电力系统新型协调电压控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前全球电力工业的发展已步入大电网、大机组、超高压、重负荷、远距离输电时代,电网运行越来越接近稳定极限,电压稳定问题日益突出。采取实时、自动以及协调的电压控制以维护电压稳定一直是重要的研究和实践方向,本文立足现有的协调电压控制提出了一系列新型的协调电压控制的实现方法及其算法。
     提出了一种将传统三级电压控制中的二次和三次电压控制合并的电压控制方案,其基于实时循环执行的区域最优潮流计算得到控制指令,以实现如发电机自动电压调节器等的参考值刷新。所提方案具如下优势:①无需先导节点的选择,并且相对于利用PI控制器实现的二次电压控制种类来说,由于所提方法基于软件实现,控制分区的重新定义相对容易;②控制后的节点电压波形,特别是发电机端电压波形较好,并且严格处于运行约束范围内;③通过区域最优潮流的解算,简化了三次电压控制的执行,虽然所提方法带来的是次优计算结果,但是由于计算规模的降低,带来的计算稳定性以及计算效率的提高是可以预期的。
     针对长期电压稳定场景,根据准稳态假设建立了一种含连续–离散时间微分–代数方程约束的最优协调电压控制模型。该模型综合考虑长期电压稳定性和控制成本,能够协调不同种类的控制手段,利用基于拉道排列的间接法算法来求解。该算法具有计算精度高、数值稳定性好的特点。控制模型中引入了二次罚函数的处理方法,使得所提模型具备了解决离散控制变量归整问题的能力。
     在长期电压稳定的场景下,基于准稳态假设,还提出保留二次电压控制器的动态最优协调电压控制模型。该模型旨在协调扰动后先导节点电压参考值和其他电压控制手段维护长期电压稳定。其目标函数考虑电压稳定和控制成本;等式约束条件为连续–离散时间微分–代数方程组。基于直接法算法,并结合切换技术求解这个动态优化问题。所提模型及其算法具有如下优势:①保留了二次电压控制器,更符合分层电压控制电力系统的实际;②计算时间明显小于二次电压控制分钟级动作时间,具备在线计算速度;③结合切换技术提高了线搜索内点法的迭代稳定性,提高了对系统运行条件的适应性;④由于协调不同的控制手段,并考虑系统动态过程,具备了比二次电压控制更强的电压控制能力。
At present, the electric power industries of the whole world have entered into a new times which can be characterized as very large grid, generator units with huge capacity, ultrahigh voltage level, heavy loading condition and very long transmission line. Because of those mentioned points, power grids are operated closing to their stability margin increasingly, and the problems of voltage stability get the focus much more. Keeping the voltage stability by using real-time, automatic and coordinated voltage control is always an important direction of research and practice. Based on the existing coordinated voltage controls, in this work, a series of new scheme and its algorithm are proposed.
     A new voltage control scheme that combines the secondary voltage control (SVC) and tertiary voltage control (TVC) of the triditional three-level voltage control is presented here. This scheme is based on regional optimal power flows which implemented periodically in real time, and its objective is to update the set-points of generators' automatic voltage regulators etc. Comparing to the traditional secondary and tertiary voltage control, the advantages of the proposed method are listed below:①no need for the selection of pilot bus, and because the proposed method is software-based, the redefinition of voltage control areas is easier than that for the kind of secondary voltage control that implemented by PI controllers.②the voltage profiles at all buses, particularly generator terminal voltages, are better overall, with all voltages being maintained within required steady-state limits.③the implementation of TVC is simplified by the regional division of the associated OPF problem, since the corresponding optimization sub-problems are numerically and computationally significantly less demanding.
     Under the scenarino of long-term voltage stability, and based on quasi steady-state (QSS) approximation, an optimal coordinated voltage control (OCVC) model including continuous and discrete time differential-algebraic equations (DAEs) is established. This model considers long-term voltage stability and costs of controls synthetically,which can coordinate different kinds of controls. This OCVC problem can be solved by using indirect method with radau collocation. The algorithm has high accuracy and good numerical stability. To handle the discrete control variables, a quadratic penalty function mechanism was incorporated to the OCVC control model.
