分布式发电系统建模及稳定性仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式发电技术的蓬勃发展特别是各种新能源发电技术的广泛应用使得现代电力系统进入了一个崭新的时代。区别于传统大电网运行模式,大量分布式电源接入到输配电网络中,其独特的电源动态特性、并网运行技术以及三相不对称网络结构会对电力系统的动态特性产生显著影响,本文的主要工作围绕分布式发电系统稳定性建模和仿真程序开发研究而展开。主要成果如下:
     在建模技术研究方面:总结阐述了在分布式发电系统中常用的典型电力电子装置准稳态模型以及控制环节构造,提出了一种电力电子通用化准稳态模型的设计方法,并将其应用于分布式发电系统建模之中。所提出的方法和模型有助于规范化分布式发电并网运行系统的模型表达形式。
     在仿真数值算法研究方面:将雅可比矩阵的数值微分求导法与预测-校正形式的隐式交替求解算法相结合,提出了一种适用于分布式发电系统稳定性仿真算法。这种方法的优点在于不需要事先获得雅克比矩阵元素函数的解析信息,完全在原系统状态方程和代数方程的基础上直接通过数值计算获得,可以自动计及系统模型结构突变时的影响,考虑到分布式发电系统中非连续控制环节的大量存在,这一特点在分布式发电系统稳定性仿真软件的开发中具有独特优势。
     在软件设计和开发方面:本文基于十字链表稀疏存储结构,发展了一种网式链表数据结构,该结构的引入可以实现数值计算中DAE系统雅克比矩阵高效稀疏存储。基于该数据结构提出了一种网式链表-双层算法(Mesh List-Double Layer Algorithm-MLDLA),双层结构的外层是显式积分模块,内层是隐式梯形校正迭代模块,显式、隐式数值算法计算流程统一在双层结构中实现。网式链表的应用使得内层隐式计算可以灵活有效地处理各种动态元件与控制器接口,DAE系统微分方程与代数方程接口,可以任意组装拼接基于模块化设计的DAE系统分块雅克比矩阵,为软件开发工作中新元件、新模型的添加和更新提供了一个简便的途径。
     最后,对分布式发电系统稳定仿真计算程序进行了面向对象分析和系统设计,提出了由分布式发电系统各种元件组成的“交直流双层母线树”结构,用以描述分布式发电并网系统,双层母线树接口类似于传统电网中发电机及其控制器单元,具有“即插即用”的特性。最后阐述了仿真程序中模型类、功能类的设计方法,以及主要类的结构和功能。
Vigorous development of distributed generation techniques, especially extensive application of new energy generation techniques, has brought modern power system into a brand new era. Due to the unique dynamic characteristics of the distributed generation sources, grid-connection techniques, and three phase unbalanced network structure, dynamic features of power system have been greatly influenced by the high permeability of distributed energy sources connected to the transmission and distribution grid. This is quite different from traditional bulk power system operation mode,. In this thesis, the main work focuses on the modeling and programming of stability simulation of distributed power generation system. The major achievements are as follows:
     In the field of modeling techniques, the commonly used typical quasi-steady-state models and control link structures of power electronic devices are summarized in this thesis. A general quasi-steady-state modeling design method is proposed and applied in distributed generation system modeling. The proposed method and model are much beneficial to normalize modeling expression forms of distributed generation system.
     In the aspect of numerical algorithms, a stability simulation algorithm suitable for distributed generation system is presented in this thesis. In the proposed algorithm, a predict - correction alternate solving implicit integration algorithm is combined with, a numerical differential method to obtain the system Jacobian matrix. With this algorithm, no analytic information of Jacobian matrix elements is required in advance. The Jacobian matrix is acquired directly by numerical calculation based on the original system state equations and algebraic equations. Moreover, this method can automatically take into account the impact of system model structure mutation. Considering the existence of large amounts of discontinuous control links in distributed generation system, this feature makes the proposed method especially advantageous for the development of stability simulation programs for distributed generation system.
