常绿阔叶林不同演替阶段树种幼苗对不同光环境的适应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以亚热带常绿阔叶林演替序列上不同地位的物种为研究对象,选择3种自然环境(旷地、常绿阔叶林林窗和常绿阔叶林林下)并比较3种环境的主要环境因子,从生长特征、光合特征、解剖特征方面研究幼苗对3种光环境的适应,得到以下结论:
     (1)研究发现由于受到林冠结构(空隙度、平均叶面积指数及平均叶倾角)的影响,旷地有效光辐射高于林窗和林下,旷地的相对湿度、气温日变化比林窗和林下变动大。3种环境的有效光辐射、气温和相对湿度的季节变化趋势一致,均表现出夏季值最高。不同环境中环境因子的变化幅度在夏季表现最为明显。
     (2)在旷地、林窗和林下3种自然光环境下,通过比较亚热带常绿阔叶林演替前期种四川大头茶(Gordonia acuminate(Pritz.)H.T.Chang)和后期种薄果猴欢喜(Sloanea leptocarpa Diels)的幼苗生长、生物量和光合色素含量,探讨不同生态习性亚热带常绿阔叶树种幼苗对光环境的适应。结果表明:1)在旷地环境,两种幼苗具有低的SSL、Chl_M、Chl_A、Car_M和高的Car/Chl以适应高光环境。与四川大头茶相比,薄果猴欢喜具有高的SMR、Car/Chl和低的SSL、LMR(p<0.05):2)在林下环境,两种幼苗具有高的SLA、LAR、Chl_M、Chl_A、Car_M和低的Chl a/b以适应低光环境。与四川大头茶相比,薄果猴欢喜具有更高的SLA、LAR、Chl_M、Chl_A、Car_M和低的Chl a/b(p<0.05)。总之,前期种四川大头茶适应旷地光环境的能力略强于后期种薄果猴欢喜,但适应林下的能力较差。
     (3)研究了生长于旷地、林窗和林下环境的亚热带常绿阔叶林演替前期树种灯台树(Cornuscontroversa Hemsl.)和香樟(Cinnamomum camphora(L.)Presl)、中间种大果杜英(Elaeocarpusduclowxii Gagnep.)及演替后期种薯豆(Elaeocarpus japonicus Sieb.et Zucc)和栲树(Castanopsisfargwsii Franch.)幼苗的稳态光合特征和荧光参数对光强的响应。结果表明:灯台树和香樟具有高水平的ETR、NPQ、P_(max)和Rd,在3种光环境下均没有发生光抑制,相反,大果杜英、薯豆和栲树具有较低水平的ETR、NPQ和P_(max),在旷地环境发生长期的光抑制现象。超过一定光强范围后,生长在林下环境的灯台树、香樟和大果杜英,比在旷地和林窗环境受到更大的光抑制(低的ΔF/Fm’值),可能是它们在林下生长具有较小的P_(max)、Rd、q_P、ETR和NPQ,而薯豆和栲树幼苗生长在三种环境下的q_P、ETR和NPQ差异不显著,即使施以相同光强,生长在林下的幼苗也与旷地和林窗发生的短期光抑制。结果表明幼苗在高光环境下是否会发生光抑制,与它本身具有的P_(max)、Rd、q_P、ETR和NPQ综合特征水平有关。
     (4)研究了生长于旷地、林窗和林下环境的亚热带常绿阔叶林前期树种川灰木(Symplocossetchuanensis Brand)、中间种大果杜英及演替后期种薯豆和栲树幼苗的生态解剖及可塑性特征。结果表明:在旷地环境下,4种幼苗表现出较高的气孔密度、气孔指数、叶厚、栅栏组织、栅栏/海绵组织、S_c、S_(mec)或S_c/S_(mec)值。在林下环境,4种幼苗具有较小的上表皮、叶厚和较大的海绵组织值。比较4种幼苗解剖可塑性,发现川灰木和大果杜英的大部分的解剖特征(气孔长度、保卫细胞长度、上表皮、上角质层、栅栏组织、栅栏组织/海绵组织、S_c指标)的可塑性指数显著高于薯豆和栲树(p<0.05),且总体可塑性指数表现为川灰木(0.825)>大果杜英(0.753)>薯豆(0.597)>栲树(0.583)。结果表明,常绿阔叶林演替前期种和中间演替种的可塑性比演替后期种大,这一定程度上解释了它们在常绿阔叶林演替中的地位。
     从本实验的综合结果中发现,一般演替前期种比演替后期种更适应于开阔的林窗环境,相反,后者更适应于郁闭的林下环境。
To explore the light adaptation characteristics and related ecophysiological mechanism ofseedlings,this paper studied:1)The comparison on the canopy structure and light characteristicsamong three light regimes (Open land,Gap and Understory).2)The growth,photosynthetic and leafanatomical responses of several seedlings growing in three light regimes.The results were asfollowing:
     (1) Because of the canopy structure (Gap fraction,LAI,MTA),the photosynthetically available radiation in Open land was higher than that in Gap and Understory.The daily variance of thetemperature and relative humidity in Open land were greater than that in Gap and Understory.The seasonal variation trend of the photosynthetically available radiation,air temperature and relativehumidity in three different light regimes were consistent that the value of them was highest in summer.The variance of environment factors was greatest in summer.
     (2) It was studied that the adaptation to the different light regimes of seedlings of two species,one of which was Gordonia acuminate (Pritz.)H.T.Chang (early-successional species)and another was Sloanea leptocarpa Diels (late-successional species)in subtropical evengreen broad-leaved forest by comparing their growth characteristics,biomass and pigment contents in different lightregimes.The results showed that:1)The two species in this study could adapt to the high growthlight regimes (Open land)with low value of specific stem length (SSL),chlorophyll contents(Chll_M,Chl_A),Car_M,and high value of carrotenoid/chlorophyll (Car/Chl).Compared with G.acuminate,S.leptocarpa had higher values of stem mass ratio (SMR),carrotenoid/chlorophyll (Car/Chl),and lower values of specific stem length (SSL),leaf mass ratio (LMR)in Open land(p<0.05).2)In Understory,the two species had low values of specific leaf area (SLA),leaf arearatio(LAR),chlorophyll contents (Chll_M,Chl_A)and Car_M,and high value of Chlorophyll a/ b (Chla/b)to adapt to the high light intensity.Compared with G.acuminate,S.leptocarpa had highervalues of SLA,LAR,Chl_M,Chl_A)Car_M,and lower values of Chlorophyll a/b (Chl a/b)(p<0.05).Allof the results presented above indicated that G.acuminate could adapt better to Open land but did worse to Understory compared with S.leptocarpa.Their abilities to adapt to light regimes mightexplain their successional status in subtropical evengreen broad-leaved forest.
