOE Methodology[J].Biotechnology and Bioengineering,2005,90(6):732-745
    29.B Muik,B Lendl,A Molina-Diaz,and M J Ayora-Cafiada.Direct,reagent-free determination of free fatty acid content in olive oil andolives by Fourier transform Raman spectrometry[J].Analytical Chimica Acta,2003,487:211-220
    30.A Tangerman,F M Nagengast.A gas chromatographic analysis of fecal short-chain fatty acids,using the direct injection method[J].Analytical Biochemistry,1996,236:1-8
    31.E Lie,T Welander.A method for determination of the readily fermentable organic fraction in municipal wastewater[J].Water Research,1997,6(31):1269-1274
    32.A Vairamurthy,K Mopper.Determination of low molecular weight carboxylic acids in aqueous samples by gas chromatography and nitrogen-selective detection of 2-nitrophenylhydrazides[J].Analytical Chimica Acta,1990,237:215-221
    33.刘晨明,曹宏斌,曹俊雅,李玉平,张懿.梯度洗脱高效液相色谱法快速检测厌氧菌代谢物中的有机物[J].分析化学,2006,9(34):1231-1234
    34.A Mehta,A M Osser,M G Carlson.Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography[J].Journal Chromatography B,1998,719:9-23
    35.A Kotani,F Kusu,K Takamura.New electrochemical detection method in high-performance liquid chromatography for determining free fatty acids[J].Analytical Chimica Acta,2002,465:199-206
    36.L T Anqenent,D Zheng,S Sung,L Raskin.Microbial community structure and in a compartmentalized,anaerobic bioreactor[J].Water Envirnmental Research.2002,74(5):450-461
    37.D A C Manning,A Bewsher.Determination of anions in landfill leachates by ion chromatography[J].Journal of Chromatography A,1997,1-2(770):203-210
    38.M Addis,G Pinna,G Molle,M Fiori,S Spada,M Decandia,M F Scintu,G Piredda,and A Pirisi.The inclusion of a daisy plant(Chrysanthemum coronarium) in dairy sheep diet:2.Effect on the volatile fraction of milk and cheese[J].Livestock Science,2006,101:68-80
    39.L E Dayhuff,M J M Wells.Identification of fatty acids in fishes collected from the Ohio River using gas chromatography-mass spectrometry in chemical ionization and electron impact modes[J].Journal of Chromatography A,2005,1098:144-149
    40.L Pan and J Pawliszyn.Derivatization/solid-phase microextraction:new approach to polar analytes[J].Analytical Chemistry,1997,69:196-205
    41.C A Hordijk,I Burgers,G J M Phylipsen,T.E.Cappenberg.Trace determination of lower volatile fatty acids in sediments by gas chromatography with chemically bonded FFAP columns[J].Journal Chromatography A,1990,511:317-323
    42.S Fleming,H,Traitler,B Koellreuter.Aanlysis of volatile fatty-acids in biological specimens by capillary column gas-chromatography[J].Lipids,1987,3(22):195-200
    43.Zolt(?)n Kriv(?)csy,(?)gnes Moln(?)r,E tarj(?)nyi et al.Investigation of inorganic ions and organic acids in atomospheric aerosol by capillary electrophoresis[J].Journal of Chromatography A, 1997,781(1-2,26):233-231
    44.A Tangerman,F M Nagengast.A gas chromatographic analysis of fecal short-chain fatty acids,using the direct injection method[J].Analytical Biochemistry,1996,236,1-8
    45.S Risticevic,V Niri,D Vuckovic,et al.Recent developments in solid-phase microextraction [J].Analytical and Bioanalytical Chemistry,2009,3(393):781-795
    46.Q Xiao,B Hu,M He.Speciation of butytin compounds in environmental and biological samples using headspace single drop microextraction couple with gas chromatography-inductively coupled plasma mass spectrometry[J].Journal of Chromatography A,2008,1-2(1211):135-141
