基于类等势场法的锻造预成形优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造是一种主要的材料成形加工方法。锻件最终成形前,往往需要进行一次或多次预成形,预成形工序数目和预成形形状设计是塑性成形工艺和模具设计的根本和难点,一直未能很好地解决。基于经验、物理模拟或数值模拟的预成形设计方法难以得到合理的预成形设计结果,从理论上研究预成形设计方法具有重要的理论和工程意义。
     类等势场法作为一种新兴的非优化算法,可以用静电场中不同电压的两个导体间等势场分布模拟塑性变形过程中坯料与锻件之间最小变形路径,在三维复杂锻件的预成形设计中有广阔的应用前景。本文首次将类等势场法、工程优化算法和有限元分析方法相结合,以预锻件形状为优化对象,对三维轴对称锻件和三维复杂锻件(预成形件为三维形状)的预成形设计方法进行了系统的研究:
     (1)结合类等势场法和预成形优化设计的原理,针对需要两工步模锻成形的锻件,提出了基于类等势场法进行锻造预成形多目标优化设计的方法。该方法对只需一步预成形的三维轴对称锻件或形状复杂的非轴对称锻件均适用。
     (2)以典型的H型截面轴对称锻件为例,对需要两工步模锻成形的锻件进行了基于类等势场法的预成形多目标优化设计研究。首先运用静电场模拟方法获得了坯料与锻件之间的等势场分布;然后以等势线电势值和预成形件与终锻件体积比为设计变量,以锻造充填率为优化目标,对H型轴对称锻件的终锻成形过程进行了响应面分析,确定了最佳预锻件体积和合理的等势线取值范围;最后以等势线电势值为单因素设计变量,运用共轭梯度优化算法,对H型轴对称锻件进行了基于锻件变形均匀性和终锻力的多目标预成形优化设计,确定了最优预锻件形状,得到了飞边较小、变形均匀而且终锻力较小的终锻件。
     (3)针对需要多工步模锻成形的三维复杂锻件,提出了基于类等势场法进行两步预成形优化设计的方法。采用反向设计法,首先结合类等势场法、响应面优化方法和有限元数值分析,确定最优预锻件形状;然后基于优化后的预锻件形状,采用纵横截面曲线方法设计合理的预制坯形状。经过两步预成形设计,可以解决三维复杂锻件终锻时容易产生折迭和不易充满的问题。
     (4)以形状复杂的摆体锻件为例,对需要多工步模锻成形的三维复杂锻件进行了基于类等势场法的两步预成形优化设计研究。运用静电场模拟方法获得了坯料与摆体锻件之间的三维等势场分布,通过等势面的分布规律分析了坯料成形过程中的流动特征,判断摆体锻件可能出现的锻造缺陷;采用截面曲线放样法提取了三维静电场中等势面作为预锻件形状;基于静电场模拟结果,以等势面电势值和预锻件与终锻件体积比为设计变量,以锻造充填率为优化目标对三维复杂摆体锻件的终锻成形过程进行了响应面分析,确定了最佳预锻件形状和体积。
     (5)基于优化后的摆体预锻件形状,提出了纵横截面曲线预制坯设计方法。依据坯料锻造过程中的流动规律和预锻成形缺陷分析,设计了等断面横向截面曲线和对称平面纵向截面曲线;并根据制坯和预锻成形模拟结果对截面曲线形状进行了改进,确定了合理的预制坯形状,确保材料充满预锻模锻;通过制坯和预锻两步预成形优化设计,获得了形状符合设计要求、飞边较小的无缺陷摆体锻件。
Forging is one of primary material forming processes. Generally, one or more preform processes are required before final forging. Research on the number of performs processes and preform shape design is fundamental and difficult for the plastic forming technology and die design, which has not been settled perfectly and effectively. Furthermore, it is difficult to get advisable preform shape using preform design methods based on experience, physical simulation or numerical simulation. Therefore, study on preform design method is of great theoretical significance and engineering significance.