     (3) The response of the photosynthetic characteristic and fluorescence parameter were studied in seedlings of five tropical rainforest tree species.Cornus controversa Hemsl.and Cinnamomum camphora (L.)Presl were pioneer and early successional species,Elaeocarpus duclowxii Gagnep.was intermediate-tolerant and mid-successional species,Elaeocarpus japonicus Sieb.et Zucc andCastanopsis fargwsii Franch.were shad-tolerant and late-succesional species.The results showedthat:C.controversa and C.camphora were higher in ETR,NPQ,P_(max) and Rd,and there were nophotoinhibition in three light regimes.In reverse,C.controversa and C.camphora,E.duclowxii,E.japonicus and C.fargwsii were lower in ETR,NPQ and P_(max),and there was photoinhabition for longtime in Open land.Exceeding some extent of light intensity,the C.controversa,C.camphora,and E.duclowxi growing in Understory had greater photoinhabition than that growing in Open land or Gap,because they had low values of P_(max),Rd,q_P,ETR and NPQ;however there were no significant differences in q_P、ETR and NPQ of E.japonicus and C.fargwsii,even if growing in the Understorywith the same light intensity they had shorter time photoinhabition than that growing in Open land orGap.We concluded that whether the seedlings might happen photoinhabition or not was related tothe integrating characteristics of P_(max),Rd,q_P,ETR and NPQ.
     (4) The ecological anatomy characteristics and phenotypic plasticities were studied in seedlings of four tropical rainforest tree species.Symplocos setchuanensis Brand was early-successionalspecies,E.duclowxii was mid-successional species,E.japonicus and C.fargwsii werelate-successional species.All of them acclimated to different light regimes (Open land,Gap andUnderstory).The results showed that the four species had higher values of Stomatal density (SD),Stomatal index (SI),Leaf thickness (LT),Thickness of palisade tissue (TPL),Thickness of palisadetissue/Thickness of spongy tissue (TPL/TST),S_c,S_(mec) and S_c/S_(mec) in Open land.However,the valuesof Thickness of upper epidermis,Leaf thickness (LT),Thickness of spongy tissue (TST)were lower in four seedlings in the Understory.And it was showed that most of the indexes (SL,GCL,TUE,CTUB,TPL,TPL/TST,S_c)of S.setchuanensi and E.duclowxii were singnificant higher thanthat of E.japonicus and C.fargwsii.And the general Plasticity Index showed:S.setchuanensi (0.825)>E.duclowxii (0.753)>E.japonicus (0.597)>C.fargwsii (0.583).All of the results presented above indicate that the PI in early-successional and mid-successional species were higher in that oflate-successional species.Their abilities to acclimate light regimes might explain their successional status in subtropical evengreen broad-leaved forest.
     All of the results presented above indicate that early-successional and mid-successional species acclimated better to high light regimes but did worse to the understory compared withlate-successional species.
引文
[1] Valladares F.Light heterogeneity and plants:from ecophysiology to species coexistence and biodiversity [J].Progress in Botanty,2003,64:439-471.
    