     For the long-term voltage stability, and based on the QSS approximation, an OCVC model is proposed in which secondary voltage controllers are embedded. This model designed control strategies from dynamic view, and its control goal was to keep long-term voltage stability by coordinating the reference voltage of pilot buses and other control means. Its objective function considered voltage stability and control-costs, and its equality constraints were continuous and discrete time DAEs. Direct method with switching technique is applied to solve the proposed models. The advantages of the proposed models and algorithm have advantages as:①the proposed models accord with hierarchical coordinated voltage control well because of the embedded secondary voltage controllers;②the time cost for calculation is less than the response time of SVC which typically set as 1min, and so on-line computation speed is realized;③the switching technique enhances the iteration stability of line search interior method, then the better robustness for system’s operation condition;④because of the coordination between different kinds of voltage control means and the consideration of system’s dynamic procedure, the proposed control scheme has better control ability than traditional SVC.
引文
[1]刘鹏,吴刚.世界范围内两起典型电压崩溃事故分析[J].电网技术,2003,7(5):35-37.
    [2]李再华,白晓民,丁剑,等.西欧大停电事故分析[J].电力系统自动化,2007,31(1):1-3.
    [3] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and classification of power system stability [J]. IEEE Transactions on Power Systems, 2004, 19(2): 1387-1401.
    [4] Cutsem T. V.,Vournas C..Voltage stability of electric power systems [M].Norwell,MA:Kluwer Academic Publishers,1998:318-320.
    [5] Corsi S.,Pozzi M.,Sabelli C.,et al.The coordinated automatic voltage control of the Italian transmission grid-part I: reasons of the choice and overview of the consolidated hierarchical system [J].IEEE Trans. on Power Systems,2004,19(4):1723-1732.
    [6]孙宏斌,张伯明,郭庆来,等.基于软分区的全局电压优化控制系统设计[J].电力系统自动化,2003,27(8):16-20.
    [7]龙启峰,丁晓群,刘小波,等.基于可控主导节点的电压分区及电压校正研究[J],电网技术,2006,29(24):59-62.
    [8]李端超,陈实,吴迪,等.安徽电网自动电压控制(AVC)系统设计及实现[J],电力系统自动化,2004,28(8):20-22.
    [9]孙元章,姚小寅,刘锋.二次电压控制对电力系统稳定性的影响[J],中国电机工程学报,2000,20(2):28-32.
    [10] Wu Q.,Popovic D. H.,Hill D. J.,et al.Voltage security enhancement via coordinated control [J].IEEE Transactions on Power Systems,2001,16(1):127-135.
    [11] Popovic D. H.,Hill D. J.,Wu Q..Optimal voltage security control of power systems [J].International Journal of Electrical Power and Energy Systems,2002(24):305-320.
    [12] Larsson M.,Karlsson D.. Coordinated system protection scheme against voltage collapse using heuristic search and predictive control [J]. IEEE Transactions on Power Systems, 2003, 18 (3): 1001-1006.
    [13] Larsson M.,Hill D. J.,Olsson G..Emergency voltage control using search and predictive control [J]. International Journal of Electrical Power and Energy Systems, 2002(24):121-130.
    [14] Wen J. Y.,Wu Q. H.,Turner D. R.,et al.Optimal coordinated voltage control for power system voltage stability [J].IEEE Transactions on Power Systems,2004,19(2):1115-1122.
    [15]张芳,房大中,陈家荣,等.最优协调电压紧急控制新模型研究[J].中国电机工程学报,2007,27(10):35-41.
    [16] Chen Y.. Development of automatic slow voltage control for large power systems [D]. Wasgington, Washington State University, 2001.
    [17] Tomsovic K., Bakken D. E., Venkatasubramanian V., et al. Designing the next generation of real-time control, communication, and computations for large power systems [J]. Proceedings of the IEEE special issue on Energy Infrastructure Defense Systems, 2005, 93(5): 965–979.
    [18] Taylor W., Erickson D. C., Martin K. E., et al. WACS—Wide-area stability and voltage control system: R&D and on-line demonstration [J], Proceedings of the IEEE special issue on Energy Infrastructure Defense Systems, 2005, 93(5): 892–906.
    [19] Blanchon G. A new aspect of studies of reactive energy and voltage of the networks [J]. Proceedings of Power systems computation conference. Grenoble, 1972.
    [20] Paul J. P., Leost J. Y., Tesseron J. M. Survey of the secondary voltage control in France: present realization and investigations [J]. IEEE Trans. on Power Systems, 1987, 2(2): 505-512.
    [21] Arcidiacono V., Corsi S., Natale A., et al. New developments in the application of ENEL transmission system automatic voltage and eactive control [J]. Proceedinhs of CIGRE, Paris, 1990.
