北京部分绿地群落光环境状况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在城市绿地中,光是影响植物群落构建的主要因素之一,同时也影响着人们在园林环境中的行为和感受。本研究选取了北京市常用的园林树种25种,研究不同群落内可见光强度、紫外线辐射强度的时空变化,以期能够真实的描述林下光环境的变化,为构建合理、舒适的园林群落提供理论依据。研究表明:
     1.本试验测定的群落内的可见光强度、紫外线强度的日变化都与对照点相似,呈现单峰变化趋势,即早晚强度值较小,可见光强度最小值为624.36 lx,紫外线强度最小值为5.86μW/cm2,中午达到最大值,可见光强度最大值为9381.461x,紫外线强度最大值为258.04μW/cm2,上午下午分别呈现上升和下降趋势。
     2.本试验测定的群落内的可见光强度、紫外线强度夏秋两季比较发现,群落内可见光强度、紫外线强度是早晚夏季高于秋季,中午反之,对照点光强、紫外线强度夏季始终大于秋季。
     3.不同树种,夏季对可见光和紫外线的屏蔽能力不同。本试验测定的群落中,对可见光光强的屏蔽能力最大的美桐群落屏蔽率可达96.20%,最小的银杏群落为74.83%,不同群落屏蔽能力由大到小依次是美桐群落>栾树群落>国槐群落>核桃群落>杜仲群落>北京丁香群落>毛白杨群落>洋白蜡群落>海棠群落>元宝枫群落>刺槐群落>碧桃群落>蒙椴群落>杂种鹅掌楸群落>毛泡桐群落>侧柏群落>油松群落>楸树群落>绦柳群落>银杏群落。
     对紫外线的屏蔽能力最大的栾树群落屏蔽率可达98.85%,最小的银杏群落为68.20%,不同群落屏蔽能力由大到小依次是栾树群落>洋白蜡群落>元宝枫群落>北京丁香群落>蒙椴群落>杜仲群落>国槐群落>核桃群落>毛白杨群落>美桐群落>杂种鹅掌楸群落>海棠群落>侧柏群落>油松群落>楸树群落>毛泡桐群落>绦柳群落>刺槐群落>银杏群落。
     4.根据群落内各点可见光强度、紫外线强度的变异系数分析夏季群落内光照的均匀度,变异系数越大,则群落内的光照的均匀度越差。本试验测定的群落中,可见光强度的变异系数由大到小为毛白杨群落>侧柏群落>毛泡桐群落>蒙椴群落>楸树群落>油松群落>刺槐群落>国槐群落>银杏群落>绦柳群落。
     紫外线强度的变异系数由大到小为蒙椴群落>元宝枫群落>毛泡桐群落>核桃群落>侧柏群落>油松群落>银杏群落>绦柳群落。
     5.本试验测定的群落内可见光的强度与紫外线的强度显著相关,群落对可见光的屏蔽能力与群落枝下高呈显著负相关,与胸径呈显著正相关。不同树种之间的群落对可见光的遮光率与群落的郁闭度无显著相关关系。
In urban green space, light is not only one of the major factors which influence the structure of plant communities, but also affects people's action and feelings. This study selected 25 different plant communities to analyse changes of light intensity and ultraviolet radiation intensity. Then we can find out the change rules of iluminous environment in urban Greenbelt. This will provide Theoretical basis in building more reasonable and comfortable plant communities in the future.
     The results showed as follows:
     1. The daily changes of light intensity and ultraviolet radiation (UV) intensity are similar in different layers of communities and out communities. They both present the single-peak trends. The minimum of light intensity is 624.36 lx, the maximum of light intensity is 9381.46 lx. The minimum of UV intensity is 624.36μW/cm2, the maximum of UV intensity is 9381.46μW/cm2.
     2. In the open spaces, light intensity and UV intensity are always smaller in summer than that in autumn.But in communities, light intensity and UV intensity are only smaller in summer than that in autumn when it is dawn and dusk.
     3. In summer, different species have different light shading rates and different UV shadding rates. The minimum of light shading rates is 74.83% (Ginkgo biloba), the maximum is 96.20% (Platanus occidentalis).The light shading rates from large to small are Platanus occidentalis> Koelreuteria paniculata>Sophora japonica>Juglans regia>Eucommia ulmoides>Syringa pekinensis>Populus tomentosa>Fraxinus pennsylvanica>Malus spectabilis+ Morus alba> Acer truncatum> Robinia pseudoacacia> Prunus persica'Duplex'> Tilia mongolica> Liriodendron chinense>Paulownia tomentosa>Platycladus orientalis>Pinus tabulaeformis> Catalpa bungei>Salix matsudana'Pendula'> Ginkgo biloba.
