船舶电力系统建模仿真及动态稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶电力系统是一个独立而又复杂的电力系统,具有很多特点。电器设备工作环境较差,事故容易发生,正常供电时常常有相对于发电机容量较大的电力负载投入到电网运行,发电机组经常并联运行且具有较强的耦合性等特点。因此,船舶电力系统在运行过程中的动态过程频繁发生,动态过程的振荡幅度也很大。鉴于这些原因,本文在船舶电力系统建模仿真及动态稳定性方面做了研究,希望在船舶电力系统建立数学模型、研制模拟器及研制新的励磁控制器方面做些有实际意义的工作。
     首先,建立完整的实际船舶电力系统整体数学模型。以一条实际5446TEU大型集装箱船舶电力系统为研究对象,建立一系列数学模型,包括同步发电机、励磁系统、异步电动机、静负载及电网的数学模型。以一台同步发电机的d-q旋转轴为参考轴,分析各电气设备之间的耦合关系,从而建立了完整的船舶电力系统整体数学模型。
     其次,研制船舶电力系统训练模拟器和船舶电站评估操作计算机考试模拟器。它是船舶电力系统建模与仿真的应用,结合物理—数字混合仿真技术、集中仿真技术和模块化建模技术,研制出船舶电力系统训练模拟器和评估操作计算机考试模拟器。模拟器由计算机、各种物理盘台及仪表组成,它适用于交通运输部海事局关于远洋船舶轮机员在轮机自动化技术方面教学和培训的要求,目前许多用户已使用并取得了较满意的效果。
     最后,研制新的励磁控制器(AVR+PSS励磁控制器)。为改善船舶电力系统的稳定性能,设计一种新的励磁控制器。这种励磁控制器就是在传统的具有自动电压调节器的船舶发电机励磁系统的基础上,加入电力系统稳定器。这种励磁控制器是通过进一步控制发电机励磁来提高电力系统稳定性能,其基本功能就是在发电机励磁系统中加入了辅助的稳定信号,增加了系统阻尼,减小了发电机组的振荡。仿真结果表明该励磁控制器有效地提高了船舶电力系统动态过程的质量和稳定性能。
     研究成果对进一步研究船舶电力系统动态稳定性能将起到积极作用,对轮机员在模拟器上培训也起到帮助作用。
Marine power station is an independent and complicated power system, and it has many special characteristics:generally the electrical devices operate in bad conditions and accidents often happen during operation; some larger electric power loads compared to the load rate of the generator often start and stop under the normal power supplying states of electric network. Generator sets often run in parallel, and it has the characteristics of strong coupling. Therefore, the dynamic processes of the marine power system take place constantly, and the range for oscillation of dynamic processes is much larger. Based on these characteristics, this paper carries out extensive research in simulation modeling and analysis of dynamic stability of the marine power station system. It is expected that some practical application in mathematical modeling, development of simulators as well as development of a new excitation controller can be explored.
     Firstly, a whole set of mathematical models of actual marine power station system are set up. The power station system on board of a large 5446TEU container ship is used as the research target, and a series of mathematical models are developed, including mathematical models of synchronous generators, the excitation system, the induction motors, the static load and bus. The d-q rotary shaft in a synchronous generator is used as a reference shaft, and the coupling relations of different electric devices in the marine power station are analyzed. As a result, a whole set of mathematical models for the marine power station system are developed.
     Secondly, marine power station training simulators and marine power station computer operation testing simulator are developed, and it is a application for modeling simulation to marine power station system. Using the techniques of physical-digital hybrid simulation and centralized simulation, as well as the techniques of modularization modeling, the training simulator and computer operation testing simulator are developed. These simulators consist of microcomputers, various kinds of physics equipment and instruments, and it satisfies the demand for education and training of marine engineer officers in marine automation technology required by the Maritime Safety Administration of the Ministry of Transport of PRC. So far the simulators have been tested for user in training programs successfully.
     Thirdly, a new excitation controller (AVR+PSS excitation controller) is developed. To improve the stability performance of the marine power system, a new excitation controller is developed. A power system stabilizer (PSS) is introduced into the traditional marine generator excitation system with automatic voltage regulator (AVR). The new excitation controller uses auxiliary stabilizing signals to control the generator excitation so as to improve the stability of the power system, and its basic function is to add damping to the generator oscillations by controlling generator excitation using auxiliary stabilizing signals. The simulation results show that the new excitation controller can improve not only the quality of the dynamic process but also the stability performance of the marine power system.