    47.J Beranek,A Kubatova.Evaluation of solid-phase microextraction methods fpr determination of trace concentraction aldehydes in aqueous solution[J].Journal of Chromatography A,2008,1-2(1209) 44-45
    48.E Coelho,C Ferreira,CMM Almeida.Analysis of polynuclear aromatic hydrocarbons by SPME-GC-FID in environmental and tap waters[J].Journal of the Brazilian Chemical Society,2008,6(19):1084-1097
    49.G Pecoraino,L Scalici,G Avellone.Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry(SPME/GC/MS)[J].Water Research,2008,14(42):3563-3577
    50.VM Paradiso,C Summo,A Pasqualone,et al.Evaluation of different natural antioxidants as affecting volatile lipid oxidation products related to offflavours in corn flakes[J].Food Chemistry,2009,2(113):543-549
    51.H Reinhard,F Sager,O Zoller.Citrus juice classification by SPME-GC-MS and electronic nose measurements[J].LWT-Food Science and Technology,2008,10(41):1906-1912
    52.E Klimankova,K Riddellova,J Hajslova,et al.Development of an SPME-GC-MS/MS procedure for the monitoring of 2-phenoxyethanol in anaesthetized fish[J].Talanta,2008,4(75):1082-1088
    53.G Purcaro,S Moret,LS Conte.HS-SPME-GC applied to rancidity assessment in bakery foods [J].European Food Research and Technology,2008,1(227):1-6
    54.J Pawliszyn.Application of solid phase microextraction[M].Royal Society of Chemistry,London,UK,1999
    55.LS Debruin,PD Josephy,JB Pawliszyn.Solid-phase microextraction of monocyclic aromatic amines from biological fluids[J].Analytical Chemistry,1998,9(70):1986-1992
    56.T Harper,L Cushinotto,N Blaszko.Round-robin evaluation of a solid-phase microextraction-gas chromatographic method for reliable determination of trace level ethylene oxide in sterilized medical edvices [J].Biomedical Chromatography, 2008, 2(22): 136-148
    57.L Pan, M Adams, J Pawliszyn.Determination of fatty acids using solid-phase microextraction [J].Analytical Chemistry, 1995, 67: 4396-4400
    58.S P Yo.Analysis of volatile fatty acids in wastewater collected from a pig farm by a solid phase microextraction method [J].Chemosphere, 1999, 38: 823-834
    59.M Abalos, J M Bayona, J Pawliszyn.Development of a headspace solid-phase microextraction procedure for the determination of free volatile fatty acids in waste waters [J].Journal of Chromatography A, 2000, 873: 107-115
    60.M Abalos, J M Bayona.Application of gas chromatography coupled to chemical ionization mass spectrometry following headspace solid-phase microextraction for the determination of free volatile fatty acids in aqueous samples [J].Journal of Chromatography A, 2000, 891:287-294
    61.G A Mills, V Walker, H Mughal.Headspace solid-phase microextraction with 1-pyrenyldiazomethane in-fibre derivatisation for analysis of faecal short-chain fatty acids [J].Journal Chromatography B, 1999, 730: 113-122
    62.Gy Wittmann, H Van Langenhove, J Dewulf.Determination of acetic acid in aqueous samples by water-phase derivatisation, solid-phase microextraction and gas chromatography [J].Journal of Chromatography A, 2000, 874: 225-234
    63.O Pinho, I M P LV O Ferreira, M A Ferreira.Solid-phase microextraction in combination with GC-MS for quantification of the major volatile free fatty acids in ewe cheese [J].Analytical Chemistry, 2002, 74: 5199-5204