     For the software design and development, a new mesh list data structure is presented based on the sparse storage structure of cross-linked list. The application of this structure can realize highly efficient sparse data storage for DAE system Jacobian during simulation. A Mesh List-Double Layer Algorithm (MLDLA) is developed on the basis of this data structure. The outer layer is designed for explicit integration method, whereas the inner layer is designed for implicit integration method. The consolidated implementation of explicit and implicit integration algorithms is achieved by the double layer structure. For inner layer implicit integration algorithm, the application of mesh list enables a flexible and efficient processing of interface between dynamic components and control devices, as well as the interface between differential equations and algebraic equations of the DAE system. The DAE system block Jacobian matrix can be assembled arbitrarily based on modularized design. This provides a convenient solution for the addition and update of new components and new models.
     Furthermore, the system object-oriented design and analysis method is investigated in this thesis to carry out stability simulation of distributed generation system. The double-layer AC-DC bus-tree structure for grouping elements in distributed generation system is presented to describe grid-connection system. The interface of double-layer AC-DC bus-tree is similar to generator and its control unit in traditional power grid. It has“plug and play”feature. In the following part, design methods for modeling class and functional class are illustrated, as well as structure and function of major classes.
     In the end, simulation results for test cases are given to validate the correctness of the modeling and algorithm for stability simulation of distributed generation system.
引文
[1]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006~2020年) http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [2] EPRI.Distributed Energy Resources: Current Landscape and a Roadmap for the Future. EPRI, Palo Alto, CA: 2004. 1008415
    [3]汤涌,宋新立,刘文焯,周孝信,电力系统全过程动态仿真的数值方法-电力系统全过程动态仿真软件开发之一,电网技术2002, 26(9):7-12, 28
    [4] Reza, M. ,Schavemaker, P.H. ,Slootweg, J.G. ,et al. Impacts of distributed generation penetration levels on power systems transient stability,Power Engineering Society General Meeting, 2004 IEEE, June 2004:2150-2155
    [5] Slootweg, J.G. , Kling, W.L. Impacts of distributed generation on power system transient stability,Power Engineering Society Summer Meeting, 2002 IEEE, July 2002:862-867
    [6] Tran-Quoc, T., Le Thanh, L., Andrieu, Ch., et al. Stability analysis for the distribution networks with distributed generation, Transmission and Distribution Conference and Exhibition, 2005/2006 IEEE PES, May 2006:289-294
    [7] Reza, M.,Sudarmadi,D., Viawan,F.A., Kling, W.L. ,et al. Dynamic stability of power systems with power electronic interfaced DG,Power Systems Conference and Exposition, 2006. PSCE '06. 2006 IEEE PES, Oct. 29 2006-Nov. 1 2006:1423-1428
    [8] Wu, Y. Zhang, A. Arulampalam, N. Jenkins. Electrical stability of large scale integration of micro generation into low voltage grids, International Journal of Distributed Energy Resources, 2005, 1(4): 279-298
    [9] Narain G. Hingorani, Power Electronics Building Block Concepts,Power Engineering Society General Meeting, 2003, IEEE Volume 3, 13-17 July 2003:1339-1343