     The research results turn out to have a positive effect on improving the dynamic stability of the marine power station system and at the same time will be helpful to the training of marine engineer officers on simulators.
引文
[1]中华人民共和国港务监督局译.经1995年缔约国大会通过修正的“1978年海员培训、发证和值班标准国际公约”International Convention on Standards Training.Certification and Watchkeeping for Seafarers,1978,as amended in 1995.中国科学技术出版社.
    [2]中国船级社主编.钢制海船入级规范第三篇、第四篇.北京:人民交通出版社.2006.
    [3]史际昌主编.船舶电气设备及系统.大连:大连海事大学出版社,1998.
    [4]郑华耀主编.船舶电气设备及系统.大连:大连海事大学出版社,2005.
    [5]施伟锋.关于船舶电力系统研究的一些探索:(博士学位论文).上海:上海海事大学,2005.
    [6]胡军,王德江,张均东等.船舶主电力系统的仿真设计.大连海事大学学报.2008,第34卷增刊:79-80.
    [7]施伟锋,郑华耀.船舶自动化电站系统仿真.系统仿真学报.2003,第15卷第9期:1249-1252.
    [8]杨秀霞,张晓锋,张毅.舰船电力系统的发展趋势.中国修船.2004,第3期:12-14.
    [9]钟欣,肖民.船舶轴带发电机系统的建模与仿真.华东船舶工业学院学报.2005,第19卷第4期:15-18.
    [10]刘勇,刘金波,季晓慧.船舶电站实时仿真.应用科技.2002,第29卷第1期:43-45.
    [11]陈明昭,张桌.轮机训练仿真器中的船舶电站仿真.航海技术.1995,第6期:46-49.
    [12]郭晨,史成军,孙建波等.高仿真度的DMS_2000型船舶机舱模拟器(英文).大连海事大学学报.2002,第28卷增刊:28-30.
    [13]黄志坚,胡以怀.SMSC-2006型轮机模拟器主机仿真建模.中国水运.2007,第07卷第03期:58-60.
    [14]郭燚,郑华耀,黄学武.船舶电力推进混合仿真系统设计.系统仿真学报.2006,第18卷第1期:57-61.
    [15]Cheng Shuliang. Research for Basic Function of Marine Engine Room Simulator.Journal of Wuhan Transportation University,1999,23(1):102-104.
    [16]Bulter K L, Sarma N D R,Ragendra Prasad V.Network reconfiguration for service restoration in ship board power distribution systems.IEEE Transactions on Power System,2001,16(4):653-661.
    [17]王永坚,秦臻臻,杨国豪.Web3D船舶电站在线考核评估系统的研制.船舶工程.2009,第31卷第4期:67-70.
    [18]王永坚,杨国豪.基于Web3D虚拟轮机模拟器操作训练系统的建构.集美大学学报.2009,第14卷第2期:165-169.
    [19]范永胜,程芳真,吕崇德等.电站仿真机的培训评分系统研究.系统仿真学报.2000,第12卷第3期:282-286.
    [20]余建星,杜尊峰,温晶晶.船舶电力系统状态评估方法研究.船舶工程.2008,第30卷第6期:39-41.
    [21]杨国豪.突加负载对船舶电站励磁装置参数的要求.中国修船.2000,第5期:24-26.
    [22]李冬丽,赵跃平,唐石青等.船舶大容量负载对电力系统的影响.船舶工程.2003,第25卷第6期:47-50.
    [23]陆祥润,刘凤梧主编.船舶电气实用指南.大连:大连海运学院出版社,1993.
    [24]季晓慧.船舶电力系统的故障诊断专家系统研究:(硕士学位论文).哈尔滨:哈尔滨工程大学,2002.
    [25]Jain S, Khorrami F, Fardanesh B. Adaptive nonlinear excitation control of power systems with unknown interconnections.IEEE Transactions on Control Systems Technology,1994,2(4):436-446.
    [26]Mensah E,Kwatny H,Niebur D. etal. Models for optimal dynamic reconfiguration and simulation of ship power systems in simulink with stateflow.Electric Ship Technologies Symposium,ESTS'07. USA:IEEE,2007,:175-179.