    64.A M Chai, J Pawliszyn.Analysis of environmental air samples by solid-phase microextraction and gas chromatography-ion trap mass spectrometry [J].Environmental Science & Technology, 1995, 29: 693-701
    65.Z D Cardeal, C M D Paes.Analysis of organophosphorous pesticides in whole milk by solid phase microextraction gas chromatography method [J].Journal of Envirnmental Science and Health Part B- Pesticides Food Contaminants and Agriculitural Wastes, 2006, 4(41): 369-375
    66.H Tsoukali, G Theodoridis, N Raikos, et al.Solid phase microextraction gas chromatographic analysis of organophosphorus pesticides in biological samples [J].Journal of Chromatography B -Analytical Technologies in the Biomedical and Life Sciences, 2005, 1-2(822): 194-200
    67.J Januszkiewicz, H Sabik, S Azarnia, et al.Optimization of headspace solid-phase microextraction for the analysis of specific flavors in enzyme modified and natural Cheddar cheese using factorial design and response surface methodology [J].Journal of Chromatoraphy A, 2008,1-2(1195): 16-24
    68.F Monteil-River, C Beaulieu and J Hawaii.Use of solid-phase microextraction/gas chromatography-electron capture detection for the determination of energetic chemicals in marine samples [J].Journal of Chromatography A, 2005,1-2(1066): 177-187
    69.Q Ye.Development of solid-phase microextraction followed by gas chromatography-mass spectrometry for rapid analysis of volatile organic chemicals in mainstream cigarette smoke [J].Journal of Chromatography A 2(1213): 239-244
    70.S Zeppa, A M Gioacchini, C Guidi, et al.Determination of specific volatile organic compounds synthesized during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography mass spectrometry [J].Rapid Communication in Mass Spectrometry, 2004, 2(18): 199-205
    71.O Ezquerro, B Pons, M T Tena.Multiple headspace solid-phase microextraction for the quantitative determination of volatile organic compounds inmultilayer packings [J].2003,1-2(999): 155-164
    72.M A Awan, 1 Fleet, C L P Thomas.Determination pf biogenic diamines with a voporisation derivatisation approach using solid-phase microextraction gas chromatography-mass spectrometry [J].Food Chemistry, 2008, 2(111): 462-468
    73.S W Tsai, C M Chang.Analysis of aldehydes in water by solid-phase microextraction with on-fiber derivatization [J].2003,1-2(1015): 143-150
    74.E M Stansbridge, G A Mills, V Walker.Automated headspace gas chromatographic analysis of faecal short-chain fatty acids [J].Journal of Chromatography B, 1993, 621:7-13
    [1]徐桂芹,王海燕,高洁,姜安玺.处理含硫氮恶臭气体的工程菌的获取与效能[J].辽宁工程技术大学学报(自然科学版),2008,27(4):610-613
    [2]王伯光,周炎,冯志诚.挥发性恶臭有机污染物的分子标志物的研究进展[J].环境科学与技术,2008,31(9):82-85
    [3]黄灿,唐新燕,李季,彭绪亚.牛至油对猪粪尿混合物中挥发性脂肪酸和厌氧菌的影响[J].农业环境科学学报,2008,27(5):2101-2104
    [4]Barbara L,Rowe,Patricia L,Toccalino,Michael J Moran,John S Zogorski,and Curtis V Price.Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States[J].Environmental Health Perspectives,2007,115:1359-1546
    [5]Cheng Xiaohao,Peterkin E,Burlingame G A.A study on volatile organicsulfide causes of odors at Philadelphia's Northeast Water Pollution Control Plant[J].Water Research,2005,39:3781-3790
    [6]张兵之,吴振斌,徐光来。人工湿地的发展概况和面临的问题[J].环境科学与技术,2003,26:8790
    [7]王全金,李丽,李忠卫.四种植物潜流人工湿地脱氮除磷的研究[J].环境污染与控制,2008,30(2):33-36
    [8]叶建锋,徐祖信,李怀正.垂直潜流人工湿地堵塞微观概念模型的提出[J].环境污染与防治,2008,30(2):16-19
    [9]付国楷,周琪,杨殿海.潜流人工湿地在城市污水三级处理中的应用[J].生态学杂志,2008,27(2):197-201