     The minimum of UV shading rates is 68.20%(Ginkgo biloba), the maximum is 98.85% (Koelreuteria paniculata).The UV shading rates from large to small are Koelreuteria paniculata >Fraxinus pennsylvanica>Acer truncatum>Syringa pekinensis>Tilia mongolica>Eucommia ulmoides>Sophora japonica>Juglans regia>Populus tomentosa>Platanus occidentalis> Liriodendron chinense> Malus spectabilis> Platycladus orientalis> Pinus tabulaeformis> Catalpa bungei>Paulownia tomentosa>Salix matsudana'Pendula'> Robinia pseudoacacia> Ginkgo biloba.
     4. The light Coefficient of variation (CV) and UV CV can well reflect the degree of homogeneity. The degree of homogeneity will decrease with the increase of light CV and UV CV. The light CV of different species from large to small are Populus tomentosa>Platycladus orientalis>Paulownia tomentosa>Tilia mongolica>Catalpa bungei>Pinus tabulaeformis> Robinia pseudoacacia>Sophora japonica>Ginkgo biloba>Salix matsudana'Pendula'; the UV CV of different species from large to small are Tilia mongolica>Acer truncatum> Paulownia tomentosa> Juglans regia>Platycladus orientalis>Pinus tabulaeformis>Ginkgo biloba>Salix matsudana'Pendula'.
     5. The light intensity has significant correlation with the UV intensity in communities. The shading rate is related to the diameter at breast height (DBH) and height under branch markedly. The shading rates have nothing to do with the canopy density among different species.
引文
安树青,洪必恭,李朝阳,等.紫金山次生林林窗植被和环境的研究[J].应用生态学报,1997,8(3):245~249.
    常杰,潘晓东,葛滢,等.青冈常绿阔叶林内小气侯的特征[J].生态学报,1999,19(1)68~75.
    陈志宏,胡庭兴,龚伟,等.我国森林小气候的研究现状[J].四川林业科技,2007,28(2):29-32.
    成向荣,冯利,虞木奎,等.杭州湾北岸沿海防护林冠层结构及林下光环境[J].浙江林学院,2010,27(6):872~876.
    程子序.雾灵山地区油松林光照强度时空变化规律初探[J].高教前沿,2010, (2)
    崔启武,朱劲伟.林冠的结构和光的分布——光的投射和反射理论[J].地理学报,1981,36
    崔启武,朱劲伟.林冠的结构和光的分布——光的吸收理论的探讨[J].林业科学,1982,18(3):258-265.
    丁圣彦,卢训令,李昊民.天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较[J].生态学报,2005,25(11),2862-2867.
    丁守国.中国地区云及其辐射特性的研究[R].北京:中国科学院大气物理研究所,2004.
    郭松,周秀骥,张晓春,等.青海高原大气臭氧及紫外辐射UV-B观测结果初步分析[J].科学通报,1994,39(1):50-53.
    韩海荣,姜玉龙.栓皮栎人工林光环境特征的研究[J].北京林业大学学报,2000,22(4):92-96.
    韩焕金,周用武.不同绿化树种的降温增湿效应[J].河北农业科学,2007,11(5):28~30.
    郝洛西.城市照明设计[M].沈阳:辽宁科学技术出版社,2005.
    贺庆棠,刘祚昌.林内太阳辐射的初步研究[J].林业科学,10(3):274~275.
    贺庆棠.中国森林气象学[M].北京:中国林业出版社,2001.
    胡理乐,朱教君,李俊生,等.林窗内光照强度的测量方法[J].2009,29(9):5056-5065.
    黄海,刘建军,康博文,等.城市绿地内部温湿效应及光环境的初步研究[J].西北林学院学报,2008,23(3):57-61.
    季国良,吕兰芝,邹基玲.藏北高原太阳辐射能收支的季节变化[J].太阳能学报,1995,16(4):340~345.
    金莉莉,何清,曹兴.紫外辐射研究概述[J].沙漠与绿洲气象,2009,3(3):1-6.
    金为民,姚永康,许东新.城市人工片林小气候研究初报[J].东北林业大学学报,2002,30(3):115-117.
    孔祥文,刘贵峰,赵月田,等.红松在不同光环境下的生长及结构的变化[J].吉林农业科技,2005,34(4):29~33.