     By Quasi-equipotential Field Method which is a non-numerical optimization algorithm, the equi-potential lines generated between two conductors of different voltages show similar trends for the minimum work paths between the undeformed shape and the deformed shape. Based on this similarity, the Quasi-equipotential Field Method has the broad application prospect in preform shape optimization for complex3-D forgings. In this paper, preform shape optimization methods for3-D axisymmetric and complex forgings (with3-D preform shapes) using Quasi--equipotential Field Method, plastic finite element modeling and engineering optimization algorithm are proposed.
     (1) Combing Quasi-equipotential Field Method with the principle of forging preform design optimization, a new approach to do the preform shape multi-objective optimization in two-stage die forging based on Quasi-equipotential Field Method is developed, which is effectively applied to preform design of both3-D axisymmetric forgings and non-axisymmetric complex forgings.
     (2) Research on preform shape multi-objective optimisation in two-stage die forging based on Quasi-equipotential Field Method is conducted by the example of H-section axisymmetric part. First, electric field distribution distribution of equipotential line between the undeformed shape and the deformed shape is obtained by electrostatic field simulation method. Second, with the potential value of an equi-potential line and volume ratio of preform to final shape as the design variables, forging filling ratio as the optimization goal, response surface analysis about forging forming process of H-section axisymmetric forging is carried out. Accordingly, the optimum volume ration and the appropriate range of potential lines for the preform of is determined. Finally, with the potential value of an equi-potential line as single factor variable, preform shape multi-objective optimization design controlling deformation uniformity and deforming force for H-section axisymmetric forging is performed using the conjugate gradient optimization algorithm. Consequently, flashless final forging with complete die fill and optimum deformation uniformity and deforming force is obtained
     (3) A new approach to optimize preform shape in multi-stage die forging for3-D complex forgings based on Quasi-equipotential Field Method is proposed, which is based on stepping backward method. In the first stage of preform design, optimum pre-forging shape is determined combining Quasi-equipotential Field Method, response surface optimization with finite element analysis. In the second stage, Vertical and horizontal Cross-section Curves Method is introduced to design advisable preformed blank based on the optimized pre-forging shape. The two-stage preform design method is suitable to eliminate underfill and fold which easily occur in the forming process of three dimensional complex forging.
     (4) Research on preform shape optimization in multi-stage die forging for3-D complex forging part based on Quasi-equipotential Field Method is conducted by the example of pendulum mass part. First, three dimensional electric field distribution between the undeformed shape and the deformed shape is obtained by electrostatic field simulation method. The material flow characteristics in the forming process are analyzed by the distribution of three dimensional equipotential surface so that the possible defects in the forging process can be predicted. The equipotential surfaces in3-D electrostatic field are extracted as pre-forging shapes by cross section curve lofting method. Based on the electrostatic field simulation results, response surface analysis about forging forming process of3-D complex pendulum mass part is performed with the potential value of an equi-potential surface and volume ratio of preform to final shape as the design variables, forging filling ratio as the optimization goal. Consequently, the optimum shape and volume of pre-forging is determined for obtaining final forging with complete die fill.
     (5) Vertical and horizontal Cross-section Curves Method is introduced to design advisable preformed blank based on the optimized pre-forging shape. The equal horizontal cross-section curve and longitudinal cross-section curve of symmetry plane are designed according to material flow characteristics and forming defects in the pre-forging process. As a consequence, the advisable preformed blank is found, ensuring pre-forging with complete die fill on the basis of finite element simulation results of the first and second preform processes. Final forging with complete die fill and without folding defect is obtained after two-stage preform forging processes,
引文
[1]赵新海,赵国群,王广春.锻造过程优化设计目标的研究[J].试验研究,2004(1):48-52.
    [2]吕炎.锻造工艺学[M].济南:山东大学,2005.
    [3]Lee S, Lee Y, Park C. A new method of preform design in hot forging [J]. International Journal of Mechanical Sciences,2002(44):773-792.
    [4]白建昌.蚁群算法在锻造预成形优化设计中的应用[D].山东大学,2010.
    [5]郭涛.基于预成形设计的锻造过程微观组织优化与实验研究[D].山东大学,2008.
    [6]吕炎.锻模设计手册[M].第2版.北京:机械工业出版社,2005.
    [7]Park, JJ, Rebelo N, Kobayashi S. A new approach to preform design in metal forming with the finite element method [J]. International Journal of Machine Tool Design Research, 1983(23):71-79.