    [10]汤显强,李金中,李学菊,刘学功,黄岁樑.间歇曝气对人工垂直潜流湿地氮磷去除性能的影响[J].环境科学,2008,29(4):896-901
    [11]司马卫平,何强,夏安林,王爱萍.人工湿地处理城市污水效能的影响因素分析[J].环境工程学报,2008,2(3):319-323
    [12]王庆海,段留生,武菊英,阳娟.北京地区人工湿地植物活力及污染物去除能力[J].应用生态学报,2008,19(5):1131-1137
    [13]卢少勇,张彭义,余刚,金相灿.人工湿地处理农业径流的研究进展[J].生态学报,2007,27(6):2627-2635
    [14]海热提,范立维,谢涛,张祺,卓峰,林爱军.两级潜流人工湿地在中国东北高寒地区的应用研究[J].环境科学,2007,28(11):2442-2447
    [15]Kadlec R H,Knight R L.Treatment wetlands[M].Boca Raton:CRC Press LLC,1995
    [16]Hencha K R,Bissonnettea G K,Sexstonea A J,et al.Fate of physical,chemical,and microbial contaminants in domestic wastewater following treatment by small constructed wetlands[J].Water Research,2003,37:921-927
    [17]闻岳,周琪.水平潜流人工湿地模型[J].应用生态学报,2007,18(2):456-462
    [18]张克强,杨莉,杨鹏,张洪生,李军幸,李野.适合农村污水分散处理的廊道式人工湿地设计参数研究[J].西北农业学报,2008,17(1):286-291
    [19]王晟,徐祖信,李怀正,周德兴.植物根系对垂直流人工湿地水力条件的影响[J].同济大学学报(自然科学版),2008,36(4):519-524
    [20]魏成,刘平,秦晶.不同基质和不同植物对人工湿地净化效率的影响[J].生态学报,2008,28(2):3691-3697
    [21]张小东,陈季华,奚旦立.生态填料在微污染水体处理中的应用[J].水处理技术,2008,34(1):56-58
    [22]王冬梅,刘培斌,丁跃元,黄炳彬,何春利.人工湿地填料对磷的吸附特性及预期使用年限[J].环境科学与技术,2008,31(4):17-21
    [23]汤显强,李金中,李学菊,刘学功,黄岁樑.人工湿地不同填料去污性能比较[J].水处理技术,2007,33(5):45-48
    [24]李现坡,杨勇,马院红,余兆祥.潜流式湿地系统停留时间分布实验结果分析[J].环境污染与防治,2008,30(2):64-67,86
    [25]郑天柱,何成达,谈玲.W-SFCW和SFCW的水流特性试验研究[J].水资源保护,2008,24(2):18-21,37
    [26]张翔凌,吴振斌,武俊梅,王蓉,贺锋.不同基质高负荷垂直流人工湿地水力特性研究[J].武汉理工大学学报,2008,30(7):79-83
    [27]国家环保局,《水和废水检测分析方法》编委会编,水和废水监测分析方法[M],中国环境科学出版社,第四版,2005,220-227;243-254
    [28]L Feng,Y Huang,H Wang.Solid-phase microextraction in combination with GC-FID for quantification of the volatile free fatty acids in wastewater from constructed Wetlands[J].Journal of Chromatographic Science,2008,46:572-584
    [29]D M Griffin,Jr.Rishi Raj Bhattarai,Hongjian Xiang.The effect of temperature on biochemical oxygen demand removal in a subsurface flow wetland[J].Water Environment Research,1999,71(4):475-482
    [30]赵芯,朱义年,廖雷,陆燕勤,曾鸿鹄,张洪学.温度对糖蜜酒精废液处理效果及微生物量的影响[J].桂林工学院学报,2006,3
    [31]Yuan H,Chen Y,Zhang H,Jiang S,Zhou Q,and Gu G.Improved bioproduction of short-chain fatty acids(SCFAs) from excess sludge under alkaline conditions[J].Environmental Science & Technology,2006,40:2025-2029
    [32]A M Breure,K A Mooijman,J G van Andel.Protein degradation in anaerobic digestion:influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelation[J].Applied Microbiology Biotechnology,1986,24:426-431
    [33]Garcia J,Aguirre P,Mujeriego R,Huang Y,Ortiz L,Bayona J M.Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands[J].Ecological Engineering,2005,25:405-418
    [34]C J Sniffen,J D O'Connor,P J Van Soest,D G Fox,J B Russell.A net carbonhydrate and protein system for evaluating cattle diets:Ⅱ.Carbohydrate and protein availability[J].Journal of Animal Science,1992,70(11):3562-3577
    [35]H Yuan,Y Chen,H Zhang,S Jiang,Q Zhou,G Gu.Improved Bioproduction of Short-Chain Fatty(SCFAs) from Excess Sludge under Alkaline Condition[J].Envirnmental Science &Technology,2006,40:2025-2029
    [36]Fennell D E,Gossett J M,and Zinder H S.Comparison of butyric acid,ethanol,lactic acid,and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene[J].Environmental Science & Technology,1997,31:918-926
    [37]Lepis(o|¨) R & Rintala J.Conversion of volatile fatty acids in an extreme thermophilic(70-80℃)upflow anaerobic sludge-blanket reactor[J].Bioresource Technology 1996,56:221-227