    [22] Piret J. P., Antoine J. P., Stubbe M., et al. The study of a centralized voltage control method applicable to the Belgian system [J]. Proceedings of CIGRE, Paris, 1992: 39-201.
    [23] Ilic M., Christensen J., Eichorn K. L. Secondary voltage control using pilot point information [J]. IEEE Trans. on Power Systems, 1998, 3(2): 660-668.
    [24] Lagonotte P., Sabonnadiere J. C., Leost J. Y., et al. Structural analysis of the electtical system: application to secondary voltage control in France [J]. IEEE Trans. on Power Systems, 1989, 4(2): 479-486.
    [25] Paul J. P., Corroyer C., Jeannel P., et al. Improvements in the organization of secondary voltage control in France [R]. Paris, CIGRE, Proceedings of the 33rd Session, 1990.
    [26] Popovic D. S., Calovic M. S., Levi V. A. Voltage reactive security analysis in powersystems with automatic secondary voltage control [J]. IEEE Proceedings- Generation, Transmission and Distribution, 1994, 141(3): 177-183.
    [27] Conejo A., de la Fuente J. I., Goransson S. Comparison of alternative algorithm to select pilot buses for secondary voltage control in electric power networks [J]. IEEE 7th Mediterranean Electrotechnical Conference, 1994, 3: 940-943, Antalya.
    [28] Ilic M. D., Liu X. J., Leung G., et al. Improved secondary and tertiary voltage control [J]. IEEE Trans. on Power Systems, 1995, 10(4): 1851-1862.
    [29] Vu H. P., Ptuvot P., Launay C., et al. An improved voltage control on large-scale power system [J]. IEEE Trans. on Power Systems, 1996, 11(3): 1295-1303.
    [30] Popovic D. S., Impact of secondary voltage control on voltage stability [J]. Electric Power Systems Research, 1997, 40(1): 51-62.
    [31] Lefebvre H., Fragnier D., Boussion J. Y., et al. Secondary coordinated voltage control system: feedback pf EDF [R]. Seattle, IEEE Power Enfineer Society Summer Meeting, 2000, 1:290-295.
    [32] Wang H. F. Multi-agent co-ordination for the secondary voltage control in power-system contingencies [J]. IEE Proceedings-generation, Transmission and Distribution, 2001, 148(1): 61-66.
    [33] Wang H. F., Li H., Chen H., et al. Cordinated secondary voltage control to eliminate voltage violations in power system contingencies [J]. IEEE Trans. on Power Systems, 2003, 18(2): 588-595.
    [34] Canizares C. A., Cavallo C., Pozzi M., et al. Comparing secondary voltage regulation and shunt conpensation for improving voltage stability and transfer capability in the Italian power system [J]. Electric Power Systems Research, 2005, 73(1): 67-76.
    [35] Tapia G., Tapia A., Ostolaza J. X. Proportional-integral regulator-based approach to wind farm reactive power management for secondary voltage control [J]. IEEE Trans. on Energy Conversion, 2007, 22(2): 488-498.
    [36]孙元章,王志芳,姚小寅.电力系统二次电压控制的研究[J].电力系统自动化,1999,23(9):9-14.
    [37]范磊,陈珩.二次电压控制研究(一)[J].电力系统自动化,2000,24(11):18-21.
    [38]范磊,陈珩.二次电压控制研究(二)[J].电力系统自动化,2000,24(12):20-24.
    [39]刘锋,姚小寅,孙元章.用奇异值分解法对二次电压控制效果的分析[J].电力系统自动化,1999,23(18):1-4.
    [40]郭庆来,孙宏斌,张伯明,等.协调二次电压控制的研究[J].电力系统自动化,2005,29(23):19-24.
    [41] Yun Z.H..,Zhang H.X.,Liu Y. T.,et al. Secondary Voltage Control Based on Multiple Objective Linear Programming[J].Canadian Conference on Electrical and Computer Engineering,2005,2212-2215.
    [42]李海峰,王海风,陈珩。紧急情况下二次电压的多代理协调控制[J].电力系统自动化,2001,25(24):17-21.
    [43]盛戈皡,涂光瑜,罗毅,等.基于多Agent的二级电压控制系统[J].电力系统自动化,2002,26(5):20-25.