    [10] Treanton, B.G. DER Integration Research Program Power Electronics Research Assessment. http://www.energy.ca.gov/pier/conferences+seminars/2006-06-23_microgrids_montreal/presentations/Presentation_7_Part2_Bernard.pdf
    [11] W. Kramer, S. Chakraborty, B. Kroposki, H. Thomas,Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies, NREL Report No. SR-560-38017
    [12]黄家裕,陈礼义,孙德昌,电力系统数字仿真,北京:中国水力电力出版社, 1995
    [13]余贻鑫,陈礼义,电力系统的安全性和稳定性,北京:科学出版社, 1988
    [14] EPRI, Ontario Hydro, Extended transient-midterm stability program (ETMSP), in User’s Manual: Version 3,1, EPRITR-102004-V2R1, Final Report, May, 1994, 1-6
    [15] Stubbe M, Bihain A, Deuse J, Baader J C, STAG-a new unified software program for the study of the dynamic behaviour of electrical power systems, IEEE Trans. on Power Systems, 1997, 11(1): 129-138
    [16] Sanchez-Gasca C J J, et al, Extended-term dynamic simulation using variable time stepintegration, IEEE Computer Application in Power, 1993, 6(5): 23-28
    [17] Sancha J L, et al, Application of long-term simulation programs for analysis of power system islanding, IEEE Trans. on Power Systems, 1997, 12(1): 189-197
    [18] ABB Power Systems Analysis Department, SIMPOW power system simulation and analysis software user manual
    [19] Hans R Frankhauser, et al, Advanced simulation techniques for the analysis of power system dynamics, IEEE Computer Application in Power, 1990, 3(5): 31-36
    [20]汤涌,卜广全,侯俊贤,宋新立, PSD-BPA暂态稳定程序用户手册.北京:中国电力科学研究院
    [21] DeMello F P, Feltes J W, Laskowski T F, et al, Simulating fast and slow dynamic effects in power system, IEEE Computer Applications in Power, 1992, 5(3): 33-39
    [22]潘志宏,孙宏斌,张伯明,等,新一代DTS中的动态仿真程序,清华大学学报, 1999, 39(9): 18-21
    [23] Kurita A, Okubo H, Oki K, Agematsu S, et al, Multiple time-scale power system dynamic dimulation, IEEE Trans. on Power Systems, 1993, 8(1): 216-223
    [24] M Stubbe, A Bihain, J Deuse, STAG-a new unified software program for the study of the dynamic behavior of power systems, IEEE Trans. on Power Systems, 1989, 4(1): 129-138
    [25] Gear C W, Simultaneous numerical solution of differential-algebraic equations, IEEE Trans. on Circuit Theory, 1971, 18(1): 90-95
    [26] Araujo A E A, Dommel H W, Marti Jr, Simultaneous solution of power and control-systems equations, IEEE Trans. on Power Systems, 1993, 8(4): 1483-1489
    [27] Stott B, Power system dynamic response calculations, Proc. of IEEE, 1979, 67(2): 219-241
    [28]倪以信,陈寿松,张宝霖,动态电力系统的理论和分析,北京:清华大学出版社, 2002
    [29] Mao C X, Fan J, Malik O P, et a1, Simulation of power system dynamics by the singular perturbation technique, Proceedings of the IEEE Western Canada Conference on Computer, Power and Communications Systems in a Rural Environment, 1991
    [30]汤涌,电力系统稳定计算隐式积分交替求解,电网技术, 1997, 21(2): 43-52
    [31]毛承雄,樊俊, Kulicke B,电力系统动态仿真新的交替迭代解法,电力系统自动化, 1998, 22(3): 23-26
    [32] Bandeno P L, Kundur P, A non-iterative transient stability program including the effects of variable load-voltage characteristics, Proceedings of IEEE PES Winter Meeting, 1973, 91-96
    [33] Moon Y H, Cho B H, Choi B K, Analysis of polarized linear electric network with two-reactance components, Proc, of the 37th CDC, 1998, 2028-2034
    [34] Moon Y H, Cho B H, Ryu H S, Saliency reflected noniterative approach to transient stability simulation of power systems, Proceedings of IEEE PES Winter Meeting, 1999, 1: 689-694
    [35] Moon Y H, Cho B H, Choi B K, Fast noniterative algorithm based on polarized-system partitioning for transient stability simulation, Proceedings of IEEE PES Winter Meeting, 2000, 2:1022-1027