    [2] Pearcy RW,Valladares F.Resource acquisition by plants:the role of crown architecture.In Physiological Plant Ecology [M].Eds.M.Press,Scholes JD and Barker MG Blackwell Scientific,London:1999,45-66.
    
    [3] Hatta H,Honda H,Fisher JB.Branching principles governing the architecture of Cornus kousa Cornaceae [J].Annales Botanici Fennici,1999,84:183-193.
    
    [4] Daniel SF,Mark W.Leaf size and angle vary widely across Species:What consequences for light interception? [J].New Phytologist,2003,158:509-525.
    
    [5] 郭志华,胡启鹏,王荣,等.喜树幼苗的叶悬挂角和叶柄角对不同光环境的响应和适应[J].林业科学研究,2006,19(5):647-652.
    
    [6] Poorter L.Growth responses of 15 rain- forest tree species to a light gradient:the relative importance of morphological and physiological traits [J].Functional Ecology,1999,13:396-410.
    
    [7] Osunkoya OO,Ash JE,Hopkins MS,et al.Influence of seed size and seedling ecological attributes on shade-tolerance of rain- forest tree species in Northern Queensland [J].Journal ofEcology,1994,13:149-163.
    
    [8] Strauss-Debenedetti S,Bazzaz FA.Photosynthetic characteristics of tropical trees along successional gradients [M].In:Mulkey SS,Chazdon RL,Smith AP eds.Tropical Forest Plant Ecophysiology.New York:Chapman and Hall,1996,162-186.
    
    [9] John W G,John RS,John AP,et al.Growth and photosynthetic responses of four Virginia Piedmont tree species to shade [J].Tree Physiology,1996,16:773-778.
    
    [10] Walters MB,Reich PB.Research Review:Low-light carbon balance and shade tolerance in the seedlings of woody plants-do winter deciduous and broad-leaved evergreen species differ? [J].New Phytologist,1991,143:143-154.
    
    [11] King DA.Branch growth and biomass allocation in A.anabilis sap lings in contrasting light environments [J].Tree Physiology,1997,17:251-258.
    
    [12] King DA.Allocation of above-ground growth is related to light in temperate deciduous saplings [J].Functional Ecology,2003,17 (4):482-488.
    
    [13] 郭晓荣,曹坤芳,许再富.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光??环境的反应[J].应用生态学报,2004,15(3):377-381.
    
    [14] 蔡志全,曹坤芳,冯玉龙.热带雨林3种树苗叶片光合机构对光强的适应[J].应用生态学报,2003,14(4):493-496.
    
    [15] Scholes JD,Press MC,Zipperlen SW.Differences in light energy utilization and dissipation between dipterocarp rain forest tree seedlings [J].Oecologia,1997.109:41-48.
    
    [16] Welander NT,Ottosson B.The influence of shading on growth and morphology in seedlings of Quercus robur L.and Fagus sylvatica L.[J].Forest Ecology and Management,1998,107:117-126.
    
    [17] Koroleva KGH,Dalling OY,Winter JW.Acclimation of tropical tree seedlings to excessive light in simulated tree- fall gaps [J].Plant Cell and Environment,2001,24 (12):1345-1352.
    
    [18] Valladares F,José MC,Ismael A,et al.The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity [J].Trees,2002,16:395-403.
    
    [19] Bazzaz FA.The physiology ecology of succession [J].Annual Review of Materials Research, 1979,10:351-371.
    
    [20] Kitajima K.Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees [J].Oecologia,1994,98:419-428.
    
    [21] Jones RH,Mcleod KW.Growth and photosynthetic responses to a range of light environments in Chinese tallow tree and Carolina ash seedlings [J].Annals of Forest Science,1990,36:851-862.
    
    [22] Valladares F,Pearcy RW.The geometry of light interception by shoots of Heteromeles arbutifolia:Morphological and physiological consequences for individual leaves [J].Oecologia, 1999,121:171-182.
    