    [44]盛戈皡,涂光瑜,罗毅,等.考虑控制区域间影响的二次电压控制[J].电力系统自动化,2002,26(15):27-32.
    [45]刘小波,丁晓群,龙启峰,等.基于Ward等值的二次电压控制研究[J].电网技术,2005,29(12):53-56.
    [46] Ye P.,Yao B.,Song J. H.. Coordinated secondary voltage control among zones based on grey prediction controllers[J].2005 IEEE/PES Transmission and Distribution Conference and Exhibition :Asia and Pacific Dalian,China.
    [47]杨秀媛,董征,唐宝等.基于模糊聚类分析的无功电压控制分区[J].中国电机工程学报,2006,26(11):6-10.
    [48]盛戈皡,江秀臣,曾奕.考虑网络传输延迟的二级电压控制[J].电力系统自动化,2007,31(15): 30-34.
    [49]郭庆来,张伯明,孙宏斌.电网无功电压控制模式的演化分析[J].清华大学学报(自然科学版),2008,48(1):16-19.
    [50]郭庆来,王蓓,宁文元等.华北电网自动电压控制与静态电压稳定预警系统应用[J].电力系统自动化,2008,32(5):95-98.
    [51] Vargas L.S.,Canizares C.A..Time Dependence of Controls to Avoid Voltage Collapse[J].IEEE Trans on Power Systems[J],2000,15(4): 1367-1375.
    [52] Feng Z.H.,Ajjarapu V.,Maratukulam D.J..A comprehensive approach for preventive and corrective control to mitigate voltage collapse[J].IEEE Trans. on Power Systems[J],2000,15(2):791-797.
    [53] Vournas C.,Karystianos M..Load Tap Changers in Emergency and Preventive Voltage Stability Control[J].IEEE Trans on Power Systems,2004,19(1):492-498.
    [54] Lin L., Kumar R. Application of model predictive control in voltage stability [J], Proceedings of the 2007 American Control Conference, New York city, USA, July 11-13, 2007,5916-5921.
    [55] Jin L. C., Kumar R. Security constrained coordinated dynamic voltage stabilization based on model predictive control [J]. Power & Energy General Meeting, Calgary, AB, July 26-30, 2009, 1-8.
    [56] Cutsem T. V.,Voltage instability:phenomena,countermeasures,and analysis methods. [J] Proceedings of the IEEE, 2000, 88 (2): 208-227.
    [57] Iserles A..微分方程数值分析基础教程[M].北京:清华大学出版社,2005:19-26.
    [58]黄家裕,陈礼义,孙德昌.电力系统数字仿真[M],北京:水利电力出版社,1993:28-31.
    [59]余贻鑫,陈礼义.电力系统的安全性和稳定性[M],北京:科学出版社,1988:29-38.
    [60] Stubbe M.,Bihain A.,Deuse J.,et al.STAG- a new unified software program for the study of dynamic behavior of electrical power system[J].IEEE Trans on Power Systems,1989,4(1):129-138.
    [61]汤涌,刘文焯,宋新立,等.电力系统全过程动态仿真的实例与分析[J].电网技术,2002,26(12):5-8.
    [62]汤涌,宋新立,刘文焯,等.电力系统全过程动态仿真的数值方法[J].电网技术,2002,26(9):7-12.
    [63]汤涌,宋新立,刘文焯,等.电力系统全过程动态仿真中的长过程动态模型电网技术[J].电网技术,2002,26(12):5-8.
    [64]韩祯祥,吴国炎.电力系统分析[M].杭州:浙江大学出版社,1993:104-105.
    [65]程浩忠,吴浩.电力系统无功与电压稳定性[M].北京:中国电力出版社,2003:56-59.
    [66] Vournas C.D.,Manos G.A.,Sauer P.W., et al. Effect of overexcitation limiters on power system long-term modeling [J]. IEEE Trans. on Energy Conversion,1999,14(4):1529-1536.
    [67] Qin W.. A novel continuation-based quasi-steady-state analysis approach to mitigate long-term voltage instability [D].Iowa:Iowa State University,2001
    [68] Hill D. J..Nonlinear dynamic load models with recovery for voltage stability studies [J]. IEEE Trans. on Power Systems,1993,2 (8): 166-176.
    [69] Karlsson D., Hill D. J.. Modeling and identification of nonlinear loads in power systems [J]. IEEE Trans. on Power Systems,l994,9 (1): 157-166.
