缙云山几种常绿阔叶树的光合生理特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
素有“嘉陵江小三峡”之称的重庆缙云山树种丰富,是重庆市的天然绿色屏障与重要的水源涵养区。土壤水分条件会对植物的光合速率、蒸腾速率、水分利用效率等生理机制产生较大的影响,适当的土壤含水量能保证植物的生理过程及有机物积累的顺利进行。重庆处于我国“西南酸雨区”,降水污染严重,酸雨会通过叶片、土壤等会对植物造成损伤甚至导致其凋亡。本文采用便携式光合仪LI-6400研究不同生境下缙云山三种常绿阔叶树的光合生理特性,探究各树种对干旱胁迫、酸雨胁迫这两种极端环境的适应性,为缙云山水源涵养林的植被建设和优良树种的培养提供理论依据。主要结论如下:
     自然环境下,三种常绿阔叶树光合潜力(最大净光合速率)从大到小依次为:四川大头茶(5.81μmol.m-2s-1)>四川山矾(3.41μmol.m-2s-1)>白毛新木姜子(3.25μmol.m-2s-1);蒸腾速率的平均值从大到小依次为:四川山矾(0.86mmol.m-2s-1)>四川大头茶(0.65mmol.m-2s-1)>白毛新木姜子(0.51mmol.m-2s-1);在水分利用效率方面:自毛新木姜子(3.65μmol.mmol-1)>四川大头茶(3.08μmol.mmol-1)>四川山矾(2.78μmol.mmol-1)。
     在干旱胁迫条件下,自然干旱过程中白毛新木姜子的叶片最先死亡,其次为四川山矾,最后是四川大头茶。在土壤含水量分别在四川大头茶(30%~39%)、白毛新木姜子(20%~40%)、四川山矾(19%~46%)的范围内时,三个常绿阔叶树种能保持较高的净光合速率。轻度干旱胁迫时,三种阔叶树的叶片光合潜力从大到小依次是:四川山矾(3.61μmol.m-2s-1)>白毛新木姜子(2.80μmol.m-2s-1)>四川大头茶(2.21μmol.m-2s-1);中度干旱胁迫时:四川大头茶(6.99μmol.m-2s-1)>白毛新木姜子(4.61μmol.m-2s-1)>四川山矾(3.55μmol.m-2s-1);在重度干旱胁迫时:四川山矾(3.16μmol.m-2s-1)>四川大头茶(1.01μmol.m-2s-1)>白毛新木姜子(0.79μmol.m-2s-1)。
     在酸雨胁迫条件下,PH=2.0和PH=2.5模拟酸雨胁迫会使得白毛新木姜子、四川大头茶、四川山矾的净光合速率均呈“凸”型变换趋势:PH=3.5的酸雨胁迫会使得白毛新木姜的净光合速率略微下降,四川大头茶与四川山矾的净光合速率有上升的趋势,可见轻度的酸雨胁迫会对四川大头茶与四川山矾的光合作用起到促进作用。四川大头茶的水分利用效率受酸雨胁迫的影响要小于白毛新木姜子与四川山矾。
Jinyun Mountain is known as "the Little Three Gorges of Jialing River ", which is natural green barrier and an important water conservation district in Chongqing. Soil moisture conditions have great influence on plant photosynthetic rate, transpiration rate, water use efficiency and other physiological mechanisms, and adequate soil moisture can ensure the progress of the physiological processes of plants and organic matter accumulation smoothly. Chongqing is located in China southwest acid rain area of China, and the high frequency of acid rain will damage plant growth and even lead to their apoptosis.In this paper, the portable photosynthesis system LI-6400was adopted to reserch the photosynthetic physiological characteristics of physiological processes of three kinds of evergreen broad-leaved species of Jinyun in diffrent habitats and the adaptability of each species on the local ecological environment is presented which provide a basis for water conservation, vegetation construction,and cultivation of the fine trees in Jinyun Mountain. The main conclusions are as follows:
     The results in natural environment indicated that, In the respect of the maximal net photosynthetic rate, Symplocos setchuensis Brand> Neolitsea auratavar. Glauca>ordonia acuminata Chang,Symplocos setchuensis Brand's transpiration rate was the highest of the three kind of broadleaf woody plants, and the sequence of water use efficiency was in order of Neolitsea auratavar. Glauca> ordonia acuminata> Symplocos setchuensis Brand.