    [38]Tholozan J L,Samain E,Grivet J P,Moletta R,Dubourguier H C & Albagnac G.Reductive carboxylation of propionate to butyrate in methanogenic ecosystems[J].Applied and Environmental Microbiology,1988,54:441-445
    [39]郝桂玉,黄民生,徐亚同。潜流湿地在水体生态修复中的作用[J].净化技术,2004,23(1):34-37
    [40]Panagiotis Elefsiniotis,D G Wareham,W K Oldham.Particulate organic carbon solubilization in an acid-phase upflow anaerobic sludge blanket system[J].Environmental Science &Technology,1996,30:1508-1514
    [41]何起利,梁威,贺锋,成水平,吴振斌.复合垂直流人工湿地基质生化活性研究[J].环境科学与技术,2008,31(10):29-33
    [42]朱亮,刘刚,苗伟红,韩增民.膨胀蛭石用于人工湿地去除氮磷的研究[J].河海大学学报(自然科学版),2008,36(2):147-151
    [43]Huang Y,Ortiz L,Aguirre P,Garcia J,Mujerirgo R,Bayona J M.Effect of desigen parameters in horizontal flow constructed wetland on the behaviour of volatile fatty acids and volatile alkylsulfides[J].Chemosphere,2005 59:769-777
    [44]US EPA.Constructed Wetlands Treatment of Municipal Wastewaters[C].Washington,DC, EPA 625-R-99-010,1999
    [45]O'Flaherty V, Colohan S, Mulkerrins D, Colleran E.Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor.Ⅱ: microbial interactions and toxic effects [J].Bioresource Technology 1999b, 68:109-120
    [46]Lettinga G, Rebac S, Parshina S, Nozhevnikova A, van Her J B, Stams AJM.High-rate anaerobic treatment of wastewater at low temperatures [J].Applied and Environmental Microbiology, 1999,65(4): 1696-1702
    [47]Zehnder A B J, Huser B A, Brock T D, Wihrmann K.Characterisation of an acetate-decarboxylation, non-hydrogen-oxidizing methane bacterium [J].Archives of Microbiology,1980,124:1-11
    [48]O'Reilly C, Colleran E.Effect of influent COD/SO_4~(2-) ratios on mesophilic anaerobic reactor biomass populations: physico-chemical and microbiological properties [J].FEMS Microbiology Ecology, 2006, 56: 141-153
    [49]Henry J G and Prasad D.Anaerobic treatment of landfill leachate by sulfate reduction [J].Water Science and Technology, 2000,41(3): 239-246
    [50]Wu W M, Hickey R F, Zeikus J G.Characterisation of metabolic performance of methanogenic granules treating brewery wastewater: role of the sulphate-reducing bacteria [J].Applied Environmental Microbiology, 1991, 57: 3438-3449
    [51]Heppne B, Zellner G, Dickmann H.Start-up and operation of a propionate-degrading fluidized-bed reactor [J].Applied and Microbiology Biotechnology, 1992, 36: 810-816
    [52]Cahill T, Thomas C, Schwarzhach S, Seiberr J.Accumulation of trifuoroacetate in seasonal wetlands in California [J].Environmental Science & Technology, 2001, 35: 820-825
    1.Cooper P Griffin P Humphries S Pound A.Design of a hybrid reed bed system to achieve complete nitrification and denitrification of domestic sewage.Water Sci Technol,1999,40(3):283-289
    2.Lin Y F,Jing S R,Lee D Y,et al.Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate.Environ Pollution,2005,134(3):411-421
    3.A.Noorvee E P(?)ldvere and(U|¨) Mander.The effect of a vertical flow filter bed on a hybrid constructed wetland system.Water Sci Technol,2005,151(9):137-144
    4.Murray-Guide C,Heatley J E,Karanfil T,et al.Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water.Water Res,2003,37(3):705-713
    5.JH Ham CG Yoon JH Jeon and HC Kim.Feasibility of a constructed wetland and wastewater stabilisation pond system as a sewage reclamation system for agricultural reuse in a decentralised rural area.Water Sci Technol,2007,55(1-2):503-511