    [8]唐炳涛,王兆清,赵震.板料成形多步反向模拟法的中间构型与运动约束[J].塑性工程学报,2009,16(1):58-63.
    [9]S. Badrinarayanan, N. Zabaras. A Sensitivity Analysis for the Optimal Design of Materials Forming Process [J]. Computer Methods in Applied Mechanics and Engineering,1996, 129(4):319-348.
    [10]Zhao G, Wright E, Grandhi R V. Preform Sensitivity Analysis Based Preform Die Shape Design for Net-shape Forging[J], International Journal of Machine Tools and Manufacture, 1997,37(9):1251-1271.
    [11]赵国群,王广春,赵振铎.材料塑性成形过程最优化设计-灵敏度分析方法在模具设计中的应用[J].塑性工程学报,1999,6(3):1-6.
    [12]赵国群,马新武,王广春.锻造过程最优化预成形设计系统的开发研究[J].锻压机械,1999(4):13-16.
    [13]马新武,赵国群,王广春.非等温成形过程中预锻模具形状优化设计[J].机械工程学报,2003,39(5):145-149.
    [14]赵新海,李剑峰,黄晓慧.控制锻件变形均匀性和变形力的锻造预成形多目标优化设计[J].机械工程学报,2009,45(5):193-197.
    [15]赵新海,赵国群,王广春.控制锻件变形均匀性的预成形优化设计[J].模具技术,2003(6):11-20.
    [16]管婧,王广春,赵国群.基于有限元灵敏度分析的锻造成形微观组织优化设计[J].塑性工程学报,2007,14(6):6-10.
    [17]孟宪颐.响应面法在可靠性优化设计中的应用[J].北京建筑工程学院,1999,15(3,4):31-36.
    [18]张渝,周杰,安治国.基于响应面方法的汽车法兰盘锻模优化设计[J].热加工工艺,2009,38(21):97-104.
    [19]梁艳迁,赵震,吴彦骏.基于响应面的多工位锻造工艺优化[J].上海交通大学学报,2009,43(5):713-716.
    [20]杨艳慧,刘东,贺子延,罗子健.基于响应面法(RSM)的锻造预成形多目标优化设计[J].稀有金属材料与工程,2009,38(6):1019-1024.
    [21]Yang Yanhui, Liu Dong, He Ziyan, Luo Zijian. Optimization of Preform Shapes by RSM and FEM to Improve Deformation Homogeneity in Aerospace Forgings [J]. Chinese Journal of Aeronautics,2010(23):260-267.
    [22]姚文俊.遗传算法及其研究进展[J].计算机与数字工程,2004,32(4):41-43.
    [23]罗仁平,姚华,彭颖红等.微观遗传算法在预锻模优化设计中的应用[J].锻压技术,2000(1):52-55.
    [24]罗仁平,姚华,彭颖红等.预锻模形状设计优化的新方法—微观遗传算法[J].中国机械工程,2001,12(2):202-204.
    [25]邹琳夏,巨堪,胡国安.并行遗传算法在模具型腔形状优化设计中的应用[J].中国机械工程,2003,14(24):2077-2080.
    [26]王广春,管靖,郭涛,赵国群.面向微观组织优化的锻造工艺预成形优化设计及实验研究[J].塑性工程学报,2008,15(2):61-64.
    [27]王广春.基于微观组织优化的锻造工艺预成形及毛坯形状优化设计[J].塑性工程学报,2007,14(2):69-72.
    [28]周杰,张渝,安治国,等.基于遗传算法的锻模阻力墙结构多目标优化设计[J].机械工程学报,2010,46(14):85-90.
    [29]C.F. Castro, C.A.C. Antnio, L.C.Sousa. Optimization of shape and process parameters in metal forging using genetic algorithms [J]. Journal of Materials Processing Technology, 2004(146):356-364.
    [30]S.Li, T.Mori. Determination of design and parameters in metal forging process by using FEM and neural network [J]. Material Forum,2005(29):166-171.
    [31]Kima D, Kim B. Application of neural network and FEM for metal forming processes [J]. International Journal of Machine Tools and Manufacture,2000,40(6):911-925.
    [32]汤禹成,周雄辉,陈军.基于神经网络响应曲面的预锻[J].上海交通大学学报,2007,41(4):624-628.