     Under Soil water stress conditions, Neolitsea auratavar died first,then the Symplocos setchuensis Brand and thelast one is the Ordonia acuminata Chang In the process of natural drought. The three kind of broadleaf woody plants can keep on a high level in net photosynthetic rate when the soil moisture were between19%-46%.Under mild drought stress, Symplocos setchuensis Brand's net photosynthetic rate was the highest, and then the Symplocos setchuensis Brand, ordonia acuminata Chang was the lowest. The order of Pn under medium drought stress is ordonia acuminata Chang> Neolitsea auratavar. Glauca> Symplocos setchuensis Brand, and Symplocos setchuensis Brand> Neolitsea auratavar. Glauca>ordonia acuminata Chang under Severe drought stress.
     Under acid rain stress environmental conditions, pH=2.0, pH=2.5simulated acid rain stress resulted photosynthetic rate of the ordonia acuminata Chang, Neolitsea auratavar. Glauca, and Symplocos setchuensis Brand showing a "convex" transformation trend; pH=3.5acid rain stress caused the Solanum Neolitsea net photosynthetic rate decreased slightly, while ordonia acuminata Chang and Neolitsea auratavar. Glauca's net photosynthetic rate were promoted. The acid rain influence of Symplocos setchuensis Brand is smaller than ordonia acuminata Chang and Neolitsea auratavar. Glauca
引文
[1]郑勇,缙云山阔叶木本植物种子及幼苗生长特性研究[D].重庆:西南大学,2010.
    [2]赵洋毅,王玉杰,王云琦,等.渝北不同模式水源涵养林植物多样性及其土壤特征的关系[J].生态环境学报,2009.18(16):2260-2266.
    [3]赵晓焱,王传宽,霍宏.兴安落叶松光合能力及相关因子的种源差异[J].生态学报,2008,28(8):3788-3807.
    [4]张韵.重庆市城镇饮用水水源地水安全调查与评价[D].重庆:西南大学,2009.
    [5]张跃西,钟章成.亚热带次生常绿阔叶林优势种间的竞争效应与竞争反应[J].应用与环境生物学报,2003,(4):333-335.
    [6]张卫强,王明怀,曾令海,召青,周平等.东江中上游3种造林树种的光合-光响应特征[J].中国水土保持科学,2010,8(6):115-120.
    [7]袁素芬,唐海萍.准噶尔荒漠3种短命植物气体交换特征的日变化[J].生态学报,2009,29(4):1962-1970.
    [8]叶子飘,于强.一个光合作用响应新模型与传统模型的比较[J].沈阳农业大学学报,2007,38(6):771-775.
    [9]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [10]熊好琴,缙云山白毛新木姜r种群林隙干扰效应与更新研究[D].重庆:西南师范大学2003.
    [11]谢寅峰,杨万红,陆美蓉,蔡贤雷,周坚.模拟酸雨胁迫下硅对髯毛箬竹光合特性的影响[J].应用生态学报,2008,19(6):1179-1184.
    [12]肖文发,徐德应,刘世荣,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46
    [13]文卓立,周飞.缙云山典型植物群落次生演替中上壤抗冲性研究[J].水土保持研究,2008,15(2):13-17.
    [14]魏湘萍,于晓英,熊旋.等.模拟酸雨对萱草光合特性的影响[J].北方园艺,2009(6):175-177.
    [15]王永健,钟章成,陶建平.缙云山不同生境蝴蝶花分株种群格局及对草本多样性的影响[J].生态学报,2008(7)3082-3091.
    [16]王荣.亚热带常绿阔叶林两个不同功能组树种幼苗对不同光环境的响应与适应[D].北京:西中国林业科学研究院,2007.
    [17]王庆彬,王恩姮,姜中珠,周一杨.黑土区常见树种水分生理适应性及抗旱特性[J].东北林业大学学报,2009,37(1):8-14.
    [18]王凯斌,刘明国,赵凤,吴栋栋,程瑞春.四个美国产地树种光合特性比较[J].辽宁林业科技,2009,1:42-44.
    [19]汤爱仪.常绿阔叶林不同演替阶段树种幼苗对小同光环境的适应[D].重庆:西南大学,2008.
    [20]孙兰兰.模拟酸雨对3种外来入侵植物生理生态特性的影响[D].广州:华南师范大学,2010.
    [21]宋会兴,苏智先,彭远英.山地土壤肥力与植物群落次生演替关系研究[J].生态学杂志,2005,24(12)1531-1533.
    [22]石胜友,尚进,田海燕,等.缙云山风灾迹地常绿阔叶林生态恢复过程中优势种群分布格局和 动态[J].武汉植物学院,2003,21(4)321-326.
    [23]冉春燕,亚热带常绿阔叶林几种乔木种子萌发特性研究[J].西南农业大学学报,2005,27(6):753-776.
    [24]冉春燕,缙云山常绿阔叶林几个树种幼苗对不同光环境的响应与适应[D].重庆:西南大学,2006.