    [27]刘雨,郭晨,孙建波等.船舶电力系统的动态过程仿真研究.系统仿真学报.2009,第21卷第9期:2791-2795.
    [28]张汝均编著.船舶电站同步发电机的自动励磁装置.北京:国防工业出版社,1989.
    [29]黄曼磊,王常虹.船舶电站柴油发电机组的非线性数学模型.哈尔滨工程大学学报.2006,第27卷第1期:15-19.
    [30]杨冠鲁,吴龙标,胡欣.基于微分几何方法的柴油发电机非线性励磁控制器.中国科学技术大学学报.2004,第34卷第6期:739-743.
    [31]周双喜,朱凌志,郭锡玖等编著.电力系统电压稳定性及其控制.北京:中国电力出版社,2004.
    [32]黄顺礼.典型的PSS系统.湖南电力.2002,第22卷第3期:60-62.
    [33]袁宇春,张保会,朱振青.PSS对电力系统动态及静态稳定性的影响.中国电力.1997,第30卷第12期:7-9.
    [34]韩慧云,黄梅.电力系统低频振荡与PSS分析.华北电力技术.2005,第7期:1-4.
    [35]韩英铎,谢小荣,崔文进.同步发电机励磁控制研究的现状与走向.清华大学学报.2001,第41卷第4/5期:142-146.
    [36]赵书强,常鲜戎,贺仁睦等.PSS控制过程中的借阻尼现象与负阻尼效应.中国电机工程学报.2004,第24卷第5期:7-10.
    [37]Abido M A.Hybridizing rule-based power system stabilizers with genetic algorithms.IEEE Transactions on Power Systems,1999,14(2):600-607.
    [38]Zhang Y, Malik O P, Chen G P. Artificial neural network power system stabilizers in multi-machine power system environment.IEEE Transactions on Energy Conversion,1995,10(1):147-155.
    [39]Mao Chenqxiong, Fan Jun, Malik O P, etal. Studies of real-time adaptive optimal excitation controller and adaptive optimal power system stabilizer.IEEE Transactions on Energy Conversion,1992,7(3): 598-605.
    [40]Prabha Kundur.电力系统稳定与控制.北京:中国电力出版社,2001.
    [41]杨明,张冰,王子才.建模与仿真技术发展趋势分析.系统仿真学报.2004,第16卷第9期:1901-1904.
    [42]吕崇德,范永胜,蔡瑞忠.我国电站仿真技术进展与建模理论研究.综合述评.1999,第1卷第1期:99-103.
    [43]张浩,徐红燕,彭道刚等.仿真技术在电力系统中的应用.系统仿真技术.2005,第1卷第2期:109-114.
    [44]曾青山,陈景峰,黄加亮.轮机模拟器的现状和发展趋势.集美大学学报.2003,第8卷第1期:74-79.
    [45]张惠泽.轮机模拟器现状.世界海运.1999,第2期:44-45.
    [46]王行仁,文传源,李伯虎等.我国系统建模与仿真技术的发展_为纪念中国系统仿真学会成立二十周年而作.系统仿真学报.2009,第21卷第21期:6683-6688.
    [47]何志渔.船舶电力系统动态仿真技术的研究.武汉交通科技大学学报.1998,第12卷,第2期:83-90.
    [48]何志渔.船舶电力系统动态仿真实验研究.中国修船.1999,第1期:28-30.
    [49]肖章权,高孝洪.现代轮机仿真训练器及其仿真技术发展.计算机仿真.1998,第15卷第期:9-12.
    [50]何敏,吕崇德.新一代的电站仿真技术.系统仿真学报.2001,第13卷第1期:83-85.
    [51]马萍,杨明,王子才.HLA数据分布管理在电站仿真器中的应用.系统工程与电子技术.2000,第22卷第11期:91-93.
    [52]刘艳,顾雪平,卢锦玲等.真分散控制系统在线式多功能电站仿真机的设计与实现.电力系统自动化.2003,第27卷第11期:78-79.
    [53]李伯虎,柴旭东,朱文海等.现代建模与仿真技术发展中的几个焦点.系统仿真学报.2004,第16卷第9期:1871-1878.