    [23] Valladares F,Pearcy RW.The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M.Roem,a Californian chaparral shrub [J].Oecologia,1998,114:1-10.
    
    [24] Demmig-Adams B,Adams WW.Photoprotection and other responses of plants to high light stress [J].Annual Review of Plant Physiology and Plant,1992,43:599-626.
    
    [25] Bazzaz FA,Wayne PM.Coping with environmental heterogeneity:the physiological ecology oftree seedling regeneration across the gap-understory continuum [M].In:Caldwell MM,Pearcy RW eds.Physiological Ecology:A Series Monographs,Texts and Treatises.San Diego: Academic Press,1994.349-390.
    
    [26] Chow WS,Adamson HY,Anderson JM.Photosynthetic acclimation of Tradescantia albiflora to growth irradiance:lack of adjustment of light-harvesting components and its consequences [J]. Plant Physiology, 1991, 81:175-182.
    [27] Niinemets U. Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species [J]. Functional Ecology, 1997,11: 518-531.
    [28] Mitchell K. Acclimation of Pacific yew Taxus brevifolia foliage to sun and shade [J]. Tree Physiology, 1998,18: 749-757.
    [29] Seemann JR, Sharkey TD, Wang J, et al. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants [J]. Plant Physiology, 1987,84: 796-802.
    [30] Niinemets U. Acclimation to low irradiance in Picea abies: influences of past and present light climate on foliage structure and function [J]. Tree Physiology, 1997,17: 723-732.
    [31] Ivanova LA, P'yankov VI. Structural adaptation of the leaf mesophyll to Shading [J]. Russian Journal of Plant Physiology, 2002,49 (3): 419-431.
    [32] Anderson JM, Chow WS, Park YI. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues [J]. Photosynthesis Research, 1996, 46:129-139.
    [33] Oguchi R, Hikosaka K, Hirose T. Does the hotosynthetic light-acclimation need change in leaf anatomy? [J]. Plant, cell and Environment, 2003, 26 (4): 505-506.
    [34] Furukawa A. Stomatal frequency of Quercus myrsinaefolia grown under different irradiances [J].Photosynthetic, 1997, 34: 195-199.
    [35] Mott KA, Michaelson O. Amphistomy as an adaptation to high light-intensity in Ambrosia-Cordifolia composite [J]. American Journal of Botany, 1991, 78: 76-79.
    [36] James SA, Bell DT. Influence of light availability on leaf structure and growth of two Eucalyptus globulus provenances [J]. Tree Physiology, 2000,20: 1007-1018.
    [37] Denslow JS. Tropical rainforest gaps and tree species diversity [J]. Annual Review of Ecology and Systematics, 1987,18: 431-451.
    [38] Yamamoto S. Gap dynamics in climax Fagus crenata forests [J]. Botanica Marina, 1989, 102:93-114.
    [39] Denslow JS, Ellison AM, Sanford RE. Treefall gap size effects on above- and below-ground processes in a tropical wet forest [J]. Journal of Ecology, 1998, 86: 597-609.
    [40] Naidu SL, Delucia EH. Growth, allocation and water relations of shade-grown Quercus rubra L. saplings exposed to a late-season canopy gap [J]. Annales Botanici Fennici, 1997, 80: 335-344.
    [41] Naidu SL, Delucia EH. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps [J]. Tree Physiology, 1997, 17: 367-376.
    [42] Lorenda GA, Fernando V, Regino Z. Differential light responses of Mediterranean tree saplings:??linking ecophysiology with regeneration niche in four co-occurring species [J].Tree Physiology,2006,26,947-958.
    
    [43] Oguchi R,HikosakaK,Hiura H,et al.Gap formation and photosynthetic light acclimation inwoody seedlings in a cool-temperate deciduous forest [J].Oecologia,2006,149,571-582.
    
    [44] 骆郴,刘彤,魏鹏,等.不同光照条件下新疆小拟南芥(Arabidopsis pumila)的表型可塑性研究[J].石河子大学学报(自然科学版),2004,22(2):149-154.
    
    [45] Ellis AR,Hubbell SP,Potvin C.In situ field measurements of photosynthetic rates of tropical tree species:a test of the functional group hypothesis [J].Canadian Journal of Botany-Revue Canadienne,1999,78:1336-1347.
    
    [46] Han Q,Yamaguchi E,Odaka N,et al.Photosynthetic induction responses to variable light under field conditions in three species grown in the gap and understory of a Fagus crenata forest [J].Tree Physiology,1999,19:625-634.
    