    [25]彭辉,李昆,孙永玉.干热河谷4个树种叶温与蒸腾速率关系的研究[J].西北林学院学报,2009,24(4)1-4.
    [26]刘青松,齐代华,桂俊,等.四川山矾种群在不同群落中空间分布格局研究[J].西南农业大学学报,2006,6(3)418-421.
    [27]柳凤娟,向双,阳小成,孙书存.两种光照生境下4中常绿阔叶树的单位叶面积干重、光合能力与化学防御物质含量比较[J]应用与环境生态学报,2010,8(25):462-467
    [28]刘楠,王玉杰,赵占军,赵洋毅,冯华敏,易琴,雷声坤.西南亚热带典型林分枯落物层对酸沉降的响应[J].水土保持学报,2011,25(2):108-120.
    [29]刘楠,王玉杰,储小院,等.缙云山不同土地利用类型暴雨径流水质研究[J].安徽农业科学2009,37(12)5588-5590.
    [30]刘敏,王玉杰,赵洋毅等.重庆缙云山水源涵养林地土壤水文效应[J].中国水土保持SWCC,2010,5:41-44.
    [31]刘建福,高志远.酸雨胁迫下比久(B9)对东魁杨梅生理特性的影响[J].热带作物学报,2009,30(4):495-499.
    [32]刘鸿雁,黄建国.缙云山森林群落次生演替中土壤理化性质的动态变态[J].应用生态学报,2005,16(11):2014-2046.
    [33]刘德秀,秦远好,谢德体.游憩活动对缙云山自然保护区土壤环境的影响[J].西南农业大学学报(自然科学版),2006,25(5):714-721.
    [34]李志国,姜卫兵,翁忙玲,姜武.常绿阔叶园林6树种对模拟酸雨的生理响应及敏感性[J].园艺学报,2011,38(3):512-518.
    [35]李俊敏,何平,林永慧,胡世俊.缙云山特有植物缙云黄芩种群生态位研究[J].西南师范大学学报(自然科学版),2004,29(3)451-456.
    [36]景茂,曹福亮,汪贵斌,郝明灼.土壤水分含量对银杏光合特性的影响[J].南京林业大学学报,2005,29(4):83-86.
    [37]解婷婷,苏培玺,张岭梅,严巧娣.黑河中游边缘绿洲湿润和干旱条件下棉花叶片光合特性比较[J].西北植物学报,2009,29(1):0128-0135.
    [38]蒋馥蔚.6种不同起源时期被子植物幼苗对酸雨胁迫响应的光合生理生态特性[D].重庆:西南大学,2009.
    [39]蒋馥蔚,江洪,李巍,余树全,鲁美娟,李佳.等.酸雨胁迫下黑壳楠幼苗在夏季和秋季的生理生态特征[J].生态环境,2008,17(6):2374-2380.
    [40]黄勇.绿竹种源的光合特性研究[J].福建林业科技,2003,30(3):50—54
    [41]胡梦芸,张正斌,徐萍,董宝娣.等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(10):1711-1719.
    [42]胡婧楠.三种楠木光合生理特性及叶r养分年份变化的比较研究[D].合肥:安徽农业大学, 2010.
    [43]何斌,刘勇.水分胁迫对异株荨麻光响应特性的影响[J].吉林农业大学学报,2011,9.
    [44]郭全邦,刘玉成,李旭光.缙云山森林次生演替序列群落的物种多样性动态[J].应用生态学报1999,10(5):521-524.
    [45]官凤英,范少辉.两种棕榈藤光合口变化及其与环境因子的关系研究[J].世界竹藤通讯,2010,8(4):1-6.
    [46]杜社妮子,白岗栓,李代琼.中国沙棘、俄罗斯沙棘、和俄罗斯沙棘X中国沙棘光合特性及影响因子[J].水土保持通报,2008,28(4):26-31.
    [47]杜林方.光合作用研究的一些进展[J].世界科技研究与发展,1999,21(1):58-62
    [48]丁松爽,苏培玺,高松,张岭梅.不同间作条件下枣树的光合特性研究[J].干旱地区农业研究,2009,27(1):184-189.
    [49]陈歆,杨福孙,周兆德,符常明.土壤水分胁迫对槟榔幼苗光合特性的影响[J].热带农业科学,2010,30(2):7-12.
    [50]陈芳清,郭成圆,王传华,许文年,等.水淹对秋华柳幼苗生理生态特征的影响[J].应用生态学报,2008,19(6):1229-1233.
    [51]操国兴,钟章成,刘芸,谢德体.缙云山川鄂连蕊茶种群空间分布格局研究[J].生态学杂志,2003,20(1)10-12.