    [54]杨国豪,徐轶群.万维网3D技术在轮机操纵模拟器中的应用探析.中国航海.2007,第3期:88-90.
    [55]李婷云,陈跃坡,杨国豪等.基于Web3D的轮机模拟器网络虚拟平台实现.舰船电子工程.2009,第185卷第11期:115-118.
    [56]林洪贵,徐轶群,杨国豪等.基于PLC的船舶电站物理仿真综合模拟器的应用研究.船电技术.2009,第29卷第3期:39-43.
    [57]刘德强.半潜船电站系统的建模与仿真.中国水运.2009,第9卷第5期:105-106.
    [58]韦韩英,刘平键.船艇电站系统的综合仿真.计算机辅助工程.2002,第3期:42-47.
    [59]俞万能.小型电力推进船舶电力系统谐波抑制的仿真研究.中国造船.2008,第49卷增刊(总第183期):186-191.
    [60]周成,贺仁睦,王吉利.电力系统元件模型仿真准确度评估.电网技术.2008,第33卷第14期:12-15.
    [61]李昌斌.电力推进船的动力系统建模与仿真.机电工程技术.2004,第33卷第10期:26-28.
    [62]施伟锋,陈子顺.船舶电力系统建模.中国航海.2004,第3期:64-69.
    [63]Ledesma Pablo, Usaola Julio. Doubly fed induction generator model for transient stability analysis.IEEE Transactions on Energy Conversion,2005,20(2):388-397.
    [64]Ma Jin, Renmu, H, Hill, D.J. Load modeling by finding support vectors of load data from field measurements.IEEE Transaction on Power Systems,2006,21(2):726-735.
    [65]R Renmu, H.; Ma Jin; Hill, D.J. Composite load modeling via measurement approach.IEEE Transaction on Power Systems,2006,21(2):663-672.
    [66]Taylor C W. Modeling of voltage collapse including dynamic phenomena.Electra,1993,(147):71-77.
    [67]Lie Xu,Yi Wang.Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions.IEEE Transactions on Power Systems,2007,22(1):314-323.
    [68]张红斌,汤涌,张东霞等.负荷建模技术的研究现状与未来发展方向.电网技术.2007,第31卷第4期:6-10.
    [69]鞠平,谢会玲,陈谦.电力负荷建模研究的发展趋势.电力系统自动化.2007,第31卷第2期:1-4.
    [70]倪以信.动态电力系统的理论和分析.北京:清华大学出版社,2002.
    [71]鲍晓慧,侯慧.电力系统可靠性评估述评.武汉大学学报(工学版).2008,第41卷第4期:96-101.
    [72]李红江,鲁宗相,朱凌志等.舰船电力系统生命力评估研究.武汉理工大学学报.2007,第31卷第3期:533-536.
    [73]柳勇军,闵勇,梁旭.电力系统数字混合仿真技术综述.电网技术.2006,第30卷第13期:38-43.
    [74]冉墨男,彭召升,苏正伟.船舶电力系统物理模拟.船电技术.2008,第28卷第6期:374-376.
    [75]苏泽光.电力系统模拟方法.中南工学院学报.2009,第14卷第3期:34-38.
    [76]王占领,郑三立.电力系统实时仿真技术分析.电力设备.2006,第7卷2期:46-49.
    [77]郑三立,黄梅,张海红.电力系统数模混合实时仿真技术的现状与发展.现代电力.2004,第21卷第6期:29-33.
    [78]刘长胜,陈礼义,郑玉森.电力系统模数混合试验系统.天津大学学报.2004,第37卷第1期:80-83.
    [79]展锦程.电站仿真的模块化建模技术.华北电力技术.1999,第1期:15-18.
    [80]夏永明,刘佳佳.基于CAN总线和分布式结构的船舶电站多种发电方式仿真.上海海事大学学报.2009,第30卷第1期:10-15.
    [81]Butler,Karen L,Sarma N D R,Prasad V Rajendra. New method of network reconfiguration for service restoration in shipboard power systems.IEEE Power Engineering Society Transmission and Distribution Conference,1999,2:658-662.
    [82]夏立,杨宣访,邵英.基于现场总线技术的电站仿真培训系统.信息技术.2002,第10期:14-18.
    [83]王海燕,刘晓晨,武晓英.一种分布式船舶轮机模拟器.交通信息与安全.2009,第27卷第5期:116-119.