    [47] Naumburg E,Ellsworth DS.Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE [J].Oecologia,2000,122:163-174.
    
    [48] Malavasi UC,Malavasi MM.Leaf characteristics and chlorophyll concentration of Schyzolobium parahybum and Hymenaea stibocarpa seedlings grown in different light regimes [J].Tree Physiology,2001,21:701-703.
    
    [49] Fetene M,Feleke Y.Growth and photosynthesis of seedlings of four species from a dry tropical afromontane forest [J].Journal of Tropical Ecology,2001,17:269-283.
    
    [50] Krause GH,Koroleva OY,Dalling JW,et al.Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps [J].Plant,Cell and Environment,2001,24:1345-1352.
    
    [51] Oguchi R,Hikosaka K,Hiura H,et al.Gap formation and photosynthetic light acclimation in woody seedlings in a cool-temperate deciduous forest [J].Oecologia,2006,149,571-582.
    
    [52] 熊利民,钟章成.四川缙云山森林群落演替机理初探[J].西南师范大学学报,1991,16(1):89-96.
    
    [53] 陈晓德.缙云山森林土壤速效氮,钾含量随植物群落演替变化趋势分析[J].西南师范大学学报(自然科学版),1998,23(1):121-125.
    
    [54] 刘玉成,杜道林,岳泉.缙云山森林次生演替中优势种群的特性与生态因子的关联度分析[J].植物生态学报,1994,18(3):283-289.
    
    [55] 郭全邦,刘玉成,李旭光.缙云山森林次生演替序列优势种群的生态位[J].西南师范大学学报(自然科学版),1997,22(1):72-78.
    
    [56] Bray JR.Gap phase replacement in a maple-basswood forest [J].Ecology,1956,37:598-600
    
    [57] Whitmore TC.Gaps in the forest canopy [M].In:Tomlinson PB,Zimmermann MH eds.Tropical trees an living systems.New York:Cambridge University Press,1978,639-655.
    [58] Ehrenfeld JG Understory response to canopy gaps of varing size in a mature oak forest [J].Bulletin of the Torrey Botanical Club, 1980,107: 29-41.
    [59] Huenneke LF. Understory response to gaps caused by the death of Ulmus amencina in central New York [J]. Bulletin of the Torrey Botanical Club, 1983,110:170-175.
    [60] Taylor AH, Zisheng Q. Regeneration patterns in old-growth Abies-Bethula forests in the Wolong Natural Reserve, Sichuan, China [J]. Journal of Ecology, 1988, 76 (4): 1204-1218.
    [61] Veblen TT, Veblen AT, Schlegel FM. Understory patterns in mixed evergreen-deciduous Northofagus forests in Chile [J]. Journal of Ecology, 1979,67: 809-828.
    
    
    [1] 王进欣,张一平.林窗微环境异质性及物种的响应[J].南京林业大学学报(自然科学版),??2002,25(1):69-75.
    
    [2] 冯玉龙,曹坤芳,冯志立.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-911.
    
    [3] Kitao M,Koike T,Koike T.Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes [J].Plant,Cell and Environment,2000,23:81-89.
    
    [4] 赵平,孙谷畴,曾小平,等.两种生态型榕树的叶绿素含量,荧光特性和叶片气体交换日变化的比较研究[J].应用生态学报,2000,11(3):327-332.
    
    [5] Warren CR,Adams MA.Distribution of N,Rubisco and photosynthesis in Pinus pinaster and acclimation to light [J].Plant,Cell and Environment,2001,24:597-609.
    
    [6] 骆郴,刘彤,魏鹏,等.不同光照条件下新疆小拟南芥(Arabidopsis pumila)的表型可塑性研究[J].石河子大学学报,2004,22(2):149-153.
    
    [7] 樊大勇,张旺峰,陈志刚,等.沿林冠开度梯度的银杉幼树对光的适应性[J].植物生态学报,2005,29:713-723.
    
    [8] Pearcy RW,Valladares F.Resource acquisition by plants:the role of crown architecture.In Physiological Plant Ecology [M].Eds.M.Press,Scholes JD.and Barker MG Blackwell Scientific,London:1999,45-66.
    
    [9] Valladares F.Light heterogeneity and plants:from ecophysiology to species coexistence and biodiversity [J].Progress in Botanty,2003,64:439-471.
    
    [10] Lee DW.Irradiance and spectral quality affect Asian tropical rain forest tree seedling development [J].Ecology,1996,77 (6):568-580.
    
    [11] 张一平,窦军霞,刘玉洪,等.热带季节雨林林窗辐射特征研究[J].应用生态学报,2004,15(6):929-934.
    