    6.Green M,Shaul N,Beliavski M,et al.Minimizing land requirement and evaporation in small wastewater treatment systems.Ecol Engineer,2006,26(3):266-271
    7.Heistad A,Paruch A M,Vrle L,et al.A high-performance compact filter system treating domestic wastewater.Ecol Engineer,2006,28(4):374-379
    8.D-K Lee S-C Kim and J-H Yoon.Reuse of a dye house effluent after being treated with the combined catalytic wet peroxide oxidation process and the aerated constructed wetland.Water Sci Technol,2007,55(1-2):407-415
    9.吴振斌,徐光来,周培疆等.复合垂直流人工湿地污水氮的去除效果研究.农业环境科学学报,2004,23(4):757-760
    10.尹炜,李培军,叶闽等.复合潜流人工湿地处理城市地表径流研究.中国给水排水,2006,22(1):5-8
    11.帖靖玺,郑正,钟云等.潜流-上行垂直流复合人工湿地对氮磷去除效果.生态学杂志,2006,25(3):265-269
    12.曹向东,王宝贞,刘鸿亮等.强化塘-人工湿地复合生态塘系统中氮和磷的去除规律.环境科学研究,2000,13(2):15-19
    13.Garc(?)a,J.,Aguirre,P.,Mujeriego,R.,Huang,Y.,Ortiz,L.,Bayona,J.M.Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands [J].Ecological Engineering,2005,25:405-418
    14.Lepiso, R.& Rintala, J., Conversion of volatile fatty acids in an extreme thermophilic (70-80°C) upflow anaerobic sludge-blanket reactor [J].Bioresource Technology, 1996,56:221-227
    15.Tholozan, J.L., Samain, E., Grivet, J.P., Moletta, R., Dubourguier, H.C.& Albagnac,G.Reductive carboxylation of propionate to butyrate in methanogenic ecosystems [J].Applied and Environmental Microbiology, 1988, 54:441-445
    16.Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q, and Gu, G.Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions [J].Environmental Science & Technology, 2006,40:2025-2029
    17.O'Flaherty, V, Colleran, E.Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor.I: process disturbance and remediation [J].Bioresource Technology, 1999, 68:101-107
    18.Oude-Elferink, S.J.W.H., Visser, A., Hulshoflf Pol, L.W, Stams, A.J.M.Sulphate reduction in methanogenic bioreactors [J].FEMS Microbiology Reviews, 1994, 15:119-136
    19.Mohan, S.V., Rao, N.C, Prasad, k.k., Krishna, P.M., Rao, R.S., Sarma, P.N.Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the taguchi dynamic DOE methodology [J].Biotechnology and Bioengineering, 2005, 90 (6):732-745
    20.Sung, S.H., Liu, T.Ammonia inhibition on thermophilic anaerobic digestion [J].Chemosphere, 2003, 53: 43-52
    21.Rebac, S., Gerbens, S., Lens, P., Van Lier J.B., Stams, A.J.M., Keesman, K.J.,Lettinga G.Kinetics of fatty acid degradation by psychrophilically grown anaerobic granular slidge [J].Bioresource Technology, 1999, 69 : 241-248
    22.O'Flaherty, V, Colohan, S, Mulkerrins, D, Colleran, E.Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor.Ⅱ: microbial interactions and toxic effects [J].Bioresource Technology, 1999, 68: 109-120
    23.Lettinga, G., Rebac, S., Parshina, S., Nozhevnikova, A., van lier, J.B., Stams, A.J.M., High-rate anaerobic treatment of wastewater at low temperatures [J].Applied and Environmental Microbiology, 1999, 65 (4): 1696-1702
    24.Omil, F., Lens, P., Visser, A., Hulshoff Pol L.W., Lettinga, G.Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids [J].Biotechnology and Bioengineering, 1998, 57(6): 676-685
    25.O'Reilly, C.Colleran, E.Effect of influent COD/SO_4~(2-) ratios on mesophilic anaerobicreactor biomass populations: physico-chemical and microbiological properties [J].FEMS Microbiology Ecology, 2006, 56: 141-153