    [52]毕玉伟,秦俊,王奎玲,胡永红.不同季节风丹光合特性的初步研究[J].天津农业科学,2011,17(1):18-21.
    [53]Zhengzhu Xu,Guangsheng Zhou. Response of leaf stomatal density to water status and its relationship with photosynthesis in a grass [J]. Journal of Experimental Botany,2008,59(12): 3317-1198.
    [54]Yu Jianquan, Ye Sufeng,Huang Lifeng, Effects of simulated acid precipitation on photosynethesis, chorophyll fluorcscense and anti-oxidative enzymes in Cucumis sativus L[J]. Photosynthetica, 2002,40(3):331-335
    [55]YeZP, YuQ. Acoupled mode lof stomatal conduct anceand photosyn thesis for winterwheat[J]. Photosynthetica.2008,46:637-640.
    [56]Wasseige C,de Bastin D,Defourny P.Seasonal variation of tropical forest LAI based on field measurements in Central African Republic[J].Agricultural and Forest Meteorology,2003,119:181-194
    [57]Spanner M,Johnson L,Miller L.Remote sensing of seasonal leaf area index across the Oregon Transent[J].Ecology applications 1994,4(2):258-271
    [58]Tobita H, Utsugi H, Kitao M,et al,.Variation in photoinhibition among Sasa senanensis,Quercus mongolica, and Acer mono in theunderstory of a deciduous broad-leaved forest exposed to canopy gaps caused by typhoons. TREES-STRUCTURE AND FUNCTION,2010,24(2):307-319
    [59]Turner N.C.Adaptation to water deficits:A changing perspective.Aust.J.Plant Physiol.,1983.13:175-190.
    [60]Qiao, YZ, Zhang YB, et al. A new viewpoint to understand the response of leaf dark respiration to elevated CO2 concentration. PHOTOSYNTHETICA 2007,45(4):510-514.
    [61]Osrio J,Osrio M L,Chaves M M,etal. Water deficits aremore important in delaying growth than in changing patterns of carbon allocation in Eucalyptus globules.Tree Physiol,1998,18(6):363-373
    [62]Motomura H, Hikosaka K, Suzuki M, Relationships between photosynthetic activity and silica accumulation with ages of leaf in Sasa veitchii (Poaceae, Bambusoideae). ANNALS OF BOTANY,2008,101(3):463-468.
    [63]M.C.Dias, W. Bruggemann. Differential inhibition of photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. Photosynthetica, 2007,1:75-84.
    [64]Levit, J.Response of Plant to Environmental Stresses.Academic Press, New York,1972
    [65]Larcher W. Physiological Plant Ecology. Springer-verlag, Berlin and New York,1980,303
    [66]Kramer.PJ Plant water relations. Translated by Xu Xuri,Beijing: Science Press,1989
    [67]Jones M.M.,Tumer N.C.,Osmond C.B.Mechanisma of drought resistance.In:The Physiology and Biochemistry of Drought Resistance in Plant.Ed.by Paleg L.G.&Aspinall D.1981,15-37
    [68]Han Shigang,Guo Si, et al. Analysis on the Climate Characeristics of Summer Drought Frequency in Chongqing. Meteorological Enviromental Research 2010,1(10):36-38
    [69]Hellmut E O. Eco-physiological studies on plants in arid and semi-arid regions in Western Australia I. Autecology of Rhagodia baccata (Labill) MOQ. J Ecology.
    [70]Gratani L, Crescente MF,et al., Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. FLORA,2008,203(1):77-84.
    [71]G. D. Farquhar and T. D. Sharkey, "Stomatal conductance and photosynthesis, Annual Review of Plant Physiology," Vol 33, pp.317-345,1982.
    [72]Gindaba J.,Rozanov A.,Negash L.,2004.Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress.For.Ecol.Manage.,201:119-129
    [73]Fukuzawa K, Dannoura M, Kanemitsu S, Kosugi Y, Seasonal patterns of root production of Japanese oak seedlings and dwarf bamboo grown in rhizoboxes. PLANT BIOSYSTEMS,2010, 144(2):434-439.
    [74]Fischer R A, Turner NC. Plant productivity in the arid and semiarid zones. Annual Review of Plant Physiology,1978.29:146-166.
    [75]Dieter Hanelt, Christian Wiencke, Ulf Karsten, Wilhelm Nultsch. Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminaria Saccharina(Phaeophyta). Journal of Phycology,2008,3:387-395.
    [76]AI Hakimi A.,Monneveux P.,Galiba G.Soluble sugars,proline,and relative water content(RWC) as traits for improving drought tolerance and divergent selection for RWC from T.durum.J.of Genetics & Breeding.1995,49(3)237-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700