    [12] 张一平,刘玉洪,马友鑫,等.西双版纳干季晴天次生林林窗气温时空分布特征[J].生态学报,2001,21(2):211-215.
    
    [13] 张一平,窦军霞,马友鑫,等.热带季节雨林林窗小气候要素时空分布特征[J].福建林学院学报,2002,22(1):42-46.
    
    [14] 冯建灿,张玉洁.喜树光合速率日变化及其影响因子的研究[J].林业科学,2002,38(4):34-40
    
    [15] 柯世省,金则新,李钧敏.浙江天台山茶树光合日变化及光响应[J].应用与环境生物学报,2002,8(2):159-164.
    
    [16] 翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节[J].浙江大学学报(农业与生命科学版),2002,28(4):387-391.
    
    [17] 王周平,李旭光,石胜友,等.重庆缙云山针阔混交林林隙树木更替规律研究[J].植物生??态学报,2001,25(4):399-404.
    
    [18] Miyashita Y,Kitaya Y,Kozai T,et al.Effects of red and far-red light on the growth and morphology of potato plantlets in vitro:using light emitting diode as a light source for microprogation [J].Acta Horticuhurae,1995,393:189-194.
    
    [19] Suneetha A,Chinnappa CC,David MR.Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes [M]:Differential response of alpine and prairie ecotypes.Canadian Journal of Botany,2002,80:72-81.
    
    [20] Augspurger CK.Light requirements of neo-tropical tree seeding:a comparative study of growth and survival [J].Journal of Ecology,1984,72:777-795.
    
    [21] Canham CD.Growth and canopy architecture of shade-tolerant tree:response to canopy gaps [J].Ecology,1988,69 (3):786-795.
    
    [22] Lawton RO,Putz FE.Natural disturbance and gap-phase regeneration in a wind-exposed tropical lower mountain rain forest [J].Ecology,1988,69:764-777.
    
    [23] Brown N.The implications of climates and gap microclimate for seeding growth condition in a Bornean lowland rain forest [J].Journal of Tropical Ecology,1993,9:153-168.
    
    [1] Valladares F.Light heterogeneity and plants:from ecophysiology to species coexistence and biodiversity [J].Progress in Botanty,2003,64:439-471.
    
    [2] Marc T.Forest light and its influence on habitat selection:Netherland [J].Plant Ecology,2001,153:251-261.
    
    [3] 赵有华.遮荫条件下栲树幼苗枝,叶构件统计学研究[J].渝州大学学报,1997,14(1):28-33.
    
    [4] 陶建平,钟章成.光照对苦瓜形态可塑性及生物量配置的影响[J].应用生态学报,2003,14:336-340.
    
    [5] 盛海燕,李伟成,常杰.伞形科两种植物幼苗生长对光照强度的可塑性响应[J].生态学报,2006,26(6):1854-1862.
    
    [6] 王俊峰,冯玉龙.光强对两种入侵植物生物量分配,叶片形态和相对生长速率的影响[J].植物生态学报,2004,28(6):781-786.
    
    [7] Cao KF.Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest [J].Canadian Journal of Botany-Revue Canadienne,2000,78:1245-1253.
    
    [8] 王博轶,冯玉龙.生长环境光强对两种热带雨林树种幼苗光合作用的影响[J].生态学报,2005,25(1):23-31.
    
    [9] Scholes JD,Press MC,Zipperlen SW.Differences in light energy utilization and dissipation between dipterocarp rain forest tree seedlings [J].Oecologia,1997,109:41-48.
    
    [10] 张教林,曹坤芳.不同生态习性热带雨林树种的幼苗对光能的利用与耗散[J].应用生态学报,2004,15(3):372-376.
    
    [11] 杨小波,王伯荪.森林次生演替优势种苗木的光可塑性比较研究[J].植物学通报,1999,16(3):304-309.
    
    [12] Hunt R.Plant growth analysis [M].London:Edward Arnold:1978,27-29.
    
    [13] Johnston M,Grof CPL,Brownell PF Effect of sodium nutrition on chlorophyll a/b ratios in C_4 plants [J].Journal of Plant Physiology,1984,11:325-332.
    
    [14] Wellbum AR.The spectral determination of chlorophylls a and b,as well total carotenoids,using various solvents with spectrophotometers of different resolution [J].Journal of Plant Physiology,1994,144:307-313.
    
    [15] 冯玉龙,曹坤芳,冯志立.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-911.
    
    [16] 魏胜利,王文全,秦淑英,等.桔梗,射干的耐阴生研究[J].河北农业大学学报,2004,27(1):52-57.
    