    [36] Moon Y H, Cho B H, Fast time simulation technique using noniterative algorithm of transientstability analysis, Proceedings of IEEE PES Winter Meeting, 2000, 1: 23-27
    [37] Xia D Z, On-line transient evaluation by system decomposition aggregation and high order derivatives, IEEE Trans. on Power Apparatus and Systems, 1983, 102: 2038-2054
    [38] D Z Fang and Xiaodong Yang. Power system transient stability simulation based on module bi-directional iteration. Science in China (Series E), 2005, 48(5): 585-600
    [39]白雪峰,余志文,郭志忠,姜彤,不对称暂态稳定计算新方法,电力系统自动化, 2002, 26(22) : 27-30
    [40] Junji Tamura, Masahiro Kubo, Toshiyuki Nagano, A Method of Transient Stability Simulation of Unbalanced Power System, Electric Power Engineering, PowerTech Budapest 99. International Conference , 1999: 232
    [41]姜彤,白雪峰,郭志钟等,基于对称分量模型的电力系统短路故障计算方法,电机工程学报, 2003, 23(2): 50-53
    [42]温苑红,方富淇,电力系统故障分析的相网络计算法,电力系统自动化, 1998, 22(2):35-37
    [43]张伯明,陈寿孙.高等电力网络分析.北京:清华大学出版社, 1996
    [44] Xuefeng Bai, Tong Jiang, Zhizhong Guo,et al, A Unified Approach for Processing Unbalanced Conditions in Transient Stability Calculations, IEEE Trans. on Power Systems, 2006, 21(1): 85-90
    [45]唐长青,罗铸,顾永昌,基于三相导纳阵的不对称故障计算,清华大学学报(自然科学版), 1997, 37(1):89-92
    [46]刘为雄,蔡泽祥,基于相分量法的电力系统复故障计算,电力系统及其自动化学报, 2007, 19(3):91-95
    [47]刘为雄,蔡泽祥,黄明辉等,基于相分量模型考虑零序互感线路的跨线故障计算方法,电网技术, 2006, 30(8):13-18
    [48]傅旭,王锡凡,同杆双回线断相故障计算的解藕相分量法,电力系统自动化, 2004, 28(6):41-44
    [49] R. G. Harley, E. B. Makram and E. G. Duran, The Effects of Unbalanced Networks on Synchronous and Asynchronous Machine Transient Stability, Electric Power System Research Journal, 1987, 13:119-127
    [50] V.Omar Zambrano, Elham B.Makram. Transient Response of Synchronous and Asynchronous Machine to Asymmetrical Faults in an Unbalanced Network. Electric Power System Research,1988, 14:155-166
    [51] Ronald G Harley, Jorge M E Coda, Glenn D Jennings, et al, INDUCTION MOTOR MODEL FOR THE STUDY OF TRANSIENT STABILITY IN BOTH BALANCED AND UNBALANCED MULTI-MACHINE NETWORKS,IEEE Transactions on Energy Conversion, 1992, 7(1):209-215
    [52] Ronald G Harley, Elham B. Makram, EdwinG. Dum, THE SFFECTS OF UNBALANCED NETWORKS AND UNBALANCED FAULTS ON INDUCTION I IOTOR TRANSIENTSTABILITY, IEEE Transactions on Energy Conversion, 1988, 3(4):398-403
    [53] E. B. Makram, M. A.Bou-Rabee and A. A. Girgis, Three-phase Modeling of Unbalanced Distribution Systems During Open Conductors and/or Shunt Fault Conditions Using the Bus Impedance Matrix, Electric Power System Research Journal, 1987, 13(3):173-183
    [54] Elham B. Makram V. Omar Zambrano Ronald G. Harley Juan C. Balda, THREE-PHASE MODELING FOR TRANSIENT STABILITY OF LARGE SCALE UNBALANCED DISTRIBUTION SYSTEMS, IEEE Trans. on Power Systems, 1989, 4(2): 487-493
    [55] Nikos L. Soultanis, Stavros A. Papathanasiou, Nikos D, Hatziargyriou, A Stability Algorithm for the Dynamic Analysis of Inverter Dominated Unbalanced LV Microgrids, IEEE Trans. on Power Systems, 2007, 22(1): 294-304
    [56] Sebastian Achilles, Markus P¨oller, Direct Drive Synchronous Machine Models for Stability Assessment of Wind Farms. Proceedings of the Fourth International Workshop on Large Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, Billund, Denmark, October 20-21 2003
    [57]程华,徐政,分布式发电中的储能技术,高压电器, 2003, 39(3 ):53-56
    [58] N. Jayawarna, X. Wut, Y. Zhangt, and et al. Stability of a MicroGrid, The 3rd IET International Conference on Power Electronics, Machines and Drives, Ireland, 2006: 316-320