    26.Henry, J.G.and Prasad, D.Anaerobic treatment of landfill leachate by sulfate reduction [J].Water Science and Technology, 2000,41(3): 239-246
    27.Visser, A.The anaerobic treatment of sulfate containing wastewater [M].Wageningen University, Wageningen, 1995, The Netherlands
    28.Overmeire, A., Lens, P., Verstraete, W.Mass-transfer limitation of sulfate in methanogenic aggregates [J].Biotechnology and Bioengineering, 1994, 44 (3):387-391
    29.Lopes, S.I.C, Wang, X., Capela.M.I., Lens, P.N.L.Effect of COD/SO42" ratio and sulfide on thermophilic (55°C) sulfate reduction during the acidification of sucrose at Ph 6 [J].Water Research, 2007, 41: 2379-2392
    30.Heppner B, Zellner G & Dickmann H.Start-up and operation of a propionate-degrading fluidized-bed reactor [J].Applied and Microbiology Biotechnology, 1992, 36: 810-816
    31.de Smul A, Verstaete W, Retention of sulfate-reducing bacteria in expanded granular-sludge-blanket reactors [J].Water Environment Research, 1999, 71:427-431
    32.Whitmire, S.L.and Hamilton, S.K.Rapid removal of nitrate and sulfate in freshwater wetland sediments [J].Journal of Environmental Quality, 2005, 34: 2062-2071
    33.Alewell, C, Paul, S., Lischeid, G, Kiisel, K., Gehre, M.Characterizing the redox status in three different forested wetlands with geochemical data [J].Environmental Science & Technology, 2006, 40(24): 7609-7615
    34.WieBner, A., Kappelmeyer, U., Kuschk, P., Kastner, M.Influence of the redox condition dynamics on the removal efficiency of a laboratory-sacle constructed wetland [J].Water Research, 2005, 39: 248-256
    35.Wiessner, A., Kappelmeyer, U., Kuschk, P., Kastner, M.Sulphate reducation and the removal of carbon and ammonia in a laboratory-scale constructed wetland [J].Water Research, 2005, 39: 4643-4650
    36.Elefsiniotis, P., Wareham, D.G, and Oldham, W.K.Particulate organic carbon solubilization in an acid-phase upflow anaerobic sludge blanket system [J].Environmental Science & Technology, 1996, 30: 1508-1514
    37.Garcia, J., Vivar, J., Aromir, M., Mujeriego, R.Role of hydraulic retention time and granular medium in microbial removal in tertiary treatment reed beds [J].Water Research, 2003, 37:2645-2653
    38.Zehnder, A.B.J., Huser, B.A., Brock, T.D, Wihrmann, K.Characterization of an acetate-decarboxylation, non-hydrogen-oxidizing methane bacterium [J].Archives Microbiology, 1980, 124:1-11
    39.Wu, W.M., Hickey, R.F., Zeikus, J.G.Characterisation of metabolic performance of methanogenic granules treating brewery wastewater: role of the sulphate-reducing bacteria [J].Applied Environmental Microbiology, 1991, 57: 3438-3449
    1.van Leerdam R C,de Bok F A,Lomans B P,Stams A J,Lens P N,Janssen A J.Volatile organic sulfur compounds in anaerobic sludge and sediments:biodegradation and toxicity[J].Environmental Toxicololgy Chemstry,2006,25(12):3101-3109
    2.Xianhao Cheng,Peterkin E,Burlingame G A.A study on volatile organic sulfide causes of odors at Philadelphia's Northeast Water Pollution Control Plant[J].Water Research,2005,39(16):3781-3790
    3.Lomans B P,van der Drift C,Pol A,Op den Camp H J M.Microbial cycling of volatile organic sulfur compounds[J].CMLS,Cellular and Molecular Life Science,2002,59(4):575-588
    4.Visscher P T,Baumgartner L K,Buckley D H,Rogers D R,Hogan M E,Raleigh C D,Turk K A,Des Marais D J.Dimethyl sulphide and methanethiol formation in microbial mats:potential pathways for biogenic signatures[J].Environmental Microbiology,2003,5(4):296-308