    [17] Poorte L.Growth responses of 15 rain-forest tree species to a light gradient:the relative importance of morphological and physiological traits [J].Functional Ecology,1999,13:396-410.
    
    [1] Whitmore TC.Changes over twenty one years in the Kolombangara rain forests [J].Journal ofEcology,1989,77:469-483.
    
    [2] Boardman NK.Comparative photosynthesis of sun and shade plants [J].Annual Review ofPlant Physiology,1977,28:57-107.
    
    [3] Valladares F,Lasso E.Plastic phenotypic response to light of 16 congeneric shrubs from a??Panamanian rainforest [J].Ecology,2000,81:1925-1936.
    
    [4] Riddoch I,Lehto T,Grace J.Photosynthesis of tropical tree seedlings in relation to light and nutrient supply [J].New Phytologist,1991,110:137-147.
    
    [5] Kitao M,Lei TT,Koike T,et al.Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes [J].Plant,Cell and Environment,2000,23:81-89.
    
    [6] 郭全邦,刘玉成,李旭光.缙云山森林次生演替序列优势种群的生态位[J].西南师范大学学报(自然科学版),1997,22(1):72-78.
    
    [7] Bassman J,Zwier JC.Gas exchange characteristics of Populust trichocarpa,Populus deltoids and Populus trichocarpa ×P.deltoids clone [J].Tree Physiology,1991,8:145-149.
    
    [8] 冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    
    [9] Reiround G,Gyozo G.Non-photochemical chlorophyll fluorescence quenching and structuralrearrangements induced by low pH in intact ceils of chlorella fusca (Chlorophyceae)and Mantoaiella squamata (Prasinophyceae)[J].Photosynthesis Research,2001,67 (3):185-197.
    
    [10] 张教林,曹坤芳.光照对两种热带雨林树种幼苗光合能力,热耗散和抗氧化系统的影响[J].植物生态学报,2002,26(6):639-646.
    
    [11] Demmig-Adams B,Adams III WW,Heber U,et al.Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts[J].Plant Physiology,1990,92:293-301.
    
    [12] Brodribb T,Hill RS.Light response characteristics of a morphologically diverse group of southern hemisphere conifers as measured by chlorophyll fluorescence [J].Oecologia,1997,110:10-17.
    
    [13] 张教林,曹坤芳.不同生态习性热带雨林树种的幼苗对光能的利用与耗散[J].应用生态学报,2004,15(3):372-376.
    
    [14] Brugnoli E,Scartazza A,Tullio MCD,et al.Zeaxanthin and non-photochemical quenching in sun and shade leaves of C_3 and C_4 plants [J].Physiologia Plantarum,1998,140:727-734.
    
    [15] Demmig-Adams B,Adams WW.Photoprotection and other responses of plant to high light stress [J].Annual Review of Plant Physiology and Plant Molecular Biology.1992,43:599-626.
    
    [16] Horton P,Ruban AV,Walters RG.Regulation of light harvesting in green plants [J].Annual Review of Plant Physiol Plant Molelcular Biology,1996,47:655-684.
    
    [17] Scholes JD,Press MC,Zipperlen SW.Differences in light energy utilization and dissipation between dipterocarp rain forest tree seedlings [J].Oecologia,1997,109:41-48.
    
    [18] 齐欣,蔡志全.热带雨林蒲桃属三个树种的幼苗由遮荫转入强光后叶片的光抑制[J].内蒙古大学学报(自然科学版),2004,35(1):70-70.
    
    [1] Pearcy RW,Valladares F.Resource acquisition by plants:the role of crown architecture.In Physiological Plant Ecology [M].eds.M.Press,Scholes JD and Barker MG.Blackwell Scientific,London:1999,45-66.
    
    [2] Valladares F.Light heterogeneity and plants:from ecophysiology to species coexistence and biodiversity [J].Progress in Botany,2003,64:439-471.
    
    [3] 王进欣,张一平.林窗微环境异质性及物种的响应[J].南京林业大学学报(自然科学版),2002,25(1):69-75.
    
    [4] 韩有志,王政权.森林更新与空间异质性[J].应用生态学报,2002,13(5):615-619.
    
    [5] Scholes JD.Press MC,Zipperlen SW.Differences in light energy utilization and dissipation between dipterocarp rain forest tree seedlings [J].Oecologia,1997,109:41-48.
    
    [6] Thomas TL,Martin JL.Diverse responses of maple saplings to forest light regimes [J].Annalsof Botanty,1998,82:9-19.
    