    [59] J EROSOL IMSKI M,L EVACHER L, A new method for fast calculation of Jacobin matrices: automatic differentiation for power system simulation. IEEE Trans. on Power Apparatus and Systems, 1994, 9 (2): 700-706
    [60]陈颖,沈沉,梅生伟,等,基于Jacobian-Free Newton-GMRES(m)方法的电力系统分布式暂态仿真算法,电力系统自动化, 2006, 30(10):12-16
    [61] Ying Chen,, Chen Shen, Jian Wang,Distributed Transient Stability Simulation of Power Systems Based on a Jacobian-Free Newton-GMRES Method,IEEE Trans. on Power System, 2009,24(1):146-156
    [62]苏永春,程实杰,文劲宇,电力系统动态稳定性的解析延拓分析,中国电机工程学报, 2007, 27(4):9-14
    [63] Dommel H W, Digital computer solution of electromagnetic transient in single and multiphase networks. IEEE Trans. on Power Apparatus and Systems, 1969,88(4):388-399
    [64] Pablo Ledesma, Julio Usaola, Doubly Fed Induction Generator Model for Transient Stability Analysis, IEEE Trans. on Energy Conversion, 2005,20(2):388-397
    [65] PSS/E? 29,VOLUME II:PROGRAM APPLICATION GUIDE,Power Technologies,INC
    [66] DIgSILENT v 14.0 User’s Manual, DIgSILENT GmbH, 2008, http://www.digsilent.de/
    [67] Enns, M.K., Tinney, W.F., Alvarado, F.L. Sparse matrix inverse factors [power systems] , IEEE Trans. on Power Systems, 1990:466-473
    [68] Hakavik, B., Holen, A.T. Power system modelling and sparse matrix operations using object-oriented programming. IEEE Trans. on Power Systems, 1994:1045~1051
    [69] Vuong, G.T., Chahine, R., Granelli, G.P., Montagna, M. Dependency-based algorithms for vector processing of sparse matrix forward/backward substitutions. IEEE Trans. on Power Systems,1996: 198-205
    [70] H.J. Zhu, Z.X. Cai, Object-oriented modeling of sparse matrix operation in power system software. Advances in Power System Control, Operation and Management, 2003. ASDCOM 2003. Sixth International Conference on (Conf. Publ. No. 497) ,732-737
    [71]王晓东,李乃湖,丁恰,基于稀疏技术的原对偶内点法电压无功功率优化,电网技术, 1999, 23(3):23-26
    [72]何银菊,宋玮,周庆捷,等,面向对象的电力系统潮流计算与静态安全分析.电网技术, 2001, 25(8):11-14
    [73]何洋,洪潮,陈昆薇,稀疏向量技术在静态安全分析中的应用.中国电机工程学报, 2003, 23(1):41-44
    [74]毛安家,郭志忠,电力系统计算中的二维稀疏结构技术.继电器, 2001, 29(1):19-21
    [75]朱凌志,安宁,基于二维链表的稀疏矩阵在潮流计算中的应用,电网技术, 2005, 29(8):51-54
    [76]朱浩骏,蔡泽祥,侯汝锋,基于CIM的稀疏矩阵模型设计.电力系统自动化, 2004, 28(24):50-54
    [77] Louis N, George Jee, Fardanesh B, A governor turbine model for a twin-shaft combustion turbine. IEEE Trans. on Power Systems, 1995, 10(1):133-140
    [78] Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies. Dynamic models for combined cycle plants in power system studies. IEEE Trans. on Power Systems, 1994, 9(3):1698-1708
    [79] Amer Al-Hinai, Feliachi Ali, Dynamic model of a microturbine used as a distributed generator. IEEE Trans. on Power Systems, 2002, 1(1):209-213
    [80]王成山,马力,王守相,基于双PWM换流器的微型燃气轮机系统仿真,电力系统自动化, 2008, 32(1):56-60
    [81] Hannett LN, Combustion turbine dynamic model validation from tests, IEEE Trans. on Power Systems, 1993, 8(1):152-158
    [82]孙可,韩祯祥,曹一家,微型燃气轮机系统在分布式发电中的应用研究,机电工程, 2005, 22(8):55-60
    [83]王静,崔国民,张勤等,微型燃气轮机的控制研究,机电设备, 2004, 1(4):1-6
    [84]沈海权,李庚银,周明,燃料电池和微型燃气轮机的动态模型综述,电网技术,2000,28(14): 79-89
    [85] M. Z. C. Wanik, I. Erlich, Dynamic Simulation of Microturbine Distributed Generators integrated with Multi-Machines Power System Network, 2nd IEEE International Conference on Power and Energy (PECon 08), December 1-3, 2008, Johor Baharu, Malaysia: 1545-1550
    [86] Amer Al-Hinai, Karl Schoder, Feliachi Ali, Control of grid-connected split-shaft microturbine distributed generator, IEEE Trans. on Power Systems, 2003, 1(1):84-88
    [87] M′onica Chinchilla, Santiago Arnaltes , Juan Carlos Burgos .Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid, IEEE Trans. on Energy Conversion, 2006,21(1)