    [70] Per-Anders L.,Hill D. J.,Stefan A.,et al. On the analysis of long-term voltage stability [J]. Electric Power & Energy Systems,1993,15 (4): 292-237.
    [71] Xu W., Mansour Y., Harring P. G.. Planning Methodologies for Voltage Stability Limited Power Systems [J]. Electrical Power& Energy Systems,1993,15(14): 221-228.
    [72] Delfino B., Denegri G. B., Invernizzi M., et a1. Voltage stability of power systems:links between static and dynamic approaches [J]. IEEE Trans. on Power Systems, 1996, 11(4): 854-858.
    [73] Popovic D., Hiskens J. A., Hill D. J.. Investigations of load-tap change interaction [J]. Electrical Power 8L Energy Systems, l996, 18(2): 81-97.
    [74] Xu W., Mansour Y.. Voltage stability analysis using generic dynamic load models [J]. IEEE Trans.on Power Systems,1994,9 (1):479-493.
    [75] Pal M. K..Voltage Stability conditions considering load characteristics [J]. IEEE Trans. on Power Systems,1992,7(1):243-249.
    [76] Pal M. K.. Voltage Stability: analysis needs modeling requirement,and modeling adequacy [J]. IEE Proc-C,1993,140(4):279- 286.
    [77] Pal M. K..Assessment of Corrective Measures for Voltage Stability Considering Load Dynamics [J]. Electrical Power & Energy Systems, 1995, 17(5): 325-334.
    [78]周双喜,朱凌志,郭锡玖,等.电力系统电压稳定性及其控制[M].北京:中国电力出版社,2003:26-90.
    [79] Cutsem T.V., Vournas C.D., Voltage stability analysis in transient and mid-term time scales[J]. IEEE Trans. on Power Systems, 1996, 11(1): 146-154.
    [80] Cutsem T.V., Jacquemart Y., Marquet J.N., et al. A comprehensive analysis of mid-term voltage stability[J]. IEEE Trans.on Power System, 1995, 10(3): 1173-1182.
    [81] Cutsem T.V.. An approach to corrective control of voltage instability using simulation and sensitivity[J]. IEEE Trans. on Power Systems, 1995, 10(2): 616-622.
    [82] Cutsem T.V., Mailhot R.. Validation of a fast voltage stability analysis method on the Hydro-Quebec system[J]. IEEE Trans. on Power Systems, 1997, 12(1): 282-292.
    [83] Chow J. H., Cheung K. W.. A tool box for Power System Dynamics and Control Engineering Education and Research [J]. IEEE Trans. on Power Systems, 1992, 7(4): 1559-1564.
    [84] Elenius S.. Application of Long-term Dynamics in Power System Reliability Assessments [D]. Helsinki: University of Technology, 1999.
    [85] Vournas C. D., Manos G. A., Kabouris J., et al.. On-line voltage security assessment of the Hellenic Interconnected system [J]. Proceedings of the IEEE power tech conference, Bologna, June, 2003.
    [86] Cutsem T. V.,Grenier M. E.,Lefebvre D.. Combined detailed and quasi steady-state time simulations for large-disturbance analysis [J]. Electrical Power & Energy Systems, 2006(28):634-642.
    [87] CIGRE Task Force C4.602,Coordinated voltage control in transmission network [R], 2007.
    [88] Voltage Stability Assessment: Concepts, Practices and Tools[M]. IEEE-PES Power Systems Stability Subcommittee Special Publication, 2002.
    [89] Berizzi A., Marannino P., Merlo M., et al. Steady-state and dynamic approaches for the evaluation of loadability margin in the presence of secondary voltage regulation [J]. IEEE Trans. on Power Systems, 2004, 9(2): 1048-1057.
    [90] Zambroni de Souza A. C., Honório L. M., Torres G. L., et al. Increasing the loadability of power systems through optimal-local-control actions [J]. IEEE Trans. on Power Systems, 2004, 19(1): 188-194.
    [91] Cutsem T. V. A method to compute reactive power margins with respect to voltage collapse [J]. IEEE Trans. on Power Systems, 1991, 6(1): 145–155.
    [92] Vaahedi E., Mansour Y., Fuchs C., et al. Dynamic security constrained optimal power flow/var planning [J]. IEEE Trans. on Power Systems, 2001, 16(1): 38–43.
    [93] Torres G. L., Quintana V. H. An interior point method for nonlinear optimal power flow using voltage rectangular coordinates [J]. IEEE Trans. on Power Systems, 1998 13(4): 1211–1218.