    [7] Whitmore TC.Changes over twenty one years in the Kolombangara rain forests [J].Journal of Ecology,1989,77:469-483.
    
    [8] 臧润国,徐化成.林隙(GAP)干扰研究进展[J].林业科学,1998,34(1):90-99.
    
    [9] 赵平,曾小平,彭少麟.植被恢复树种在不同实验光环境下叶片气体交换的生态适应特点[J].生态学杂志,2003,22(3):1-8.
    
    [10] Shibu J,Sara M,Craig LR.Growth,nutrition,photosynthesis and transpiration responses of longleaf pine seedlings to light,water and nitrogen [J].Forest Ecology and Management,2003,180:335-344.
    
    [11] Bazzaz FA.The physiological ecology of plant [J].Annual Review of Ecology and Systematics,1979,10,351-371.
    
    [12] Valladares F,Wright SJ,Lasso E.Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J].Ecology,2000,81:1925-1936.
    
    [13] Strauss-Debenedetti S,Bazzaz FA.Plasticity and acclimation to light in tropical Moraceae of different sucessional positions [J].Oecologia,1991,87:377-387.
    
    [14] 郭玉华,蔡志全,曹坤芳,等.四种热带雨林树种光合和形态解剖特征对不同生长光强的适应[J].武汉植物学研究,2004,22(3):240-244.
    
    [15] 郭全邦,刘玉成,李旭光.缙云山森林次生演替序列优势种群的生态位[J].西南师范大学学报(自然科学版),1997,22(1):72-78.
    
    [16] Thain JF.Curvature correction factors in the measurement of cell surface areas in plant tissues [J].Journal of Experimental Botany,1983,34:87-94.
    
    [17] Valladares F,Wright SJ,Lasso E.Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J].Ecology,2000,81:1925-1936.
    
    [18] Bjorkman O,Kludlow MM,Morrow PA.Effects of light intensity during growth of Atriplex Patula on the capacity of photosynthetic reactions,chloroplast components and structure [M]. Washington:Carnegie Institute of Washington Yearbook,1972,71:115-135.
    
    [19] Mott KA,Michaelson O.Amphistomy as an adaptation to high light intensity in Ambrosiacordifolia (Compositae)[J].American Journal of Botany,1991,78:76-79.
    
    [20] 史刚荣.七种阔叶常绿植物叶片的生态解剖学研究[J].广西植物,24(4):334-338.
    
    [21] 彭少麟,李跃,林余华,等.鼎湖山森林群落不同演替阶段优势种叶生态解剖特征研究[J].热带亚热带植物学报,2002,10(1):1-8.
    
    [22] 陈德兴.叶片叶肉结构对环境光强的适应及对光合作用的影响[J].应用生态学报,1990,1(2):142-148.
    
    [23] 杨江山,常永义,种培芳.樱桃不同节位叶片光合特性与解剖特征比较研究[J].果树学报,2005,22(4):323-326.
    
    [24] Blanke MM.Comparative SEM study of stomata and surface morphology in apple [J].Angewandte Botanik,1987,61:433-438.
    
    [25] Nesterov YS,Shipota SE.Leaf surface area and amount of chlorophyll in apple varieties of thespur type [J].Sbornik.Nauchnykh Trudovpo Prikladnoi Botanike,Genetike I selektsii,1988,121:41-45.
    
    [26] Oguchi R,Hikosaka K,Hirose T.Does the photosynthetic light-acclimation need changes in leaf anatomy? [J].Plant,Cell and Environment,2003,26:505-512.
    
    [27] Oguchi R,Hikosaka K,Hirose T.Leaf anatomy as a constraint for photosynthetic acclimation:differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees.Plant,Cell and Environment,2005,28:916-927.
    
    [28] 郝日明,李晓征,胡金良.遮荫处理下多脉青冈和金叶含笑的叶解剖结构变化研究[J].西北植物学报,2005,25(6):1083-1088.
    
    [29] 魏胜利,王文全,秦淑英,等.桔梗,射干的耐阴生研究[J].河北农业大学学报,2004,27(1):52-57
    
    [30]Abrams MD,Mostoller SA.Gas exchange,leaf structure and nitrogen in contrasting successional tree species growing in open and understory sites during a drought [J].Tree Physiology,1995,15:361-370.
    
    [31]Bazzaz FA.The physiological ecology of plant succession [J].Annual Review Ecology and Systematics,1979,10:351-371.
    
    [32]Neuner G,Bannister P.Frost resitance and susceptibly to ice formation during natural hardending in relation to leaf anatomy in three evergreen tree species from New Zealand [J].Tree Physiology,1995,15:371-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700