    [88] Roohollah Fadaeinedjad, Mehrdad Moallem, Gerry Moschopoulos, Simulation of a Wind TurbineWith Doubly Fed Induction Generator by FAST and Simulink, IEEE Trans. on Energy Conversion, 2008,23(2)
    [89] Anca D. Hansen, Clemens Jauch, Poul S?rensen, Florin Iov, Frede Blaabjerg, Dynamic wind turbine models in power system simulation tool DIgSILENT, Ris? National Laboratory, Roskilde December 2003
    [90] Florin Iov, Anca Daniela Hansen, Poul S?rensen, Frede Blaabjerg, Wind Turbine Blockset in Matlab/Simulink, Aalborg University March 2004
    [91] Nicholas W. Miller, William W. Price, Juan J. Sanchez-Gasca, Dynamic Modeling of GE 1.5 and 3.6 Wind Turbine-Generators, October 27, 2003
    [92] Darren M Bagnall, Matt Boreland, Photovoltaic technologies, Energy Policy, 2008, 36:4390-4396
    [93]汉斯. S.劳申巴赫,太阳能阵列设计手册,宇航出版社, 1987
    [94] J. A. Gow, C, D. Manning, Development of a photovoltaic array model for use in power-electronics simulation studies, IEE Proceedings-Electric Power Applications, 1999, 146(2):193-200
    [95] Ali Cheknane, Hikmat S. Hilal, Faycal Djeffal, et al, An equivalent circuit approach to organic solar cell modeling, Microelectronics Journal, 2008, 39:1173-1180
    [96] M. Wolf, G. T. Noel, Richard. J. Stirn, Investigation of the Double Exponential in the Current-Voltage Characteristics of Silicon Solar Cells, IEEE Trans. on Electron Devices, 1977, 24(4):419-428
    [97] M. G. Molina, P. E. Mercado, Modeling and Control of Grid-connected Photovoltaic Energy Conversion System used as a Dispersed Generator, Transmission and Distribution Conference and Exposition, Latin America, 2008
    [98] R. Chenni, M. Makhlouf, T. Kerbache, et al, A detailed modeling method for photovoltaic cells, Energy, 2007, 32:1724-1730
    [99] Trishan Esram, Patrick.L.Chapman, Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques, IEEE Trans. on Energy Conversion, 2007, 22(2):439-499
    [100] K.H. Hussein, Muta,Hoshino, M. Osakada, Maximum photovoltaic power tracking : an algorithm for rapidly changing atmospheric conditions, IEE Proc.-Gener. Transm. Distrib., 1995, 142(1): 59-64
    [101] J. Ghaisari, M. Habibi, A. Bakhshai, An MPPT Controller Design for Photovoltaic (PV) Systems Based on the Optimal Voltage Factor Tracking, IEEE Canada Electrical Power Conference, 2007:1-4
    [102] Zhu Y, Tomsovic K, Development of models for analyzing the load-following performance of micro turbines and fuel cells, Electric Power Systems Research, 2002, 62(1):1-11
    [103] Li Y, Choi S, Rajakaruna S, An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system, IEEE Trans. on Energy Conversion, 2005, 20(2):381-387
    [104] Francisco Jurado, Manuel Valverde, Antonio Cano, Effect of a SOFC plant on distribution system stability, Journal of Power Sources, 2004, 129 (1):170-179
    [105] Miao Z, Choudhry M. A, Klein R. L, et al, Study of a fuel cell power plant in power distribution system– Part I: dynamic model, Power Engineering Society General Meeting, IEEE, 2004,6(2):2220-2225
    [106] Padulles J, Ault G. W, McDonald J R, An integrated SOFC plant dynamic model for power systems simulation, Journal of Power Sources, 2000, 86(1-2):495-500
    [107] Khan M.J, Lqbal M.T, Modeling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system, Fuel Cells, 2005, 5(4):463-475
    [108] Zhan C J,Wu X G, Kromlidis S, Ramachandaramurthy V K, Barnes M, Jenkins N, Ruddell A J, Two electrical models of the lead-acid battery used in a dynamic voltage restorer, IEE Proc.-Gener. Transm. Distrib. ,2003,150(2):175-182