    [84]何治斌,张均东,林叶锦等.国内外轮机模拟器的发展及对比研究.造船技术.2007,第1期:38-40.
    [85]曾青山,黄加亮.WMS2000型轮机模拟器的改进构想.世界海运.2003,第26卷第2期:47-48.
    [86]孙俊,陈明昭,程树良等.WMS-2000A轮机模拟器数据通信系统设计与实现.交通与计算机.2003,第21卷第2期:38-40.
    [87]章以刚译.维列捷尼柯夫著.船舶电力系统暂态过程研究的理论与方法.北京:国防工业出版社,1984.
    [88]郝洪亮,李玉瑶.电站发电机组的数学建模与仿真.长春工程学院学报.2001,第2卷第4期:23-25.
    [89]朱志宇,刘维亭.船舶电力系统的数学建模和鲁棒控制器设计.电机与控制学报.2007,第11卷第3期:291-297.
    [90]施伟锋,聂益文.船舶柴油发电机与异步电动机建模及其系统仿真.上海海事大学学报.2004,第25卷增刊:171-175.
    [91]Price W W,Taylor C W,Rogers G J,etal. Standard load models for power flow and dynamic performance simulation.IEEE Transactions on Power Systems.1995,10(3):1302-1313.
    [92]Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines.IET Renewable Power Generation,2007,1(1):3-9.
    [93]Elders I M, Norman P J, Schuddebeurs J D,etal.Modelling and analysis of electro-mechanical interactions between prime-mover and load in a marine IFEP system. IEEE Electric Ship Technologies Symposium.2007,v1:77-84.
    [94]Martin Sergio Sebastian, Fernandez Monica Bernabe. Model and performance simulation for overcurrent relay and fault-circuit-breaker using Simulink. International Journal of Electrical Engineering Education,2006,43(1):80-91.
    [95]Srinivasan,Krishnaswamy(Ireq,Varennes,Canada),Lafond,Claude Source. Statistical analysis of load behavior parameters at four major loads.IEEE Transactions,on Power Systems.1995,10(1):387-392.
    [96]K L Butler,N D R Sarma,C A Whitcomb,etal.Shipboard Systems Deploy Automated Protection.IEEE Comput.Appl.Power.1998,11 (2):31-36.
    [97]俞万能,陈景锋.船舶同步发电机动态特性仿真.集美大学学报.2002,第7卷第1期:49-53.
    [98]颜湘武,杨钧,王俊杰等.自并励励磁同步发电机的暂态过程及强励分析.华北电力学院学报.1995,第22卷第4期:1-6.
    [99]Wu Tao,Zhu Xuezhong, Liu Diji.Research of Reinforced Excitation Scheme for the Switched Reluctance Generator. Chinese Journal of Aeronautics.2002,Vol.15 No.4:234-238.
    [100]洪佩孙.相复励-数学模型及构成的自励系统.江苏电机工程.2003,第22卷第3期:42-44.
    [101]Ghandakly Adel A,Idowu Peter. Design of a model reference adaptive stabilizer for the exciter and governor loops of power generators.IEEE Transactions on Power Systems,1990,5(3):887-893.
    [102]Chengxiong Mao, Malik O P, Hope G S, etal. An adaptive generator excitation controller based on linear optimal control.IEEE Transactions on Energy Conversion,1990,5(4):673 678.
    [103]黄曼磊,李殿璞.船舶电站同步发电机调压系统的数学模型.哈尔滨工程大学学报.2004,第25卷第3期:305-308.
    [104]Okafor Frank N, Hofinann W. Modelling and control of slip power recovery schemes for small hydro power stations.2004 IEEE Africon:7th Africon Conference in Africa:Technology Innovation.2004,v2:1053-1058.
    [105]王江,李韬,曾启明.基于神经网络的同步发电机励磁反步控制.中国电机工程学报.2003,第23卷第12期:140-145.
    [106]Arcidiacono Vittorio,Menis Roberto,Sulligoi Giorgio.Improving power quality in all electric ships using a voltage and VAR integrated regulator. IEEE Electric Ship Technologies Symposium,ESTS 2007,p:322-327.
    [107]赵殿礼,张春来编著.船舶电站控制与管理技术.大连:大连海事大学出版社,2009.