    [94] Ca?izares C A, Cavallo C and Pozzi M, et al. Comparing Secondary Voltage Regulation and Shunt Compensation for Improving Voltage Stability and Transfer Capability in the Italian Power System [J]. Electric Power Systems Research, 2005 73(1): 67-76.
    [95] Eremia M., Simon P., Petricica D. Some aspects of hierarchical voltage-reactive power control [J]. Power Engineering Society Summer Meeting, IEEE, 2001(2): 872– 880.
    [96] Vu H., Pruvot P., Launay C., et al. An improved voltage control on large-scale power system [J]. IEEE Trans. on Power Systems, 1996, 11(3): 1295–1303.
    [97] Mamandur K. R. C., Chenoweth R. D. Optimal control of reactive power flow forimprovements in voltage profiles and for real power loss minimization [J]. IEEE Trans. on Power App. & Syst., 1981(100): 3185-3194.
    [98] Rosehart W. D., Ca?izares C. A., Quintana V. Multi-objective optimal power flows to evaluate voltage security costs in power networks [J]. IEEE Trans. Power Syst., 2003(18): 578-587.
    [99] Pai M. A., Energy function analysis for power system stability [M]. Boston: Kluwer Academic Publishers, 1989.
    [100] Vittal V. Transient stability test systems for direct stability methods [J]. IEEE Trans. on Power Syst., 1992(7): 37–42.
    [101] Milano F.Documentation for PSAT version 2.0.0.[ED/OL].http://www.uclm.es/area/ gsee/Web/Federico/psat.htm,2008-02-19/2009-04-16.
    [102] Fourer R.,Gay D M., Kernighan B. W..AMPL:a modeling language for mathematical programming [M].Belmont,CA:Thomson Brooks Cole,2003:1-64.
    [103] Waltz R. A., Plantenga T. D..KNITRO user’s manual,version 6.0. [ED/OL]. http://www.ziena.com , 2009-03-09/2009-04-16.
    [104] Anderson P. M., Fouad A. A. Power system control and stability [M]. New York: IEEE Press, 1993.
    [105]赵晋泉,侯志俭,吴际舜.牛顿最优潮流算法中离散控制量的新处理方法[J].电力系统自动化,1999,23(23):37-40.
    [106] Agrawal S. K.,Fabien B. C.. Optimization of dynamic systems [M]. Norwell,MA:Kluwer Academic Publishers,1999:61-89.
    [107]房大中,孙景强.基于最优控制原理的暂态稳定预防控制模型[J].电力系统自动化,2005,29(1):18-21.
    [108] Ascher U. M.,Petzold L. R..Computing methods for ordinary differential equations and differential-algebraic equations [M]. Philadelphia,PA:SIAM,1998:270-276.
    [109] Hairer E. , Wanner G.. Solving ordinary differential equations II: Stiff and differential-algebraic problems 2nd [M]. Berlin, Heidelberg: Springer-Verlag, 1996: 118-130.
    [110] Biegler L. T.,Cervantes A. M.,Wachter A.Advances in simultaneous strategies for dynamic process optimization[J].Chemical Engineering Science,2002(57):575-593.
    [111] Bader G.,Ascher U. M..A new basis implementation for a mixed order boundary valueODE solver[J].SIAM Journal of Scientific Computing,1987,8(4):483-500.
    [112] Waltz R. A.,Morales J. L.,Nocedal J.,et al.An interior algorithm for nonlinear optimization that combines line search and trust region steps[J] . Mathematical Programming A,2006,107(3):391-408.
    [113] El-Hallabi M.A hybrid algorithm for nonlinear equality constrained optimization problems:global and local convergence theory [R].Rabat,Morocco:Mathematics and Computer Science Department,Institut National des Postes et Telecommunications,1999.
    [114] Bunch J. R.,Parlett B. N.Direct methods for solving symmetric indefinite systems of linear equations[J].SIAM Journal on Numerical Analysis,1971,8(4):639-655.
    [115] Conjo A.,Fuente J. I.,Goransson S.Comparison of alternative algorithms to select pilot buses for secondary voltage control in electrical power network[J].IEEE Trans. on Power Systems,1994,4(3):940-943.
    [116] Nocedal J., Wright S. J. Numeric optimization [M]. 2nd. NewYork, USA: Springer Science+Business Media, LLC., 2006: 66-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700