    [109] Wang X Y, Vilathgamuwa D M, Choi S S, Buffer scheme with battery energy storage capability for enhancement of network transient stability and load ride-through, Journal of Power Sources, 2008,179(2):819-829
    [110]王兆安,黄俊,电力电子技术(第4版),北京:机械工业出版社, 2003:54-59
    [111]徐德鸿,电力电子系统建模及控制,北京:机械工业出版社, 2006:125-135
    [112] D. M. Brod, D. W. Novotny, Current control of VSI-PWM inverters, IEEE Trans. on Ind. Appl, 1985, IA-21(3):562-570
    [113] Rusong Wu, S.B.Dewan, G.R. Slemon. Analysis of a PWM AC to DC voltage source converter under the predicted current control with a fixed switching frequency, IEEE Trans. lnd Applicant, 1991, 27(4):756-764
    [114] Rusong WU, Shashi B, DEWAN,Gordon R.SLEMON et al, A PWM AC-DC Converter with Fixed Switching Frequency, IEEE Trans. On Ind. Appl, 1990, 26(5):880-885
    [115] A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives, IEEE Trans. Power Electron, 2003:1390-1396
    [116] Markus A. P¨oller, Doubly-Fed Induction Machine Models for Stability Assessment of Wind Farms, Proceedings of the 2003 IEEE PowerTech Conference , Bologna, 2003
    [117] Frede Blaabjerg, Remus Teodorescu, Marco Liserre, et al, Overview of Control and Grid Synchronization for Distributed Power Generation System, IEEE Trans. on Industrial Electronics, 2006, 53(5): 1398-1409
    [118]刘凤君,逆变器用整流电源,北京:机械工业出版社, 2004:202
    [119] Fangrui Liu, Yong Kang, Yu Zhang and Shanxu Duan.Comparison of P&O and Hill Climbing MPPT Methods for Grid-Connected PV Converter, ICIEA 2008. 3rd IEEE Conference on 3-5 June 2008:804-807
    [120] Roberto CALDON, Fabrizio ROSSETTO, Roberto TURRI, ANALYSIS OF DYNAMIC PERFORMANCE OF DISPERSED GENERATION CONNECTED THROUGH INVERTER TO DISTRIBUTION NETWORKS, 17th International Conference on Electricity Distribution Barcelona, 12-15 May 2003
    [121]王庆平,陈超英,陈礼义,基于abc坐标系统的机-网暂态仿真,中国电机工程学报, 2002, 22(6):30-33
    [122]吴文传,张伯明,变压器详细模型推导与三相配电潮流计算,电力系统自动化, 2003, 27(4):53-56
    [123] Ray D. Zimmerman, Comprehensive Distribution Power Flow: Modeling, Formulation, SolutionAlgorithms and Analysis, Ph.D. Dissertation, Cornell Univ., Ithaca, NY, Jan. 1995
    [124]王守相,王成山编著,现代配电系统分析,高等教育出版社, 2007
    [125] J. Tamura, M. Cubo, and T. Nagano, A method of transient stability simulation of unbalanced power system, presented at the Proc, 1999 IEEE Power Tech Conf., paper BTP99-136-12
    [126] V.Omar Zambrano, Elham B.Makram, Transient Response of Synchronous and Asynchronous Machine to Asymmetrical Faults in an Unbalanced Network, Electric Power System Research,1988, 14:155-166
    [127] Ronald G Harley, Jorge M E, Coda Glenn D Jennings, INDUCTION MOTOR MODEL FOR THE STUDY OF TRANSIENT STABILITY IN BOTH BALANCED AND UNBALANCED MULTI-MACHINE NETWORKS, IEEE Trans. on Energy Conversion, 1992, 7(1):209-215
    [128] Ronald G. Harley, Elham B. Makram, EdwinG. Dum, THE SFFECTS OF UNBALANCED NETWORKS AND UNBALANCED FAULTS ON INDUCTION I IOTOR TRANSIENT STABILITY, IEEE Trans. on Energy Conversion, 1988, 3(2): 308-403
    [129]王成山,张家安,分布式暂态稳定仿真的面向对象分析与设计,电网技术, 2003, 27(12): 27-50
    [130] RUDION K, STYCZYNSKI Z A, HATZIARGYRIOU N, PAPATHANASSIOU S, et al, Development of benchmarks for low and medium voltage distribution networks and high penetration of dispersed generation, Proceedings of 3rd International Symposium on Modern Electric Power Systems, September 6-8, 2006, Wroclaw, Poland
    [131] European Research Project MicroGrids [Online]. Available: http://MicroGrids.power.ece.ntua.gr.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700