    [108]Gong Yanfeng, Huang Yan, Schulz Noel. Integrated protection system design for shipboard power system.2005 IEEE Electric Ship Technologies Symposium,2005,v1:237-242.
    [109]Shilling Stanley R. Electrical transient stability and underfrequency load shedding analysis for a large pump station.IEEE Transactions on Industry Applications.1997,33(1):194-201.
    [110]Kayikci M,Milanovic J V. Reactive power control strategies for DFIG-based plants.IEEE Transactions on Energy Conversion,2007,22(2):389-396.
    [111]厉启宏,宋华屏.船舶交流发电机调压器差动横向电流补偿工作原理分析.上海造船.2004,第1期:61-65.
    [112]孟永奇,龚昱玮.同步交流发电机调差线路的调整分析.电机技术.2008,第6期:1-3.
    [113]朱军.基于MATLAB的同步发电机动态过程仿真.船电技术.20023,第1期:26-28.
    [114]甄洪斌,庄劲武,张晓锋等.复杂结构的舰船电力系统仿真算法研究.船舶工程.2004,第26卷第4期:64-67.
    [115]Huang Qinghua,Wu Jian,Bastos Jimena L,etal. Distributed simulation applied to shipboard power systems.IEEE Electric Ship Technologies Symposium,ESTS 2007,v1:498-503.
    [116]Butler K L, Sarma N D R, Ragendra Prasad V. Network reconfiguration for service restoration in shipboard power distribution systems.Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference.2002,v2:870.
    [117]夏永明,张卫忠.船舶电站仿真系统数学模型.上海海运学院学报.1998,第19卷第4期:52-58.
    [118]E Mensah, H Kwatny, D Niebur, etal. Models for optimal dynamic reconfiguration and simulation of ship power systems in simulink with Stateflow.Electric Ship Technologies Symposium,2007,ESTS'07. IEEE,2007:175-179.
    [119]Chan Ricky R, Sudhoff Scott D, Lee Yonggon,etal. A linear programming approach to shipboard electrical system modeling. IEEE Electric Ship Technologies Symposium,ESTS 2009.2009,v1: 261-269.
    [120]Chen He,Lu Zongxiang,Ye Jun,etal. A real shipboard power system and its computer simulation. IEEE/PES Power Systems Conference and Exposition, PSCE 2009.2009,v1:1-7.
    [121]Wang Xuejun, Chai Jianyun,Wang Zanji.Research on parallel operation characteristics of variable frequency Synchronous-Motor-Generator(SMG).Proceedings of the Eighth International Conference on Electrical Machines and Systems.ICEMS 2005,v1:72-75.
    [122]金波.采用并联型液压系统的水轮机调速器控制系统研究:(博士学位论文).杭州:浙江大学,1998.
    [122]赵建,索沂生,程芳真等.电站仿真培训机电气系统的计算机自动建模.计算机仿真.2000,第17卷第5期:33-35.
    [124]高海波,陈明昭,陈辉.WMS_2000型船舶电站仿真器的设计与建模.武汉理工大学学报.2001,第25卷第4期:500-503.
    [125]盛健.船舶电站的实用性研究:(工程硕士学位论文).哈尔滨:哈尔滨工程大学,2001.
    [126]陈国祟,杨国豪,徐轶群.基于Web的纯软件船舶电站模拟器设计.航海技术.2008,第2期:51-53.
    [127]马昭胜,轮机模拟器船舶电站装置.船电技术.2006,第5期:45-47.
    [128]Huang Jialiang,Chen Dan,Cai Zhenxiong,etal.Practice and research of training of marine C/E aided by engine room simulator. Journal of Dalian Maritime University.2003,Vol.29,Suppl.:39-42.
    [129]Lin Zhiguo,Gao Xiaohong.The Real-time Technologies of Marine Engine Room Simulator.Ship & Ocean Engineering.2009,Vol.38 No.5:121-123.
    [130]Sun Caiqin,Guo Chen,Shi Chengjun.Power station simulation subsystem in marine. Journal of Dalian Maritime University.2002,Vol.28,Suppl:31-34.
    [131]高海波,陈明昭,陈辉等.船舶电站仿真训练器中的培训考核评分系统.武汉理工大学学报.2003,第27卷第5期:633-635.