    5.Bentley R,Chasteen TG.Environmental VOSCs-formation and degradation of dimethyl sulfide,methanethiol and related materials[J].Chemosphere,2004,55:291-317
    6.Vallina S M,Sire(?) R.Strong relationship between DMS and the solar radiation dose over the global surface ocean[J].Science,2007,315(5811):506-508
    7.江桂斌等.环境样品前处理技术[M].北京:化学工业出版社),2004:105-163
    8.Wang Y,Li Y,Feng J,Sun C.Polyaniline-based fiber for headspace solid-phase microextraction of substituted benzenes determination in aqueous samples[J].Analytica Chimica Acta,2008,619(2):202-208
    9.Stiles R,Yang I,Lippincott R L,Murphy E,Buckley B.Measurement of drinking water contaminants by solid phase microextraction initially quantified in source water samples by the USGS[J].Environmental Science & Technology,2008,42(8):2976-2981
    10.Rodr(?)guez V,Yonamine M,Pinto E.Determination of anatoxin-a in environmental water samples by solid-phase microextraction and gas chromatography-mass spectrometry [J].Journal of Separaton Science,2006,29(13):2085-2090
    11.Koziel J A,Cai L,Wright D W,Hoff S J.Solid-phase microextraction as a novel air sampling technology for improved,GC-olfactometry-based assessment of livestock odors.Journal of Chromatographic Science,2006,44(7):451-457
    12.蔡敏,汪巍,邢钧,冯钰錡,吴采樱.新型固相微萃取涂层直接检测样品中的3种多氯酚 [J].分析化学,2006,34(1):91-94
    13.Halasz A,Hawari J.SPME in environmental analysis:Biotransformation pathways[J].Journal of Chromatographic Science,2006,44(7):379-386
    14.张廉奉,李秀娟,刘翠霞,曾昭睿.三甲基杯[6]芳烃固相微萃取-气相色谱法测定土壤中的多环芳烃[J].分析化学,2007,35(9):1269-1273
    15.Torrens J,Riu-Aumatell M,L(?)pez-Tamames E,Buxaderas S.Volatile compounds of red and white wines by headspace-solid-phase microextraction using different fibers[J].Journal of Chromatographic Science,2004,42(6):310-316.
    16.Iglesias J,Lois S,Medina I.Development of a solid-phase microextraction method for determination of volatile oxidation compounds in fish oil emulsions[J].Journal of Chromatography A,2007,1163(1-2):277-287
    17.Salgado-Petinal C,Alzaga R,Garc(?)a-Jares C,Llompart M,Bayona J M.Low part per trillion determination of reactive alkanethiols in wastewater by in situ derivatization-solid-phase microextraction followed by GC/MS[J].Analytical Chemistry,2005,7(18):6012-6018
    18.Salgado-Petinal C,Alzaga R,Garc(?)a-Jares C,Llompart M,Bayona J M.New approach on the alkylthiol determination in water by in situ derivatization SPME followed by GC-ECD/NPD analysis[J].International Journal of Environmental Analytical Chemistry,2005,85(8):543-552
    19.Lestremau F,Desauiers V,Roux J C,Fanlo J L.Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by solid-phase microextraction and gas chromatography-pulsed flame photometric detection[J].Journal of Chromatography A,2003,999:71-80
    20.Mestres M,Mart(?) M P,Busto O,Guasch J.Simultaneous analysis of thiols,sulphides and disulphides in wine aroma by headspace solid-phase microextraction-gas chromatography[J].Journal of Chromatography A,1999,849(1):293-297
    21.Haberhauer-Troyer C,Rosenberg E,Grasserbauer M.Investigation of membrane dryers and evaluation of a new ozone scrubbing material for the sampling of organosulphur compounds in air[J].Journal of Chromatography A,1999,852(2):589-595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700