    冷平生,苏淑钗.园林生态学[M].北京:气象出版社,2001:7-78.
    李海涛,陈灵芝.暖温带山地森林的小气候研究[J].植物生态学报,1999,23(2):139-147.
    李海涛,胡东,廖迎春,等.北京市六种园林绿化树种对UVB的屏蔽效应[J].城市环境与城市生态,2003,16(6):139-141.
    李树人,赵勇,李相宽,等.城市森林对热污染及人体舒适度影响的研究.1995,29(1):11-19.
    李文华.几种林型下的光照条件及其对幼树生长的影响[J].林业科学,1963,8(4):310-320.
    李英年,赵新全,曹广民,等.海北高原草甸地区太阳总辐射、植被反射辐射的有关特征[J].草地学报,2002,10(1):33-38.
    李元,王勋陵.紫外辐射增加对春小麦生理产量和品质的影响.环境科学学报,1998,18(5):504~509.
    廖咏梅,田茂杰,宋会兴,等.植物群落的微生境研究[J].西北师范大学自然学报,2004,25(3):247-250.
    刘爱琴,马祥庆.UVB辐射增强对木本植物的影响研究进展[J].中国生态农业学报,2004,12(4):36~39.
    刘建,何维明,房志玲.东灵山油松林和辽东栎林下土壤资源和光资源的空间特征[J].生态学报,2005,25(11):2954-2960.
    刘燕.园林花卉学[M].北京:中国林业出版社,2007:26~28.
    刘志刚,马钦彦.华北落叶松不同类型林木的冠结构与光的分布[J].河北林果研究,1997,12(2):99~107.
    罗枝省.杉桤混交林生长效果与林分小气候特征研究[J].福建林业科技,2000,27(增刊):32~34.
    彭方仁,李杰,黄宝龙.海岸带复合农林业系统植物种群光环境特征研究[J].生态科学,2002,21(1):11~15.
    曲仲湘,吴玉树,王焕校,等.植物生态学[M].北京:高等教育出版社,1984:13-41.
    申彦波,赵宗慈,石广玉.地面太阳辐射的变化、影响因子及其可能的气候效应最近研究进展[J].地球科学进展,2008,23(9):915~923.
    师生波.增加UV2B辐射对高山植物麻花艽净光合速率的影响[J].植物生态学报,2001,25(5):520~524.
    宋广舜.环境医学[C].天津:天津科学技术出版社,1987,129-134.
    石广玉.大气辐射学[C].北京:科学出版社,2007.
    宋新章.长白山区采伐林隙更新及其微生境研究[D].北京:中国林业科学院,2007:1,145.
    宋子炜,郭小平,赵廷宁,等.北京市顺义区公路绿化植物群落的光环境特性[J].生态学报,2008,28(8):3779~3788.
    孙雪峰,陈灵芝.暖温带落叶阔叶林辐射能量环境初步研究[J].生态学报,1995,15(3):278~286.
    汤爱仪,陶建平,刘欣,等.常绿阔叶林两种树种幼苗对不同光环境的适应[J].西南大学学报,2008,30(1):109-113.
    唐艳鸿,李胜功.光环境的时空不均一性与光合作用的响应[A].第三届现代生态学讲座暨国际学术研讨会论文集[C],2005.
    田育新,刘浩.三个典型林分光照强度的分布规律研究[J].湖南林业科技,1997,24(1)34-36.
    王伯荪,黄庆昌,黄培佑.广东鼎湖山森林群落的小气侯[J].中山大学学报,1965(3)366~381.
    王伯荪,黄庆昌.广东鼎湖山森林小气侯的生态效应[J].中山大学学报,1965(4):517525.
    王春乙,郭进平,郑有飞编著.二氧化碳、臭氧、紫外辐射与农作物生产[M].北京:气象出版社,1997.
    王崑,车代弟,石福臣.天然次生柞木林光照强度变化规律观测[J].国土与自然资源研究,1997,(2):65-67.
    王普才,吴北婴,章文星.影响地面紫外辐射的因素分析[J].大气科学,1999,23(1):1-8.
    韦朝领,孙启祥,彭镇华,等.江淮分水岭落叶阔叶林林窗光环境特征及对绞股蓝生长特性的影响[J].应用生态学报,2003,14(5):665-670.
    翁锡全.体育·环境·健康[M].北京:人民体育出版社,2004.48-89.
    吴永波,薛建辉.UVB辐射增强对植物影响的研究进展[J].世界林业研究,2004,17(3)29-31.