    [33]Sedighi M, Tokmechi S. A new approach to preform design in forging process of complex parts [J]. Journal of materials processing technology,2008(197):314-324.
    [34]Oh SI, Yoon SM. A new method to design blocker [J]. Annals of the CIRP, 1994(43):245-248.
    [35]Thiyagarajan N, Grandhi R V. Multi-level design process for 3-D preform shape optimization in metal forming [J]. Journal of Materials Processing Technology,2005(170):421-429.
    [36]王祖唐,关廷栋等.金属塑性成形理论[M].北京:机械工业出版社,1989.
    [37]林新波DEFORM-2D和DEFORM-3D CAE软件在模拟金属塑性变形过程中的应用[J].模具技术,2000(3):75-80.
    [38]Zienkiewicz. Flow of Plastic and Visco-Plastic Solids with Special Reference [J]. I. Numer. Mech. Eng.,1974(8):3-15.
    [39]李传民,王向丽,闫华军等DEFORM 5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [40]张莉,李升军DEFORM在塑性成形中的应用[M].北京:机械工业出版社,2009.
    [41]李超,李付国,张莹等.一种基于等势场的胀形坯料反推新方法[J].机械工程学报,2005,41(11):127-133.
    [42]肖军,李付国.轴对称件超塑性气压胀形过程的等势场模拟[J].塑性工程学报,2006,13(2):14-19.
    [43]肖军.材料成形过程的类等势场法模拟与预成形设计[D].西北工业大学,2006.
    [44]Wang Xiaona, Li Fuguo. A Quasi-equipotential Field Simulation for Preform Design of P/M Superalloy Disk [J]. Chinese Journal of Aeronautics,2009(22):81-86.
    [45]王晓娜,李付国,肖军.基于类等势场的粉末高温合金盘件预成形设计[J].材料科学与工艺,2009,17(3):315-321.
    [46]蔡军,李付国.一种基于三维静电场模拟的预制坯设计新方法[J].机械科学与技术,2009,28(10):1364-1369.
    [47]Biglari FR, O'Dowd NP, Fenner RT. Optimum design of forging dies using fuzzy logic in conjunction with the backward deformation method [J]. International Journal of Machine Tools and Manufacture,1998(38):981-1000.
    [48]Ko DC, Kim DH, Kim BM, Choi JC. Methodology of preform design considering workability in metal forming by the artificial neural network and Taguchi method[J]. Journal of Materials Processing Technology,1998(80):487-492.
    [49]张倩,胡仁喜,康士廷ANSYS12.0电磁学有限元分析从入门到精通[M].北京:机械工业出版社,2010.
    [50]谢宏刚,徐亮,王汉,蒋世明,范芦芳,唐敬.对Mimics V10.0软件三种三维重建方法的研究[J].西部医学,2008,20(5):1089-1091.
    [51]张志红,何桢,郭伟.在响应曲面方法中三类中心复合设计的比较研究[J].沈阳航空工业学院学报,2007,24(1):87-91.
    [52]中国锻压协会.锻造工艺模拟[M].北京:国防工业出版社,2009.
    [53]周凤佳.基于移动最小二乘响应曲面的注塑工艺优化[D].上海交通大学,2008.
    [54]王永菲,王成国.响应面法的理论与应用[J].中央敏族大学学报(自然科学版),2005,14(3):236-240.
    [55]徐向宏,何明珠.试验设计与Design-Expert、SPSS应用[M].北京:科学出版社,2010.
    [56]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008.
    [57]栾贻国.材料加工中的计算机应用基础[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [58]Thiyagarajan N, Grandhi R V. Multi-level design process for 3-D preform shape optimization in metal forming [J]. Journal of Materials Processing Technology,2005(170):421-429.
    [59]Poursina M, Parvizian J, Antonio C. Optimum pre-form dies in two-stage forging [J]. Journal of Materials Processing Technology,2006(174):325-333.
    [60]Ryutaro Hino, Akihiko Sasaki, Fusahito Yoshida, Vassili V.Toropov. A new algorithm for reduction of number of press-forming stages in forging processes using numerical optimization and FE simulation [J]. International Journal of Mechanical Sciences, 2008(50):974-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700