    [132]Kalsi Swarn S, Nayak Om. Ship electrical system simulation.2005 IEEE Electric Ship Technologies Symposium.2005,v1:63-69.
    [133]Shi Weifeng,Tang Tianhao,Yang Jianmin.Simulation of a large marine container ship power system.Proceedings of the SICE Annual Conference,2004,v1:1447-1452.
    [134]Yang Xiuxia,Zhang Yi.Study of shipboard power system intelligent network reconfiguration.Proceedings-ISDA 2006:Sixth International Conference on Intelligent Systems Design and Applications.2006, v1:1055-1060.
    [135]Yao Gang, Lebret Guy, Ait-Ahmed Mourad,etal. An onboard electrical network platform-Modeling & simulation. Proceedings of the American Control Conference.2009,p:2761-2766
    [136]肖乐明,张素明.专家系统在船舶电站及自动化装置故障诊断中的应用.上海海事大学学报.2005,第26卷第4期:33-37.
    [137]Yijia Cao,Lin Jiang,Shijie Cheng,etal. Nonlinear variable structure stabilizer for power system stability. IEEE Transactions on Energy Conversion.1994,9(3):489-495.
    [138]杨汉如,阎伟,王涛,杨国清.电力系统稳定器(PSS)设计的一种新思路.西北水力发电.2004,第20卷第4期:13-16.
    [139]Choi Byoung-Kon,Chiang Hsiao-Dong,Li Yinhong,etal.Measurement-based dynamic load models:derivation,comparison,and validation.IEEE Transaction on Power Systems,2006,21(3): 1276-1283.
    [140]Price W W,Taylor C W,Price W W,etal. Standard load models for power flow and dynamic performance simulation.IEEE Transactions on Power Systems,1995,10(3):1302-1313.
    [141]Zhaomin,Fanyinhai. The voltage stability research of ship electric power system.Conference Proceedings-IPEMC 2006:CES/IEEE 5th International Power Electronics and Motion Control Conference,2007,v3:1968-1972.
    [142]Wen Shiow Kao. The effect of load models on unstable low-frequency oscillation damping in Taipower system experience w/wo power system stabilizers.IEEE Transaction on Power Systems,2001,16(3):463-472.
    [143]A Borghetti, R Caldon, A Mari, C A Nucci. On Dynamic Load Models for Voltage Stability Studies.IEEE Transactions on Power Systems,1997,12(1):293-303.
    [144]Sun Jian. Small-signal methods for electric ship power systems. IEEE Electric Ship Technologies Symposium, ESTS 2009.2009,v1:44-52.
    [145]Qi L, Butler-Purry K L. Analysis of stability issues during reconfiguration of shipboard power systems.2005 IEEE Power Engineering Society General Meeting.2005,v1:485-490.
    [146]Zhang H,Butler K L,Sarma N D R,etal. Analysis of tools for simulation of Shipboard Electric Power Systems. Electric Power Systems Research.2001,58(2):111-122.
    [147]朱志宇,陆南.分散励磁式船舶电力系统鲁棒控制器研究.电力自动化设备.2007,第27卷第1期:57-60.
    [148]陈义宣,王晓茹,廖国栋.PSS_E励磁系统的自定义建模.电网技术.2009,第33卷第18期:78-83.
    [149]Sun Wenfu,Teng Wanqing,Cao Yunpeng,etal.Application of NetLinx network in marine power station monitoring system.Proceedings of the 27th Chinese Control Conference,CCC.2008,p: 531-535.
    [150]Anon.Load Representation for Dynamic Performance. Load representation for dynamic performance analysis.IEEE Transactions on Power Systems.1993,8(2):472-482.
    [151]Tsao TaPeng,Chen ShiLin,Huang ChingLien,etal.Dynamic Response Analysis of Marine Power Systems.IEE Proceedings C:Generation Transmission and Distribution.1988,135(1):74-78.
    [152]Huang Manlei.Research on H2 speed governor for diesel engine of marine power station.Journal of Marine Science and Application.2007,6(3):51-57.
    [153]施伟锋,黄学武.船舶电站仿真器系统的研究与开发.中国航海.2002,第1期总第50期:63-68.
    [154]夏永明.船舶电站仿真系统接口技术.上海海运学院学报.2002,第23卷第1期:33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700