    许嘉宸,金瑞雯.上海绿地群落冠层的UVB屏蔽作用[J].中国城市林业,2008,6(6):53-56
    杨柳青,梁及芝,邓凤笙,等.南方丘陵区马尾松次生植被小气候效应研究[J].湖南林业科技,2002,29(2):11~15.
    杨志敏.紫外辐射增强对植物生长的影响[J].植物生理学通讯,1994,40(4):241-248.
    游莉.伏牛山自然保护区森林群落冠层结构及光环境特征研究[D].开封:河南大学,2009:2-7.
    于海业,张蕾.人身生长环境研究进展[J].生态环境,2006,15(5):1101-1105.
    于家琳.光源的紫外辐射测量[J].中国照明电器,1997,(3):13-15.
    臧润国.海南热带山地雨林森林循环不同阶段光、温环境的测定与分析[J].北京林业大学学报,2002,24(5/6):126-130.
    张宝洲,蒋静芬,赵伟瑞.紫外辐射的测量方法、仪器及存在的主要问题[J].照明工程学报,1996,7(4):49-51.
    张敏,张社奇.油松冠层辐射特征的研究[J].西北农业科技,2008,17(4):294-296.
    张庆费,宋永昌,田文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-179.
    张一平.西双版纳热带季节雨林太阳辐射特征研究[J].北京林业大学学报,2005,27(5):17~25.
    张一平,王进欣,刘玉洪,等.西双版纳不同季节热带次生林林窗光照时空分布特征[J].2001,25(1):13-17.
    赵安玖.山地常绿落叶阔叶林空间异质性研究[D].成都:四川农业大学森林培育学博士论文,2007.
    赵宗群.紫外线对皮肤影响的流行病学研究[J].环境与健康杂志,1999,16(4):245~247.
    郑思均,张庆费,夏檑,等.上海人工绿地群落UVB屏蔽效应与冠层特征的关系[J].生态环境,2008,17(4):1523-1527.
    Aiking A.. Absorption of solar energy in the atmosphere discrepancy between model and observations[J]. Science,1996,273:779-782.
    Akio lnoue, Kazukiyo Yamamotob, et al. Effects of image quality, size and camera type on forest light environment estimates using digital hemispherical photography[J]. Agricultural and Forest Meteorology,2004,126:89-97.
    Alpert P., Kishcha P., Kaufman Y. J., etal. Global dimming or local dimming:Effect of urbanization no sunlight availability[J]. Geophysical Research Letters,2006,32, L17802, doi 10.1029/2005GL023320.
    Berger D. The sunburing ultraviolet meter:design and performance,Photochemistry and Photobiology,1976,24:587-593.
    Chazdon R L, Fetcher N. Photosynthetic light environments in a lowland tropical rainforest in Costa Rica[J]. J Ecol,1984,72:553-564.
    J. P. Hardy, R. Melloh, et al. Solar radiation transmission through conifer canopies[J]. Agricultural and Forest Meteorology,2004,126:257-270.
    John M. Lhotka, Edward F. Loewenstein. Indirect measures for characterizing light along a gradient of mixed-hardwood riparian forest canopy structures[J]. Forest Ecology and Management,2006,226:310-318.
    Marilou Beaudet, Christian Messier. Variation in canopy openness and light transmission following selection cutting in northern hardwood stands:an assessment based on hemispherical photographys[J]. Agricultural and Forest Meteorology,2002,110:217-222.
    Messier C., Parent S., Bergeron Y.. Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests[J]. Veg. Sci,1998,9:511-520.
    McKenzi R.L,P.V.Johnston, etal. Solar ultraviolet spectrometry in New Zealand: instrumentation and sample results from 1990[J].1992,Appl. Opt 31:6501-6509.
    Ramanathan V., Vogelmann A. M.. Greenhouse effect, atmospheric solar absorption and the Earths radiation budget from the arthenius langley era to the 1990s[J]. AMBIO,1997,26:38-46.
    Ziska L. H., Teramura A. H., Sullvan J. H. Physiological sensitivity of plants along an elevational gradient to UV-B radiation Am. J. Bot.,1992,679:863-871.
    Rozema J., Van de Staaij J., Tosserams M. Effects of UV-B radiation on plants from agro and natural ecosystem. In:Lumsden P. J. ed. Plants and UV-B Responses to Environmental Change. Cambridge:Cambridge University Press,1997.213-232.
    Zepp R. G., Callaghan T. V., Erickson D. J. Effects of increased solar ultraviolet radiation on biogeochemical cycles. Ambio,1995,24:181-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700